Category Archives: Lithography

By Lynnette Reese, Editor-in-Chief, Embedded Intel® Solutions

According to SEMI (semi.org), the global semiconductor revenue forecast for the second half of 2018 was doubled from 7.5 to 15 percent, a substantial growth. The semiconductor industry has seen cycles of growth and stagnation before, as innovative new products peak and decline before new technologies come out to drive growth from another direction. The wide adoption of personal computers marked great growth in semiconductors; a market that has been dominated by Intel for decades. When the PC market began to mature, a period of stagnation was followed by the mobile computing era. Companies like Qualcomm and MediaTek emerged as key players in the mobile industry. However, both computer and mobile sectors are now sustainable, but not growing appreciably.

Figure 1: Entegris works with automakers and mainstream fabs to investigate reducing contaminants and particles that don’t affect yield yet cause critical problems in long-term reliability. (Image courtesy of Entegris, ©2018).

Recently, multiple growth engines have kicked in for semiconductors, driving a new era of growth. Growth drivers include data centers, a growing “economy of data,” artificial intelligence, virtual reality, autonomous vehicles, and increasing automation in industrial applications, particularly in the Internet of Things (IoT) and robotics. The concurrent emergence of several new markets and applications has prompted a high demand; from leading edge chips on down to some of the legacy nodes. In turn, growth in semiconductors is driving the need for materials and better technologies for Integrated Chips (ICs).

Companies feeding the boom with materials and chemicals for making ICs are seeing growth that shows no signs of abating. One materials company, Entegris (ENTG), has recently expanded its Kulim manufacturing capacity and capabilities, adding new tooling, molding machines, and numerous updates to the assembly area so that Entegris can meet the demand for wafer handling products. Entegris is a 52-year-old company that, for context, was founded two years before Intel Corporation. Entegris provides materials and material solutions to semiconductor companies (semis). Currently, the company has about 4,000 employees with sales revenue of approximately $1.5 billion. Entegris has been expanding rapidly in recent years, achieving growth by about two to three percent above the market. The company is now viewed by most investors as a growth company than as an industrial, “cyclical business” type of company. Entegris is assisting the semiconductor industry in two ways: by helping the semis realize more advanced technologies and by providing materials for making chips.

Figure 2: Robotic handling equipment in a clean room. (Image courtesy of Entegris, ©2018)

Entegris has three divisions that address three different elements of semiconductor manufacturing. The first division provides advanced materials such as specialty chemicals, specialty gas mixtures, cleaning chemicals, deposition chemicals, specialty coatings, graphite, silicon carbide (SiC), and many other materials that fabrication plants (fabs) use to make chips. The second group at Entegris is involved in benefiting materials handling with carriers for handling wafers and photomasks, wafer and reticle handling, fluid management, sensing, control, and supply and delivery of chemicals to fabs. It is chip growth that primarily drives the growth of all Entegris’ divisions, with some growth influenced by advances in technology. The third division focuses on microcontamination control and primarily handles leading edge filtration and purification (at levels measured in parts per trillion). Microcontamination control is presently the fastest growing division at Entegris. Anything that touches the semiconductor wafer must go through a filter and purifier, whether gas, liquid, photo-resist, slurries, or other chemicals.

Figure 3: Entegris provides solutions to eliminate some of the random inferences impacting reliability. (Image courtesy of Entegris, © 2018)

Why is microcontamination control important?

Technologies continue to improve such that the industry is now producing Systems-on-chip (SoCs) at the 7 nm node and is headed to 5 nm. At such a scale, any particle or contaminants can make a chip fail. Enterprises like Entegris’ microcontamination control group are the last line of defense against contaminants for all chipmakers. Entegris works with automakers and mainstream fabs to investigate reducing some of the contaminants and particles that are not affecting yield yet are causing critical problems in long-term chip reliability.

According to Wenge Yang, Vice President of Marketing Strategy at Entegris, “Many existing and mainstream fabs are yielding high 90 percent range. However, we recently found that particles that are small enough to not cause a reduction in chip yield – can still cause reliability issues down the road. This has triggered Entegris to become an industry advocate on a new effort to reduce contaminants even further than has been practiced up to now.”

A Hot Topic

Entegris spotted a trend emerging about a year or two ago as semis began rooting out causes affecting long-term chip reliability that included microcontamination that did not affect yield but could affect a chips’ long-term reliability. There’s no greater concern for reliability than in autonomous cars; it’s become a hot topic.

The Society of Automotive Engineers (SAE) International issued a standard (J3016) that defines six levels of automation for self-driving cars. Level zero has no automation whatsoever. Adaptive cruise control is a Level one feature. Level two specifies partial automation. Level three defines conditional automation, such as Tesla’s Autopilot. Level four demonstrates a high level of automation where the car can operate without human oversight under certain conditions. Level five is full automation with no human involvement.

“One of the most interesting things we have seen is that with the growth of some specific sectors, the design and manufacturing challenge is changing,” Wenge affirms. “One example is in the automotive industry. If an automobile used only two or 300 chips total, the failure rate is not causing that much of a headache as it does if you have 10,000 chips in one car.”

Level Five autonomous cars may have as many as 10 LiDAR systems around the car, gathering data and processing signals and images in real-time, with low latencies. A fully autonomous car might have 10,000 ICs with 50 percent of the cost of the car sunk into the electronics. With that many chips in one autonomous vehicle, automakers begin to parallel NASA-level care in design and manufacturing, but without the added safety of redundant systems due to cost and size constraints. Add to this pressurized scenario the harsh automotive environment with extreme temperatures and constant, heavy vibration.

Figure 4: Autonomous Waymo Chrysler Pacifica Hybrid minivan undergoing testing in Los Altos, California, November 2017. Credit: Dllu, CC BY-SA 4.0.

“With these many chips in each car, if you have a failure rate of one chip out of one million, then several hundred cars might fail on the roads every single day,” states Wenge. The resulting repairs, medical bills, and lawsuits would be costlier than fixing the reliability issue at the outset. “For Entegris, the intrinsic need for increased reliability is an excellent opportunity.”

The military, aerospace, and avionics industries commonly employ redundant systems. However, the automotive industry cannot afford redundant systems, which means that we must improve the single systems’ reliability. The Level Five autonomous car sends processed data feeds into a central computer that decides whether the car should brake, slow down, accelerate, and so forth. If any component in any autonomous automotive systems fails, the car may not collect crucial data.  If the car has made a decision, it may be unable to execute on it. The possibility for failure is multiplied as automakers load thousands of ICs in a single car.

As Wenge points out, “Autonomous car makers start to realize, ‘If I put that many chips into the car, I run the risk of reliability everywhere.’ Of greater concern are chips that have passed on down the line as ‘good’ in a 100 percent yield batch…but can still fail in the field. This is how the topic of detailed reliability gets triggered.”  The design process for automotive applications must be accompanied by very high awareness of the reliability consequences. States Wenge, “Entegris is providing solutions to eliminate some of the random inferences impacting reliability.

Wenge Yang, Ph.D. Vice President, Market Strategy Dr. Yang joined Entegris in 2012 to serve as the Vice President of Market Strategy. In his role, he is responsible for Entegris product and market strategy, market research and market trend analysis, strategic marketing, and the company’s strategic technology roadmap. Before joining Entegris, Dr. Yang was an equity research analyst at Citigroup covering the semiconductor equipment and materials sector. He also served in various executive roles at Advanced Micro Devices, Tokyo Electron, and two start-up companies. Dr. Yang received a Ph.D. in Materials Science and Engineering and an MBA from Rensselaer Polytechnic Institute. Master of Science degree in Mechanical Engineering from the New Jersey Institute of Technology, and a Bachelor of Science degree in Materials Science and Engineering from Shanghai Jiao Tong University.

By Junko Collins

The SEMI International Standards program is operated in all major electronics manufacturing regions including the Americas, Europe, Japan, Korea, Taiwan and China to increase the manufacturing efficiency and interoperability. More than 5,000 volunteers representing over 2,000 companies work in 20 global technical committees and over 200 task forces to find solutions to common technology challenges.

At SEMICON Japan 2019 – December 12-14 at Tokyo Big Sight, Tokyo – SEMI recognized two industry veterans active in the Japan chapter for their longtime contributions to the SEMI International Standards program. The award ceremony took place on December 13 with 56 Standards committee members and SEMI executives including Ajit Manocha, president and CEO of SEMI, and Jim Hamajima, president of SEMI Japan, in attendance.

Hiromichi Enami of Hitachi High-Technologies Corporation and Isao Suzuki of MKS Japan Receive SEMI Japan Honor Award. Left to right: Jim Hamajima (SEMI), Ajit Manocha (SEMI), Hiromichi Enami (Hitachi High-Technologies), Isao Suzuki, James Amano (SEMI) and Mike Ciesinski (SEMI)

Contributing to SEMI Standards for more than 20 years, Mr. Hiromichi Enami of Hitachi High-Technologies Corporation has been dedicated to committee management by acting as co-chair of the Gases Technical Committee and the Facilities Technical Committee. In addition, as chairman of the division, he has strived for harmonization with other committees and regions. (The current SEMI International Standards program has no division structure).

Mr. Isao Suzuki, formerly of MKS Japan, is also a long-time contributor to the SEMI standards activities, having demonstrated his commitment to the management of the Gases Technical Committee and as a co-chair of the Facilities Technical Committee. He has also made significant efforts towards cooperation with Information & Control Committee activities related to sensor bus activities.

The SEMI Japan Honor Award is given to members who has contributed to the SEMI International Standards program as a member of Japan Regional Standards Committee or as a Global Technical Committee Japan Chapter co-chair for more than four years.

By Junko Collins, director of Standards and EHS, SEMI Japan

Total fab equipment spending in 2019 is projected to drop 8 percent, a sharp reversal from the previously forecast increase of 7 percent as fab investment growth has been revised downward for 2018 to 10 percent from the 14 percent predicted in August, according to the latest edition of the World Fab Forecast Report published by SEMI.

Entering 2018, the semiconductor industry was expected to show a rare fourth consecutive year of equipment investment growth in 2019. But the SEMI World Fab Forecast Report, tracking more than 400 fabs and lines with major investment projects, forecast in August a slowdown in the second half of 2018 and into the first half of 2019. Now, with recent industry developments, a steeper downturn in fab equipment is expected (Figure 1).

Figure 1

The report shows overall spending down 13 percent in the second half of 2018 and 16 percent in the first half of 2019 with a strong increase in fab equipment spending expected in the second half of 2019.

Plunging memory prices and a sudden shift in companies’ strategies in response to trade tensions are driving rapid drops in capital expenditures, especially among leading-edge memory manufacturers, some fabs in China, and some projects for mature nodes such as 28nm. Industry sectors expecting record-breaking growth in 2019, such as memory and China, are now leading the decline.

Following a sharp fall in NAND flash pricing earlier this year, DRAM prices in the fourth quarter of 2018 began to soften, seemingly ending the two-year DRAM boom. Inventory corrections and CPU shortages continue, prompting predictions of even steeper price declines.

Memory makers have quickly responded to changing market conditions by adjusting capital expenditures (capex), and tool orders have been put on hold. DRAM spending may see an even deeper correction in 2019 while NAND flash-related investment could also suffer a double-digit decline next year.

A review of spending by industry sector reveals that, while memory capital expenditures were expected to grow by 3 percent in 2019, they are now forecast to drop by 19 percent year-over-year (YOY). DRAM is hit the hardest with a fall of 23 percent, while 3D NAND will contract 13 percent in 2019.

China and Korea are suffering the largest drops in spending since the August report.

China fab spending falls

Projections for equipment spending in China in 2019 have been revised from US$17 billion in August to US$12 billion, with multiple factors at play including a slowing memory market, trade tensions, and delays in some project timelines.

SK Hynix is expected to slow DRAM expansion in 2019. GLOBALFOUNDRIES reconsidered its plan for the Chengdu fab, delaying the ramp. SMIC and UMC are slowing spending. The Fujian Jinhua DRAM project has been put on hold.

Korea fab spending down

In August, SEMI forecast that Korea fab equipment spending would decline by 8 percent, to US$17 billion, in 2019 – a projection that has now been slashed to US$12 billion, a drop of 35 percent YoY. Samsung began to reduce equipment investments in the fourth quarter of 2018, and the spending cuts are expected to continue into the first half of 2019. Samsung’s largest projects to be hit are P1 (slowdown) and the ramp of P2 Phase 1 (delayed). Adjustments to the S3 schedule are also expected.

Not all memory makers cut capital expenditures

While SEMI’s detailed, fab-level data show that some memory makers will scale back capital expenditures for 2019, one company stands out. Micron will increase capex for FY19 to US$10.5 billion, up about 28 percent, or $8.2 billion, from FY18. Micron plans to expand and upgrade facilities, invest less in NAND in FY19 than in FY18, and anticipates no new wafer starts.

Outlook still upbeat for mature technologies

In other sectors, especially for non-leading-edge and specialty technologies, some fabs are still increasing investments (Figure 2).

Figure 2

Opto – especially CMOS image sensors – shows strong growth, surging 33 percent to US$3.8 billion in 2019. Micro (MPU, MCU and DSP) is expected to grow more than 40 percent in 2019 to US$4.8 billion. Analog and mixed signal investments also show strong growth – 19 percent – in 2019, bringing spending to US$660 million. The foundry sector, the second largest product segment in total investments at US$13 billion, shows a 10 percent rise in 2019.

The recent three-year boom in the semiconductor market was chiefly driven by the memory sector (e.g. DRAM and 3D NAND flash). One company, Samsung, invested at unprecedented levels, lifting the entire industry. Other memory makers rode the wave of the boom cycle by boosting investments. And China’s profile rose with its huge investments. The industry was poised for four consecutive years of revenue growth – a streak not seen since the 1990s.

Now the industry faces well-known threats of inventory correction and the trade war. Both phenomena could slow growth significantly and if both unfold in full force in tandem, the impact could be serious. The data in SEMI’s latest publication of the World Fab Forecast show that the four-year growth streak will not materialize.

Since its August 2018 publication, more than 260 updates have been made to the World Fab Forecast. The report now includes more than 1,280 records of current and 115 future front-end semiconductor facilities from high-volume production to research and development. The report covers data and predictions through 2019, including milestones, detailed investments by quarter, product types, technology nodes and capacities down to fab and project level.

The SEMI World Fab Forecast examines capital expenditure plans of individual front-end device manufacturers, while the SEMI bi-annual Semiconductor Equipment Sales Forecast is based on year-to-date data collected from equipment manufacturers and modeled off of announced capital expenditure plans of both front-end and back-end equipment manufacturers.

IC Insights is in the process of revising its forecast and analysis of the IC industry and will present its new findings in The McClean Report 2019, which will be published in January 2019.  Among the revisions is a complete update of forecast growth rates of the 33 main product categories classified by the World Semiconductor Trade Statistics organization (WSTS) through the year 2023.

Topping the chart of fastest-growing products for 2018 is DRAM, which comes as no surprise given the strong rise of average selling prices in this segment over the past two years (Figure 1).  The 2018 DRAM market is expected to show an increase of 39%, a solid follow-up to the 77% growth in 2017. The number-one position is not unfamiliar territory for the DRAM market.  It was also the fastest-growing IC segment in 2013 and 2014.

Figure 1

Remarkably, DRAM has been at the top and near the bottom of this list over the past six years, demonstrating its very volatile and cyclical nature.  IC Insights forecasts that DRAM will rank nearly last in terms of market growth in 2019, with a 1% decrease in total sales.  After two strong years of growth, Samsung, SK Hynix, and Micron—the world’s three primary DRAM suppliers—have expanded their manufacturing capacity and are beginning to ramp up production, bringing some much needed relief to strained supplies, especially for high-performance DRAM devices. At the same time, shipments of large-scale datacenter servers, which were a primary catalyst for much of the recent DRAM market surge, have begun to ease as uncertain economic and trade conditions factor into decisions about continuing with the strong build out.

NAND flash joins DRAM as another memory segment that has enjoyed very strong growth over the past two years (Figure 2).  Solid-state computing, particularly, has been a key driver for high-density, high-performance NAND flash even as mobile applications continue to be a significant driver. Meanwhile, automotive and computing special purpose logic devices have also been strong performers the past two years.  The top five IC markets listed for 2018 are the only product categories that are expected to surpasses the 17% growth rate of the total IC market this year.

Figure 2

The full list of IC product rankings and forecasts for the 2019-2023 timeperiod is included in The McClean Report 2019, which will be released in January 2019.

By Walt Custer

Global growth by electronic sector

Now that most companies in our sector analyses have reported their calendar third quarter 2018 financial results, we have final or 3Q’18/2Q’17 growth estimates for the world electronic supply chain (Chart 1). We estimate electronic equipment grew 6.7% on a U.S. dollar-denominated basis.

Source: Custer Consulting Group based on consolidated financial reports of public companies

Electronic equipment growth has peaked for this current business cycle (Chart 2), dropping from +11.1% in the second quarter to 6.7% in the third quarter. Most of the supply chain is responding to this slowing.

Semiconductors, SEMI equipment an Taiwan chip foundries

While the most recent growth rates in Charts 1 & 2 are for the third quarter, October and November growth is included in Chart 3.  Foundry growth was +4.6% in November, world semiconductor shipments eased to +12.7% in October and SEMI capital equipment slipped to +10% also in October. The days of the +30% growth rates are behind us for this current business cycle!

Sources: SIA; SEMI; financial reports of Taiwan listed foundry companies

Global semiconductor growth outlook for 2019

The World Semiconductor Trade Statistics Organization in conjunction with the SIA just updated the chip shipment forecasts for 2018 and 2019 (Chart 4). World semiconductor shipments were estimated to have climbed 15.9% (in U.S. dollars) in 2018 but are predicted to slow to a +2.6% rate in 2019.

Source: www.wsts.org, www.semiconductors.org

Looking forward

The Global Manufacturing PMI (Chart 5) leveled out in November but remained well below its December 2017 high.  This translates to a slower but still positive world expansion in the short term. By region (Chart 6), U.S. growth remains robust, Japan picked up, Europe continues to decelerate, China is near zero growth and Taiwan and South Korea are contracting.

Source: www.markiteconomics.com

ll eyes are on the global economy, Brexit, trade wars and bizarre political wrangling. 2019 could be a very volatile year!

Walt Custer of Custer Consulting Group is an analyst focused on the global electronics industry.

Releasing its Year-End Total Equipment Forecast at the annual SEMICON Japan exposition, SEMI, the global industry association representing the electronics manufacturing supply chain, today reported that worldwide sales of new semiconductor manufacturing equipment are projected to increase 9.7 percent to $62.1 billion in 2018, exceeding the historic high of $56.6 billion set last year. The equipment market is expected to contract 4.0 percent in 2019 but grow 20.7 percent to reach $71.9 billion, an all-time high.

The SEMI Year-end Forecast predicts wafer processing equipment will rise 10.2 percent in 2018 to $50.2 billion. The other front-end segment – consisting of fab facilities equipment, wafer manufacturing, and mask/reticle equipment – is expected to increase 0.9 percent to $2.5 billion this year. The assembly and packaging equipment segment is projected to grow 1.9 percent to $4.0 billion in 2018, while semiconductor test equipment is forecast to increase 15.6 percent to $5.4 billion this year.

In 2018, South Korea will remain the largest equipment market for the second year in a row. China will rise in the rankings to claim the second spot for the first time, dislodging Taiwan, which will fall to the third position. All regions tracked except Taiwan, North America, and Korea will experience growth. China will lead in growth with 55.7 percent, followed by Japan at 32.5 percent, Rest of World (primarily Southeast Asia) at 23.7 percent, and Europe at 14.2 percent.

For 2019, SEMI forecasts that South Korea, China, and Taiwan will remain the top three markets, with all three regions maintaining their relative rankings. Equipment sales in South Korea is forecast to reach $13.2 billion, in China $12.5 billion, and in Taiwan $11.81 billion. Japan, Taiwan and North America are the only regions expected to experience growth next year. The growth picture is much more optimistic in 2020, with all regional markets expected to increase in 2020, with the market increasing the most in Korea, followed by China, and Rest of World.

The following results are in terms of market size in billions of U.S. dollars:

The Equipment Market Data Subscription (EMDS) from SEMI provides comprehensive market data for the global semiconductor equipment market. A subscription includes three reports:

  • Monthly SEMI Billings Report, an early perspective of the trends in the equipment market
  • Monthly Worldwide Semiconductor Equipment Market Statistics (SEMS), a detailed report of semiconductor equipment bookings and billings for seven regions and over 22 market segments
  • SEMI Mid-Year Forecast, an outlook for the semiconductor equipment market

SEMICON Japan 2018, the largest and most influential event for the electronics manufacturing supply chain in Japan with more than 70,000 attendees expected, opens tomorrow at Tokyo Big Sight. Themed “Dreams Start Here,” The Dec. 12-14 exposition and conference gathers industry leaders and visionaries for insights into the latest technologies, innovations and trends in the electronics industry, including emerging opportunities in SMART applications and the all-new SMART Application Zone.

With artificial intelligence (AI) and Internet of Things (IoT) transforming industries and applications, Japan is uniquely positioned to meet the electronics industry’s new demands with a strong customer basis in automotive and robotics, and considerable 200mm and smaller wafer fab capacity for the MCU, logic, power, and MEMS and sensor devices key to SMART applications.

The SuperTHEATER highlights SEMICON Japan with seven forums in three days:

  • Opening keynotes on an “Alternative Future Envisioned by New Leaders” feature Motoi Ishibashi, CTO at Rhizomatiks, and Toru Nishikawa, president and CEO at Preferred Networks
  • Semiconductor Executive Forum with “Executive Viewpoints from Three Top SMART Era Companies: Toshiba Memory, GLOBALFOUNDIRES and Qualcomm
  • SEMI Market Forum, “Growing China and Global Semiconductor Ecosystem,” with presenters from IHS Markit and SEMI
  • SMART Transportation Summit, “Future Created by SMART Innovation,” with executives from Toyota, Honda, Denso, Bosch and Infinion
  • SMART Technology Forum, “The Front Line of AI,” with speakers from The University of Tokyo, Microsoft, Amazon Web Services and DefinedCrowd
  • Manufacturing Innovation Forum, “The Front Line of EUV lithography,” with ASML, Carl Zeiss and Xilinx
  • Mirai Vision Forum, “Technology and the Future of the Body,” with speakers from Leave a Nest, MELTIN MMI and Man-Machine Synergy Effectors

SMART Application Zone

On the SEMICON Japan show floor, 70 companies will exhibit in the new SMART Application Zone in East Hall 3. Connecting SMART industries with the semiconductor supply chain, the SMART Application Zone will showcase emerging technologies and vertical product applications generating new semiconductor demand across SMART Transportation and SMART Manufacturing. Key exhibitors include:

  • SMART Transportation – Bosch, Tesla Motors and Toyota Motor
  • SMART Manufacturing – IBM, Japan Semiconductor, Lapis Semiconductor, Microsoft, NEC, Preferred Networks, Sony, SAS and SIEMENS

Register now for SEMICON Japan. For a detailed agenda, please see the “SEMICON Japan Schedule-at-a-Glance.

The Global Semiconductor Alliance (GSA) is proud to announce the award recipients honored at the 2018 GSA Awards Dinner Celebration that took place last evening in Santa Clara, California. For almost a quarter century, the GSA Awards have recognized the achievements of top performing semiconductor companies in several categories ranging from outstanding leadership to financial accomplishments, as well as overall respect within the industry.

Individual Awards:

Dr. Morris Chang Exemplary Leadership Award
The GSA’s most prestigious award recognizes individuals, such as its namesake, Dr. Morris Chang, for their exceptional contributions to drive the development, innovation, growth and long-term opportunities for the semiconductor industry. This year’s recipient is Dr. Lisa Su, President and CEO of Advanced Micro Devices (AMD).

Rising Women of Influence Award
This newly initiated award recognizes and profiles the next generation of women leaders in the semiconductor industry that are believed to be rising to top executive roles within their organizations. This year’s award was presented to Vanitha Kumar, Vice President of Software Engineering at Qualcomm Technologies, Inc.

Company Awards:

Most Respected Public Semiconductor Companies
GSA members identified the winners in this category by casting ballots for the industry’s most respected companies, judged for their vision, technology and market leadership. Below are this year’s recipients:

Most Respected Public Semiconductor Company Achieving Greater than $5 Billion in Annual Sales:

NVIDIA Corporation

Most Respected Public Semiconductor Company Achieving $1 Billion to $5 Billion in Annual Sales:

Marvell Semiconductor

Most Respected Public Semiconductor Company Achieving $500 Million to $1 Billion in Annual Sales:

Silicon Labs

Most Respected Emerging Public Semiconductor Company Achieving $100 Million to $500 Million in Annual Sales:

Nordic Semiconductor

Most Respected Private Company:

SiFive Inc.

Best Financially Managed Semiconductor Companies
T

hese awards are derived from a broad evaluation of the financial health and performance of public fabless and IDM semiconductor companies. Below are this year’s recipients:

Best Financially Managed Company Achieving up to $1 Billion in Annual Sales:

Holtek Semiconductor Inc.

Best Financially Managed Semiconductor Company Achieving Greater than $1 Billion in Annual Sales:

Micron Technology, Inc.

Start-Up to Watch
GSA’s Private Awards Committee, comprised of successful executives, entrepreneurs and venture capitalists, chose the winner by identifying a promising startup that has demonstrated the potential to positively change its market or the industry through innovation and market application. This year’s winner is Movandi.

As a global organization, the GSA recognizes outstanding companies headquartered in the Europe/Middle East/Africa and Asia-Pacific regions having a global impact and demonstrating a strong vision, portfolio and market leadership. Two awards were presented in this category:

Outstanding Asia-Pacific Semiconductor Company

Samsung Electronics Co., Ltd.

Outstanding EMEA Semiconductor Company

Infineon Technologies AG

Analyst Favorite Semiconductor Company
Two analyst pick awards were presented based on technology and financial performance as well as future projections:

NVIDIA Corporation was chosen by Rajvindra Gill, Managing Director at Needham & Company, LLC

Advanced Micro Devices (AMD) was chosen by Mark Lipacis, Managing Director at Jefferies, LLC
This year’s ceremony was attended by close to 1500 global executives in the semiconductor and technology industries.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $41.8 billion for the month of October 2018, an increase of 12.7 percent from the October 2017 total of $37.1 billion and 1.0 percent more than last month’s total of $41.4 billion. Monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average. Additionally, a newly released WSTS industry forecast was revised upward and now projects annual global market growth of 15.9 percent in 2018 and 2.6 percent in 2019.

“The global semiconductor industry posted solid year-to-year growth in October and is on pace for its highest-ever annual sales in 2018, but growth has moderated in recent months,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Although strong sales of DRAM products continue to boost overall market growth, sales in all other major product categories also increased year-to-year in October, and all major regional markets posted year-to-year gains. Double-digit annual growth is expected in 2018, with more modest growth projected for 2019.”

Regionally, year-to-year sales increased in China (23.3 percent), the Americas (14.1 percent), Europe(7.0 percent), Japan (5.5 percent), and Asia Pacific/All Other (3.7 percent). Compared with last month, sales were up in the Americas (2.8 percent), Asia Pacific/All Other (1.8 percent), Japan (0.4 percent), and Europe (0.2 percent), but down slightly in China (-0.4 percent).

Additionally, SIA today endorsed the WSTS Autumn 2018 global semiconductor sales forecast, which projects the industry’s worldwide sales will be $477.9 billion in 2018. This would mark the industry’s highest-ever annual sales, a 15.9 percent increase from the 2017 sales total of $412.2 billion. WSTS projects year-to-year increases across all regional markets for 2018: the Americas (19.6 percent), Asia Pacific (16.0 percent), Europe (13.2 percent), and Japan (9.6 percent). In 2019, growth in the semiconductor market is expected to moderate, with annual sales projected to increase by 2.6 percent. WSTS tabulates its semi-annual industry forecast by convening an extensive group of global semiconductor companies that provide accurate and timely indicators of semiconductor trends.

SEMI announced today that the Industry Strategy Symposium (ISS) 2019 will take place January 6-9 at Half Moon Bay’s Ritz-Carlton Hotel with the theme “Golden Age of the Semiconductor: Enabling the Next Industrial Revolution.” ISS is the year’s first executive check-in, bringing together leading analysts, researchers, economists, and technologists for insights on the forces impacting the semiconductor industry. The annual symposium offers executives a unique platform for identifying growth opportunities and gaining industry intelligence to help them ensure that their business plans and forecasts are based on up-to-the-minute market conditions. Registration for ISS 2019 is now open.

Major developments are transforming the extended supply chain — artificial intelligence (AI), intelligent vehicles, augmented and virtual reality, and seemingly limitless connectivity within the cloud. Collaboration across an expanding ecosystem and advanced technical innovations are giving rise to advanced electronics that continue to raise performance and power-consumption requirements and drive heterogenous integration.

“It can be hard to lead to where you’ve not been, particularly at this most dynamic time in business,” said David Anderson, president of SEMI Americas. “Executives from across the supply chain historically have asked for this timely ISS program in order to gauge what the year ahead looks like. To help management get the very latest picture, and to compare notes to most confidently tune their operations and sales, ISS is a tremendous level set for the new year.”

ISS 2019 is the first of seven conferences comprising SEMI’s inaugural Technology Leadership Series of the Americas. Aligned from coast to coast over one year, the series is designed to foster critical discussions on the short- and long-term influences and opportunities to the $2 trillion emerging markets.

ISS 2019 highlights include:

Keynotes

  • Dr. Jo de Boeck, chief strategy officer at IMEC, will share how nanotechnology’s “magic” will enable advanced applications for SMART mobility, SMART cities, infotainment and healthcare
  • Dr. Ann Kelleher, senior vice president for the technology and manufacturing group at Intel
  • Jim Talent, former U.S. Senator, will discuss the evolving U.S.-China strategic relationship

Economic trends and market perspectives affecting the chip industry

  • Executives and economists from Harvard Kennedy School, Gartner, Hilltop Economics, Linx, Amazon, Bank of America, Rockwell Automation, Ericsson, Selexis, Enthought and VLSI Research

Technology, manufacturing and industrial revolution discussions

  • Executives and CTOs from Google, TEL, Micron, Intel Labs, Applied Materials, Xperi, McKinsey, DECA Technologies, Carbon and Brewer Science

For more information about ISS, click here.