Category Archives: Lithography

SkyWater Technology Foundry, the industry’s most advanced U.S.- based and U.S.-owned Trusted Foundry, today announced that Tom Legere has been appointed as Senior Vice President of Operations. In this role Legere will focus on evolving and enhancing SkyWater’s operations as they drive world-class foundry efficiency and customer support in support of the company’s long-term growth objectives.

“I’m extremely excited to have Tom join us at SkyWater as we accelerate our technology foundry transformation and work to blend best-in-class operational efficiency with a highly differentiated technology portfolio.” said Thomas Sonderman, President, SkyWater Technology Foundry. “Tom brings a unique set of operations leadership experiences across the semiconductor industry and the industry segments we serve. This deep understanding of our customers will be critical as we look to scale our business in 2019 and beyond.”

Legere brings an ideal combination of leadership and operational talent to the SkyWater executive team with extensive industry experience in aerospace and defense, life sciences, security, MEMS, renewable energy and semiconductors. He has led both mature and start-up organizations with extensive implementation experience in Design for Manufacturability (DFM), lean and six sigma principles, supply chain management and customer engagement. Over the last three decades Legere has held senior operational roles at a diverse range of companies, most notably Aurora Semiconductor, Sonavation, eSolar, SVTC, Cypress Semiconductor and Atmel.

Added Legere, “SkyWater brings a truly differentiated proposition to semiconductor industry, blending innovative advanced technology development with the ability to manufacture at scale. I’m excited to join the team as we look to further scale the business with an operationally efficient, customer-first approach.”

SEMI announced today that it has signed a new agreement with the U.S. Air Force Research Laboratory (AFRL) to expand the Nano-Bio Materials Consortium’s (NBMC) work in advancing human monitoring technology innovations for telemedicine and digital health. The program is designed to include $20 million in direct federal funding and $41 million overall in the next six years with additional contributions from state and industry sources. The grant guarantees $7 million of government funds for the first year’s launch of the renewed program.

Drawing on elements of nano-technology and biological research, nano-bio technology is at the core of the expanding field of human performance monitoring and augmentation (HPM/A). Human performance monitoring systems focus on using wearables and table-top devices that monitor blood pressure and glucose, the heart and brain, and other key features of human health to assess physical performance, identify anomalies and help prevent disease.

The expanded NBMC program will focus on research topics such as individual or mission customization, non-intrusive electronics, effects of extreme environments, new material integration (nano-materials, textiles, etc.), and regulatory considerations. Activities will consist of competitively bid research and development (R&D) projects, workshops, conferences, webinars, and extensive gap analysis exercises to determine market needs.

“SEMI is eager to renew NBMC programs and begin working with AFRL, commercial organizations, and universities to identify technology needs, fund research and development, and execute this public/private collaboration,” said Melissa Grupen-Shemansky, Ph.D, NBMC executive director and SEMI CTO. “The NBMC’s continued work will give SEMI members a first-hand understanding of how medical technology innovations will be shaped by advanced electronics and provide the platform for collaboration on R&D projects leading to new products and enabling personalized medicine.”

“Since its inception, NBMC has enabled new industrial and academic communities to engage and team up with AFRL and our mission to deliver new and innovative human monitoring capabilities to the airmen,” said Jeremy W. Ward, Ph.D., NBMC Government Program Manager. “We are eager to continue fostering and growing this community of innovators and to focus R&D on emerging nano-bio materials and technologies for human monitoring to enable solutions for the future monitoring and diagnostic needs of the United States Air Force’s Aeromedical En Route Care mission.”

AFRL awarded the cooperative agreement to SEMI after reviewing competitive responses to a Request for Information followed by a Request for Proposals. Twelve organizations joined SEMI to write the comprehensive proposal: Binghamton University, Brewer Science, Cambridge Display Technology, Dublin City University, GE, Lockheed Martin, Molex, NextFlex, Qualcomm Life Sciences, UCLA Medical School, UES, and the University of Arizona. SEMI and its FlexTech Group have been collaborating with AFRL and its Materials and Manufacturing Directorate to manage NBMC since its launch in 2013.

GLOBALFOUNDRIES today announced the establishment of Avera Semiconductor LLC, a wholly owned subsidiary dedicated to providing custom silicon solutions for a broad range of applications. Avera Semi will leverage deep ties with GF to deliver ASIC offerings on 14/12nm and more mature technologies while providing clients new capabilities and access to alternate foundry processes at 7nm and beyond.

Avera Semi is built upon an unrivaled legacy of ASIC expertise, tapping into a world-class team that has executed more than 2,000 complex designs in its 25-year history. With more than 850 employees, annual revenues in excess of $500 million, and over $3 billion in 14nm designs in execution, Avera Semi is well positioned to serve clients developing products across a wide range of markets, including wired and wireless networking, data centers and storage, artificial intelligence and machine learning, and aerospace and defense.

The new company is led by Kevin O’Buckley, a leader in the ASIC business since joining GF as part of the acquisition of IBM Microelectronics in 2015. Previously, he spent nearly 20 years at IBM in a variety of roles spanning both technical and executive leadership positions.

“I couldn’t imagine a better time to launch a new venture focused on delivering custom ASIC solutions,” O’Buckley said. “Data traffic and bandwidth demands have exploded, and next-generation systems for cloud and communications must deliver more performance and handle more complexity than ever before. Avera Semi has the right combination of expertise and technology to help our clients design and build high-performance, highly optimized semiconductor solutions.”

“Arm has a long history of collaborating with the team building Avera Semi to enhance PPA and bring innovative solutions to market,” said Drew Henry, senior vice president and general manager, Infrastructure Line of Business, Arm. “As the needs for compute requirements continue to evolve and diversify, we look forward to joining Avera’s capabilities and technologies with Arm Neoverse solutions and physical design IP to deliver unique value to a broad customer base.”

“Synopsys’ long history of collaboration with GF has enabled us to deliver a broad portfolio of high-quality DesignWare IP on a range of GF processes,” said John Koeter, vice president of marketing for IP at Synopsys. “We look forward to continuing this success with Avera Semi to provide designers with the necessary IP for their next-generation, high-performance SoC designs on advanced FinFET processes.”

Avera Semi offers clients a range of capabilities to enable end-to-end silicon solutions:

●      ASIC offerings on both leading-edge and proven process technologies, including a newly established foundry partnership on 7nm
●      A rich IP portfolio, including high-speed SerDes, high-performance embedded TCAMs, ARM® cores and performance and density-optimized embedded SRAMs
●      A comprehensive, production-proven design methodology that builds on a strong record of first-time-right results to help reduce development costs and time-to-market
●      Advanced packaging options to increase bandwidth, eliminate I/O bottlenecks, and reduce memory area, latency and power
●      Flexible ASIC business engagement models that give clients the ability to supplement in-house resources with the level of support needed from experienced chip design, methodology, test and packaging teams

The Global Semiconductor Alliance (GSA) Board of Directors has appointed Dr. Lisa Su, President and Chief Executive Officer of Advanced Micro Devices, Inc. (AMD), as Chair of GSA Board of Directors and Simon Segars, Chief Executive Officer of Arm, as the Vice Chair. These leaders will help drive the GSA vision to establish an efficient, profitable and sustainable global ecosystem as well as broaden the scope of GSA to represent an extended value chain to include systems, software, solutions and services, in addition to semiconductors. Under the direction of the new leadership, GSA will be launching several initiatives that support this expanded vision, including Interest Groups and Working Groups for rapidly emerging but fragmented markets like automotive, artificial intelligence and internet-of-things (IoT). The GSA has also created a Women’s Leadership Initiative and “Rising Women of Influence Award” dedicated to highlighting and honoring key female executive leaders within the industry. The award will be presented at the GSA Annual Awards Dinner on December 6.

“I’m very honored to be named as Chair of GSA Board of Directors and look forward to working with my fellow Board members to execute the expanded GSA vision,” said Dr. Lisa Su. “Semiconductors are crucial drivers for a variety of industries and rapidly growing markets such as AI, IoT, automotive, big data, cloud computing and 5G. This industry is going through radical growth and transformation which demands new and different thinking, including an emphasis on stronger collaboration across the entire ecosystem to increase our pace of innovation.”

GSA will execute its vision with several new initiatives including strategically planned Interest Groups, that will convene the value chain in rapidly growing market segments like IoT and Automotive to collaborate on programs and projects important to the industry. Simon Segars outlined one of these collaborative programs. “We have established a GSA IoT Security Working Group within the IoT Interest Group to address end-to-end issues in IoT Security. It is comprised of various IoT ecosystem security stakeholders including chipset vendors, platform companies, cloud vendors and service providers. The goal is to promote best practices on IoT Security, share information on threats and attacks, define security requirements and inform standards bodies. It is also an opportunity for GSA members and partners to influence the requirements for security that get passed to all participants in the value and supply chains.”

“The GSA Board of Directors is comprised of a literal “Who’s Who” of leaders within the semiconductor ecosystem,” said Jodi Shelton, Co-founder and President of GSA. “They represent some of the most influential companies in the industry providing a comprehensive global perspective. As the CEO of AMD, Lisa understands the value of collaboration. We are confident Lisa and Simon will advance the GSA commitment to being a meaningful platform fostering collaboration, innovation and integration for this industry and across the value chain.”

Dr. Lisa Su is AMD president and chief executive officer and serves on the company’s board of directors. Previously, Dr. Su held executive leadership and engineering positions with AMD, Freescale Semiconductor, Inc. and IBM after receiving her bachelor’s, master’s and doctorate degrees in electrical engineering from the Massachusetts Institute of Technology (MIT). In 2017, Dr. Su was named one of the “World’s 50 Greatest Leaders” by Fortune Magazine and the “Top Ranked Semiconductor CEO” by Institutional Investor Magazine. Under Dr. Su’s leadership, AMD has introduced two completely new chip architectures and more than ten different product families, resulting in double-digit annual revenue growth in 2017.

Simon Segars is chief executive officer of Arm. Since joining Arm as one of its first employees, Simon has driven technical and business innovations to help transform the company into the leading architect of the most pervasive compute technology the world has ever seen. He was named CEO in July 2013 after successfully expanding the company’s U.S. business and strengthening its leadership and relationships in Silicon Valley, where he still lives with his family. Simon earned his BEng in electronic engineering from the University of Sussex and an MSc in computer science from the University of Manchester.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $122.7 billion during the third quarter of 2018, an increase of 4.1 percent over the previous quarter and 13.8 percent more than the third quarter of 2017. Global sales for the month of September 2018 reached $40.9 billion, an uptick of 2.0 percent over last month’s total and 13.8 percent more than sales from June 2017. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Three-quarters of the way through 2018, the global semiconductor industry is on pace to post its highest-ever annual sales, comfortably topping last year’s record total of $412 billion,” said John Neuffer, president and CEO, Semiconductor Industry Association. “While year-to-year growth has tapered in recent months, September marked the global industry’s highest-ever monthly sales, and Q3 was its top-grossing quarter on record. Year-to-year sales in September were up across every major product category and regional market, with sales into China and the Americas continuing to lead the way.”

Regionally, sales increased compared to September 2017 in China (26.3 percent), the Americas (15.1 percent), Europe (8.8 percent), Japan (7.2 percent), and Asia Pacific/All Other (2.4 percent). Sales were up compared to last month in the Americas (6.0 percent), China (1.8 percent), and Europe (1.2 percent), but down slightly in Asia Pacific/All Other (-0.1 percent) and Japan (-0.6 percent).

For comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, consider purchasing the WSTS Subscription Package. For detailed data on the global and U.S. semiconductor industry and market, consider purchasing the 2018 SIA Databook.

September 2018
Billions
Month-to-Month Sales
Market Last Month Current Month % Change
Americas 8.68 9.20 6.0%
Europe 3.53 3.57 1.2%
Japan 3.39 3.37 -0.6%
China 14.10 14.35 1.8%
Asia Pacific/All Other 10.43 10.42 -0.1%
Total 40.12 40.91 2.0%
Year-to-Year Sales
Market Last Year Current Month % Change
Americas 7.99 9.20 15.1%
Europe 3.28 3.57 8.8%
Japan 3.14 3.37 7.2%
China 11.36 14.35 26.3%
Asia Pacific/All Other 10.18 10.42 2.4%
Total 35.95 40.91 13.8%
Three-Month-Moving Average Sales
Market Apr/May/Jun Jul/Aug/Sept % Change
Americas 8.34 9.20 10.2%
Europe 3.67 3.57 -2.7%
Japan 3.39 3.37 -0.8%
China 13.59 14.35 5.6%
Asia Pacific/All Other 10.32 10.42 1.0%
Total 39.31 40.91 4.1%

By Emir Demircan

SEMI Europe today confirmed its support for the joint call to future Members of the European Parliament to put industry at the core of the European Union’s future. The joint call is as follows:

Industry Matters for Europe and Its Citizens

European industry is everywhere in our daily life: from the houses we build, the furniture we buy, the clothes we wear, the food we eat, the healthcare we receive, the energy and means of transport we use to the objects and products ever-present in our lives. With its skilled workforce and its global reputation for quality and sustainability, industry is vital for Europe and its prosperity. Today, 52 million people and their families throughout Europe benefit directly and indirectly from employment in industrial sectors. Our supply chains, made up of hundreds of thousands of innovative SMEs and larger suppliers, are thriving and exporting European industrial excellence all over the world.

Industry Needs You!

Following the 2008 financial crisis, millions of manufacturing jobs were lost in Europe, each time bringing dramatic human and social consequences. Even now, we are still far from the employment levels seen before the crisis and jobs are vulnerable to worrying international trends, including increasing protectionism. The European Union now needs an ambitious industrial strategy to help compete with other global regions – such as China, India and the USA – that have already put industry at the very top of their political agenda.

Therefore we, industrial sectors from all branches, call on you – future Members of the European Parliament – to commit today to:

  • Put industry at the top of the political agenda of the European Parliament during the next institutional cycle (2019-2024)
  • Urge the next European Commission to shortlist industry as a top priority of its 5-year Work Programme and appoint a dedicated Vice-President for Industry
  • Uphold the next European Commission to swiftly present an ambitious long-term EU industrial strategy which shall include clear indicators and governance

We, the Signatories of this Manifesto, count on your support to make sure that Europe remains a hub for a leading, smart, innovative and sustainable industry, that benefits all Europeans and future generations. Europe can be proud of its industry. Together we must put it at the core of the EU’s future!

The joint call and the list of supporting associations can be reached here.

Emir Demircan is senior manager, Advocacy and Public Policy, at SEMI Europe. He can be reached at [email protected]

KLA-Tencor Corporation (NASDAQ: KLAC) has announced plans to establish a research-and-development (R&D) center in Ann Arbor, Michigan. The development is expected to include a total capital investment of more than $70 million and create up to 500 new high-tech jobs in the region over the next five years.

“Among the reasons for building a major R&D hub in the Ann Arbor and Detroit metropolitan area are the region’s attractive talent pool, relative low cost of living and proximity to Detroit Metropolitan Airport,” said Bobby Bell, chief strategy officer. “Our plan is to develop innovative solutions that will have an impact across a broad spectrum of semiconductor and electronics applications, including data storage, cloud computing, machine learning and automotive.”

“We’re confident that we can continue to create and deliver impactful technologies that ultimately help enrich the human experience. Our expansion into Michigan will help us realize our vision,” said Rick Wallace, chief executive officer. “This location also allows the company to strengthen our long-term partnership with the University of Michigan, including engaging in collaborative research.”

Semiconductor manufacturing to support the growing automotive electronics industry requires improved device reliability and defect control. In addition, the expanding applications of artificial intelligence (AI) and machine learning are driving strong demand for compute power and memory. Semiconductor manufacturers serving these diverse needs are turning to KLA-Tencor’s advanced process control solutions and services to help address their complex challenges.

KLA-Tencor’s decision to build a new location is founded upon a need to serve growing demand from its global customer base, while expanding the company’s footprint in North America.

The project was conceived in partnership with Michigan Economic Development Corporation and approved by the Michigan Strategic Fund.

North America-based manufacturers of semiconductor equipment posted $2.09 billion in billings worldwide in September 2018 (three-month average basis), according to the September Equipment Market Data Subscription (EMDS) Billings Report published today by SEMI. The billings figure is 6.5 percent lower than the final August 2018 level of $2.37 billion, and is 1.8 percent higher than the September 2017 billings level of $2.05 billion.

“Quarterly global billings of North American equipment suppliers experienced their typical seasonal weakening in the most recent quarter,” said Ajit Manocha, president and CEO of SEMI. “Relative to the third quarter, we expect investment activity to improve for the remainder of the year.”

The SEMI Billings report uses three-month moving averages of worldwide billings for North American-based semiconductor equipment manufacturers. Billings figures are in millions of U.S. dollars.

Billings
(3-mo. avg.)
Year-Over-Year
April 2018
$2,689.9
25.9%
May 2018
$2,702.3
19.0%
June 2018
$2,484.3
8.0%
July 2018
$2,377.9
4.8%
August 2018 (final)
$2,236.8
2.5%
September 2018 (prelim)
$2,091.9
1.8%

Source: SEMI (www.semi.org), October 2018

SEMI publishes a monthly North American Billings report and issues the Worldwide Semiconductor Equipment Market Statistics (WWSEMS) report in collaboration with the Semiconductor Equipment Association of Japan (SEAJ).

By Jay Chittooran

Last week, the Office of the U.S. Trade Representative (USTR), on instruction from President Trump, notified Congress that the administration intends to begin bilateral trade negotiations with Japan, the European Union (EU), and the United Kingdom.

SEMI stands strong for free trade and open markets, and roundly supports efforts to increase market access and tap into more foreign economies, especially economies like Japan and the EU, both of which are central to the semiconductor industry. The semiconductor industry, which enables the $2 trillion electronics market, is built on global commerce. SEMI members rely on a vast network of supply chains that span the globe, bringing together components and tools made all around the world and assembled into a single sub-system that is then integrated into a larger tool used in the chipmaking process.

These free trade agreements will reduce tariffs, which will result in cost savings and productivity gains, and allow SEMI members to expand and grow. But the benefits of modern free trade agreements extend well beyond tariff reduction. Indeed, these trade deals will establish and enhance global trade rules that enable companies to innovate and compete fairly on a level playing field. Trade agreements strengthen certainty and further business continuity.

While the exact nature and negotiation timelines for the talks remain unclear, SEMI will engage the administration, urging it to maintain high standards in these agreements, such as:

  • Maintain strong respect for intellectual property and trade secrets through robust safeguards and significant penalties for violators
  • Remove tariffs and non-tariff barriers on semiconductor products as well as products that depend on semiconductors
  • Simplify and harmonize the customs and trade facilitation processes
  • Combat any attempts of forced technology transfer
  • Prevent use of data localization measures and enable the free flow of cross-border data flows
  • End discriminatory and/or burdensome regulatory practices
  • Ensure standards in all forms are market-oriented
  • Create rules for state-owned enterprises to ensure fair and non-discriminatory treatment of all companies

According to Trade Promotion Authority (TPA), the U.S. law that guides trade votes in Congress, negotiations with each country can only begin 90 days after last week’s notification. During that period, there will be intensive consultation with Congress and stakeholders. This means, at the earliest, talks can start on January 14, 2019. (Bear in mind that discussions with the UK can only begin in earnest once the UK has formally left the European Union on March 29, 2019.)

The Trump administration’s announcement comes after the U.S. imposed or threatened tariffs on imports on all trading partners, including the EU and China. All told, the U.S. has imposed tariffs on more than $300 billion worth of goods. SEMI has weighed in on the detrimental nature of tariffs, arguing that tariffs on China will ultimately do nothing to address the concerns with China’s trade practices. This sledgehammer approach will introduce significant uncertainty, impose greater costs, and potentially lead to a trade war, ultimately undercutting the ability of semiconductor companies to sell overseas, stifling innovation and curbing U.S. technological leadership.

Elsewhere, the Comprehensive and Progressive Agreement for Trans-Pacific Partnership, the multilateral trade deal that links 11 Asia-Pacific economies, is well on its way to taking force. Canada will be taking its final steps to ratify the deal, joining Mexico, Japan and Singapore. The deal, formerly known as the Trans-Pacific Partnership, should take effect by the first half of 2019.

SEMI will continue tracking ongoing trade developments. Any SEMI members with questions should contact Jay Chittooran, Public Policy Manager at SEMI, at [email protected].

Samsung Electronics Co., Ltd. today announced several groundbreaking additions to its comprehensive semiconductor ecosystem that encompass next-generation technologies in foundry as well as NAND flash, SSD (solid state drive) and DRAM. Together, these developments mark a giant step forward for Samsung’s semiconductor business.

Unveiled at its annual Samsung Tech Day include:

  • 7nm EUV process node from Samsung’s Foundry Business, providing significant strides forward in power, performance and area.
  • SmartSSD, a field programmable gate array (FPGA) SSD, that will offer accelerated data processing and the ability to bypass server CPU limits.
  • QLC-SSD for enterprise and datacenters that offer 33-percent more storage per cell than TLC-SSD, consolidating of storage footprints and improving total cost of ownership (TCO).
  • 256-gigabyte (GB) 3DS (3-dimensional stacking) RDIMM (registered dual in-line memory module), based on 10nm-class 16-gigabit (Gb) DDR4 DRAM that will double current maximum capacity to deliver higher performance and lower power consumption.

“Samsung’s technology leadership and product breadth are unparalleled,” said JS Choi, President, Samsung Semiconductor, Inc. “Bringing 7nm EUV into production is an incredible achievement. Also, the announcements of SmartSSD and 256GB 3DS RDIMM represent performance and capacity breakthroughs that will continue to push compute boundaries. Together, these additions to Samsung’s comprehensive technology ecosystem will power the next generation of datacenters, high-performance computing (HPC), enterprise, artificial intelligence (AI) and emerging applications.”

Advanced Foundry Technology

Initial wafer production of Samsung’s 7nm LPP (Low Power Plus) EUV process node represents a major milestone in semiconductor fabrication. The 7LPP EUV process technology provides great advances, including a respective maximum of 40-percent area reduction, 50-percent dynamic power reduction and 20-percent performance increase over 10nm processes. The 7LPP process represents a clear demonstration of the foundry business’ technology roadmap evolution, providing Samsung’s customers a direct path forward to 3nm.

Powering Server-less Computing

Samsung enables the most advanced providers of server-less computing through products including the new SmartSSD, quad-level cell (QLC)-SSD, 256GB 3DS RDIMM as well as High Bandwidth Memory (HBM) 2 Aquabolt. By accelerating data processing, bypassing server CPU limits and reducing power demands, these products will enable datacenter operators to continue to scale at faster speeds while containing costs.

Samsung’s industry-leading flash memory products for future datacenters will also include Key Value (KV)-SSD and Z-SSD. KV-SSD eliminates block storage inefficiency, reducing latency and allowing datacenter performance to scale evenly when CPU architectures max out. The company’s next-generation Z-SSD will be the fastest flash memory ever introduced, with dual port high availability, ultra-low latency and a U.2 form factor, designed to meet the emerging needs of enterprise clients. Z-SSD will also feature a PCIe Gen 4 interface with a blazing-fast 12-gigabytes-per-second (GB/s) sequential read, which is 20 times faster than today’s SATA SSD drives.

Accelerating Application Learning

A range of revolutionary Samsung solutions will enable the development of upcoming machine learning and AI technologies. The Tech Day AI display highlighted astounding data transfer speeds of 16Gb GDDR6 (64GB/s), ultra-low latency of Z-SSD and industry-leading performance of Aquabolt, which is the highest of any DRAM-based memory solution currently in the market. Together, these solutions help Samsung’s enterprise and datacenter clients open new doors to application learning and create the next wave of AI advancements.

Streamlining Data Flow

Samsung’s new solutions will enable not just faster speeds and higher performance but also improved efficiency for its enterprise clients. Enterprise products on display at Tech Day included D1Y 8Gb DDR4 Server DRAM, which incorporates the most advanced DRAM process, resulting in lower power usage. Samsung’s 256GB 3DS RDIMM also helps to improve enterprise performance and enables memory-intensive servers capable up to 16-terabytes (TB).

Additionally, Samsung’s dual-port x4 PCIe Gen 4 32TB SSD offers 10GB/s performance. Samsung’s 1Tb QLC-SSD presents a cutting-edge storage option for enterprise clients with competitive efficiency when compared to hard disk drives (HDD), while KV-SSD allows server performance to scale even as CPU architectures max out, also providing a competitive TCO, write amplification factor (WAF) improvement and scalability.

Breaking Performance Barriers

With their leading-edge specs, Samsung’s QLC-SSD, Z-SSD and 8GB Aquabolt help high-performance computing clients blast through performance barriers and reach new heights. The 8GB Aquabolt provides the fastest data transmission speed and highest performance of any DRAM-based memory solution on the market today at 307GB/s per HBM cube. QLC-SSD and Z-SSD, both powerful on their own, are also offered in a tiered storage solution that results in a 53-percent increase in overall system performance.

Enabling Future Innovation

Emerging tech requires the most innovative and flexible components. Samsung’s SmartSSD will increase speed and efficiency, and lower operating costs by pushing intelligence to where data lives. Movement of data for processing has traditionally caused increased latency and energy consumption while reducing efficiency. Samsung’s new SmartSSDs will overcome these issues by incorporating an FPGA accelerator into the SSD unit. This allows for faster data processing through bypassing server CPU limits. As a result, SmartSSDs will have higher processing performance, improved time-to-insight, more virtual machines (VM), scalable performance, better de-duplication and compression, lower power usage and fewer CPUs per system.

Unparalleled Product Ecosystem

Samsung’s comprehensive product portfolio with state-of-the-art solutions set new standards for data processing speed, capacity, bandwidth and energy conservation. By leveraging such solutions, data centers, enterprise companies, hyper-scalers and emerging tech platforms are able to configure product solutions based on their requirements and develop exciting new tech offerings such as 5G, AI, enterprise and hyperscale data centers, automotive, networking and beyond.

Samsung will continue to push boundaries in tomorrow’s semiconductor technologies through innovations such as its sixth-generation V-NAND built on a single structure, or with ‘1-stack technology,’ and sub-10nm DRAM with EUV for super-high density and performance.

Experts across the industry, including Apple co-founder, Steve Wozniak, were invited at Samsung Tech Day to address the advancements and challenges in today’s semiconductor market, and offer insights for the future of semiconductors. More than 400 customers, partners and industry influencers attended the event.