Category Archives: Manufacturing

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced the global semiconductor industry posted sales totaling $412.2 billion in 2017, the industry’s highest-ever annual sales and an increase of 21.6 percent compared to the 2016 total. Global sales for the month of December 2017 reached $38.0 billion, an increase of 22.5 percent over the December 2016 total and 0.8 percent more than the previous month’s total. Fourth-quarter sales of $114.0 billion were 22.5 percent higher than the total from the fourth quarter of 2016 and 5.7 percent more than the third quarter of 2017. Global sales during the fourth quarter of 2017 and during December 2017 were the industry’s highest-ever quarterly and monthly sales, respectively. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

Worldwide semiconductor revenues, year-to-year percent change

Worldwide semiconductor revenues, year-to-year percent change

“As semiconductors have become more heavily embedded in an ever-increasing number of products – from cars to coffee makers – and nascent technologies like artificial intelligence, virtual reality, and the Internet of Things have emerged, global demand for semiconductors has increased, leading to landmark sales in 2017 and a bright outlook for the long term,” said John Neuffer, SIA president and CEO. “The global market experienced across-the-board growth in 2017, with double-digit sales increases in every regional market and nearly all major product categories. We expect the market to grow more modestly in 2018.”

Several semiconductor product segments stood out in 2017. Memory was the largest semiconductor category by sales with $124.0 billion in 2017, and the fastest growing, with sales increasing 61.5 percent. Within the memory category, sales of DRAM products increased 76.8 percent and sales of NAND flash products increased 47.5 percent. Logic ($102.2 billion) and micro-ICs ($63.9 billion) – a category that includes microprocessors – rounded out the top three product categories in terms of total sales. Other fast-growing product categories in 2017 included rectifiers (18.3 percent), diodes (16.4 percent), and sensors and actuators (16.2 percent). Even without sales of memory products, sales of all other products combined increased by nearly 10 percent in 2017.

Annual sales increased substantially across all regions: the Americas (35.0 percent), China (22.2 percent), Europe (17.1 percent), Asia Pacific/All Other (16.4 percent), and Japan (13.3 percent). The Americas market also led the way in growth for the month of December 2017, with sales up 41.4 percent year-to-year and 2.1 percent month-to-month. Next were Europe (20.2 percent/-1.6 percent), China (18.1 percent/1.0 percent), Asia Pacific/All Other (17.4 percent/0.2 percent), and Japan (14.0 percent/0.9 percent).

“A strong semiconductor industry is foundational to America’s economic strength, national security, and global technology leadership,” said Neuffer. “We urge Congress and the Trump Administration to enact polices in 2018 that promote U.S. innovation and allow American businesses to compete on a more level playing field with our counterparts overseas. We look forward to working with policymakers in the year ahead to further strengthen the semiconductor industry, the broader tech sector, and our economy.”

Accurately measuring electric fields is important in a variety of applications, such as weather forecasting, process control on industrial machinery, or ensuring the safety of people working on high-voltage power lines. Yet from a technological perspective, this is no easy task.

In a break from the design principle that has been followed by all other measuring devices to date, a research team at TU Wien has now developed a silicon-based sensor as a microelectromechanical system (MEMS). Devised in conjunction with the Department for Integrated Sensor Systems at Danube University Krems, this sensor has the major advantage that it does not distort the very electric field it is currently measuring. An introduction to the new sensor has also been published in the electronics journal “Nature Electronics”.

Tiny new sensor -- compared to a one-cent-coin. Credit: TU Wien

Tiny new sensor — compared to a one-cent-coin. Credit: TU Wien

Distorting measuring devices

“The equipment currently used to measure electric field strength has some significant downsides,” explains Andreas Kainz from the Institute of Sensor and Actuator Systems (Faculty of Electrical Engineering, TU Wien). “These devices contain parts that become electrically charged. Conductive metallic components can significantly alter the field being measured; an effect that becomes even more pronounced if the device also has to be grounded to provide a reference point for the measurement.” Such equipment also tends to be relatively impractical and difficult to transport.

The sensor developed by the team at TU Wien is made from silicon and is based on a very simple concept: small, grid-shaped silicon structures measuring just a few micrometres in size are fixed onto a small spring. When the silicon is exposed to an electric field, a force is exerted on the silicon crystals, causing the spring to slightly compress or extend.

These tiny movements now need to be made visible, for which an optical solution has been designed: an additional grid located above the movable silicon grid is lined up so precisely that the grid openings on one grid are concealed by the other. When an electric field is present, the movable structure moves slightly out of perfect alignment with the fixed grid, allowing light to pass through the openings. This light is measured, from which the strength of the electric field can be calculated by an appropriately calibrated device.

Prototype achieves impressive levels of precision

The new silicon sensor does not measure the direction of the electric field, but its strength. It can be used for fields of a relatively low frequency of up to one kilohertz. “Using our prototype, we have been able to reliably measure weak fields of less than 200 volts per metre,” says Andreas Kainz. “This means our system is already performing at roughly the same level as existing products, even though it is significantly smaller and much simpler.” And there is still a great deal of potential for improvement, too: “Other methods of measurement are already mature approaches – we are just starting out. In future it will certainly be possible to achieve even significantly better results with our microelectromechanical sensor,” adds Andreas Kainz confidently.

Technavio market research analysts forecast the global reset IC market to grow at a CAGR of close to 12% during the forecast period, according to their latest report.

The report further segments the global reset IC market by end-user (consumer electronics, telecommunication, automotive, industrial, and healthcare), by type (1-5 V, 5-12 V, and above 10 V), and by geography (the Americas, APAC, and EMEA).

Technavio analysts highlight the following three market drivers that are contributing to the growth of the global reset IC market:

  • Growth of smart grid technology
  • Increasing need for external brownout protection
  • Growth of IoT

Growth of smart grid technology

Due to their reliability and real-time information, smart grids have become an important trend in the energy industry. A smart grid is an electricity supply network integrated with digital communications technology to detect and react to local changes in the consumption of electricity and it is equipped with computational intelligence and network capabilities.

According to a senior analyst at Technavio for embedded systems research, “Smart grids are developed to improved operations and the maintenance of electric grids by allowing smooth exchange of data between various components. Transmission lines, generators, transformers, smart meters, smart appliances, and energy-efficient devices are components of a smart grid.”

Increasing need for external brownout protection

Restriction or reduction in the availability of electrical power in an area or locality is known as brownout. Voltage is limited or regulated in a brownout, unlike a blackout where the supply of voltage is completely removed for a period of time. Voltage overload on power grid and aging electrical system are some of the causes of brownouts. A reset IC sometimes integrates a brownout detector (BOD). It helps in preventing a reset if the voltage drops unexpectedly for a short duration of time.

Growth of IoT

The significant growth of IoT proved to be a major driver for the global reset IC market. IOT is a system of interrelated computing devices, machines, objects, and people, which are provided with unique identifiers. Without the need for any human-to-human or human-to-computer interaction, IoT allows the transfer of data over a network. IoT is also driving the demand for connected devices, which has significantly increased the bandwidth requirements. Vendors in the market are working together to satisfy the need for connecting several products, including gateways, home appliances, entertainment systems for smart homes, by a common networking standard that provides interoperability with a wide range of smart devices.

IoT will drive the need for enabler technologies which will have an impact on semiconductor foundries. An enabler technology can be classified as an invention, product, or technology which can provide a radical change in a user or an application. IoT shows great potential in several applications, which will drive the market.

ASML Holding N.V. (ASML) today announces that the Supervisory Board intends to appoint Roger Dassen as Executive Vice President and Chief Financial Officer (CFO) to the Board of Management, subject to notification of the Annual General Meeting of Shareholders scheduled for April 25, 2018. Dassen succeeds Wolfgang Nickl who will leave ASML at the end of April (as announced on 12 September 2017). Roger Dassen (age 52) will join ASML on June 1, 2018.

Roger Dassen is the Global Vice Chairman, Risk, Regulatory, and Public Policy of Deloitte Touche Tohmatsu Limited (DTTL). In this capacity, he also serves as the Global Chief Ethics Officer and a member of the DTTL Executive. Dassen is a former CEO of Deloitte Netherlands. He has been a Deloitte Netherlands audit partner since 1996 and has served as advisory partner and/or global LCSP for a number of the firm’s largest clients.

Dassen is professor of auditing at the Free University of Amsterdam. He has a master’s degree in economics and business administration, and a PhD in business and economics from the University of Maastricht.

“We are very pleased to have Roger Dassen join us as our CFO. We welcome his deep financial expertise and broad managerial experience. The Board of Management is confident that he will quickly integrate into our senior management team to support ASML in delivering our company’s growth objectives,” said Peter Wennink, President and Chief Executive Officer at ASML.

ASML is a manufacturer of chip-making equipment.

Luc Van den Hove, president and CEO of imec

Luc Van den Hove, president and CEO of imec

SEMI today announced that Luc Van den hove, president and CEO of imec, has been selected as the 2018 recipient of the SEMI Sales and Marketing Excellence Award, inspired by Bob Graham. He will be honored for outstanding achievement in semiconductor equipment and materials marketing during ceremonies at ISS 2018 on January 17 in Half Moon Bay, California.

Van den hove will receive the 21st SEMI Sales and Marketing Excellence Award for his contributions and leadership in consortia that made the imec model of collaborative research using pooled infrastructure self-sustaining. The model enables companies of all sizes and position in the value chain to participate in collaborative research that advances industry technology.

Inspired by the power of technology to improve lives, Van den hove transformed research from its focus on participation cost to an emphasis on collaboration to produce greater value. Under his leadership, imec brings together brilliant minds from established companies, startups and academia worldwide to work in a creative and stimulating environment with imec serving as their trusted partner. imec’s international research and development drives innovations in nanoelectronics and digital technologies by leveraging its world-class infrastructure and local and global ecosystem of diverse partners to accelerate progress towards a connected, sustainable future. Van den hove joined imec in 1984 and has led the technology innovation hub since 2009.

“Luc Van den hove is recognized both for his innovative marketing leadership and his resolve to deepen industry collaboration for the common good. Today, SEMI and its membership honor Van den hove for his contributions to the success of the semiconductor manufacturing industry,” said Ajit Manocha, president and CEO of SEMI.

The SEMI Sales and Marketing Excellence Award was inspired by the late Bob Graham, the distinguished semiconductor industry leader, who was a member of the founding team of Intel. Graham also helped establish industry-leading companies such as Applied Materials and Novellus Systems. The Award was established to honor individuals for the creation and/or implementation of marketing programs that enhance customer satisfaction and further the growth of the semiconductor equipment and materials industry.

Eligible candidates are nominated by their industry peers and selected after due diligence by an award committee. Previous recipients of this SEMI award include: Toshio Maruyama (2017), Jim Bowen (2016), Terry (Tetsuro) Higashi (2015), Winfried Kaiser (2014), Joung Cho (JC) Kim (2013), G. Dan Hutcheson (2012), Franz Janker (2011), Martin van den Brink (2010), Peter Hanley (2009), Richard Hong (2008), Richard E. Dyck (2007), Aubrey (Bill) C. Tobey (2006), Archie Hwang (2005), Edward Braun (2004), Shigeru (Steve) Nakayama (2003), Jerry Hutcheson and Ed Segal (2002), Jim Healy and Barry Rapozo (2001), and Art Zafiropoulo (2000).

Boston Semi Equipment (BSE), a global semiconductor test handler manufacturer and provider of test automation technical services, announced today that it has received a multisystem order for its Zeus gravity feed systems for handling pressure MEMS devices. The order was placed by a leading manufacturer of tire pressure monitoring system sensors, which selected BSE’s Zeus pressure MEMS solution based on its higher throughput capability.

“This order demonstrates how our innovative MEMS solution is being recognized by the market as a superior alternative for its pressure MEMS testing needs,” said Mike Kerrigan, vice president of sales for BSE. “Our solution dramatically improves throughput by achieving our customers’ desired pressure set points faster and more accurately than others, which in turn makes Zeus’ pressure test handler for MEMS devices a winning investment.”

The Zeus system is a tri-temperature handler that can be configured with up to eight test sites. Cold temperature testing is achieved using LN2 or a BSE-designed, two-stage chiller, the MR2. Zeus offers the features and performance needed by today’s test cells at a more affordable price point.

By Emir Demircan, Senior Manager Advocacy and Public Policy, SEMI Europe

Electronic manufacturing is becoming cool to today’s youth. STEM skills are hot in the global job market – though the number of females pursuing a STEM education continues to lag. Work-based learning is key to mastering new technologies. And the electronics industry needs a global talent pipeline more than ever.

These were key highlights from a SEMI Member Forum in December that brought together industry representatives and students in Dresden to weigh in on job-skills challenges facing the electronics manufacturers and solutions for the industry to consider. Here are the takeaways:

1) Electronics is much more than manufacturing

For many years, working in the manufacturing industry was not an appealing prospect for millennials. This picture is certainly changing. The pivotal role of electronics manufacturing in helping solve grand societal challenges in areas such as the environment, healthcare and urban mobility is reaffirmed by countries around the world. Electronics is the lifeblood of game-changing technologies such as autonomous driving, AI, IoT, and VR/AR, enticing more young employees into careers in research, design, technology development, production, cyber security and international business, and in disciplines ranging from engineering and data analytics to software development and cyber security.

What’s more, the drudgery of many factory jobs is disappearing thanks to automation, digitization and robotization. According to CEDEFOP, the European Centre for the Development of Vocational Training, low-skilled jobs in electro-engineering and machine operations/assembly in the European Union (EU) is projected to decrease 6.98 percent and 2.03 percent, respectively, between 2015 and 2025.

In parallel, the industry will need more high-skilled workers. For instance, within the same period, CEDEFOP forecasts a 12.51 percent increase in jobs for EU researchers and engineers. Soft skills will see high demand too. As the electronics industry continues to globalize and drive the integration of vertical technologies, workers proficient in communicating in an international environment, leading multicultural teams, developing tailor-made solutions and making data-driven decisions will see higher demand.

2) STEM skills will remain under the spotlight

Continuous innovation is the oxygen of the electronics manufacturing industry, powering the development of highly customized solutions by workers with technical expertise in chemistry, materials, design, mechanics, production and many other fields. In addition, capabilities such as smart manufacturing require workers with growing technical sophistication in areas such as software, information and communications technology (ICT) and data analytics, stiffening the challenge the electronics industry faces in finding skilled workers. Little wonder that employers in Europe struggle to build a workforce with the right technical expertise. The findings of the study “Encouraging STEM Studies for the Labour Market” conducted by the European Parliament underscores the difficulty of hiring enough workers with adequate STEM skills:

  • The proportion of STEM students is not rising at the European level and the underrepresentation of women persists.
  • Businesses are expected to produce about 7 million new STEM jobs, an uptick of 8 percent, between 2013 and 2025 in Europe.

3) The women-in-tech gap is becoming more persistent 

The global manufacturing industry suffers from strikingly low female participation in STEM education and careers. According to UNSECO, in Europe and North America, the number of female graduates in STEM is generally low. For instance, women make up just 19 percent of engineers in Germany and the U.S. The European Parliament study confirms that STEM employment remains stubbornly male-dominated, with women filling just 24 percent of science and engineering jobs and 15 percent of science and engineering associate positions in Europe. According to an article by Guardian, a mere 16 percent of computer science undergraduates in the United Kingdom and the U.S. are female. This yawning gender gap is a deep concern for electronics manufacturing companies in Europe, hampering innovation in a sector that relies heavily on diversity and inclusion and shrinks the talent pipeline critical to remaining competitive.

4) Coping with new technologies: work-based learning is the key

The evolution of the electronics industry since the 1980s has been swift. PCs emerged largely as islands of communication, then became networked. Networking bred the proliferation of social platforms and mobile devices and, today, is giving rise to IoT. Education curricula in Europe, however, have not matured at the same pace, opening a gap between the worlds of industry and education and imposing a formidable school-to-work transition for many young graduates. Work-based learning, which helps students develop the knowledge and practical job skills needed by business, is one solution. The industry reports that work-based learning is vital to remaining competitive in the long run. Innovative dual-learning programmes, apprenticeships and industrial master’s and doctorates are shining examples that are already paying off in some parts of Europe. Such work-based learning models can be extended as a common pillar of education in Europe.

5) A global industry needs a global talent pipeline

The electronics value chain workforce needs an international and multicultural talent pipeline, chiefly spanning the U.S., Europe and Asia. However, many European manufacturers, in particular small and medium enterprises (SMEs), report that building an international workforce remains a challenge due to employment and immigration law barriers as well as cultural and linguistic differences. The EU’s Blue Card initiative, designed to facilitate hiring beyond Europe, is a step in the right direction. Nevertheless, with the exception of Germany, EU member states have made little or no use of the EU Blue Card scheme.

SEMI drives sector-wide initiatives on workforce development

Understanding the urgency, SEMI is accelerating its workforce development activities at global level. Contributing to this initiative, the SEMI talent pipeline Forum in Dresden served as an effective platform for the industry to share its challenges and opportunities with students at various education levels. Led by industry representatives, the sessions enabled the exchange of workforce-development best practices and paved the way for further collaboration among industry, academia and government in Europe. For example, in the Career Café session, students networked with hiring managers. Other workforce development initiatives include:

To help position the skills challenges faced by SEMI members high on the public policy agenda, SEMI in 2017 joined several policy groups including Digital Skills and Jobs Coalition and Expert Group on High-Tech Skills. Last year SEMI also launched Women in Tech, an initiative that convenes industry leaders to help increase female representation in the sector. SEMI also educates its members about key EU resources such as the Blue Card and Digital Opportunity Internship programmes aimed at hiring international talent. In 2018, SEMI will reach out to even more young people through its High Tech U programme to raise awareness of careers in electronics. SEMICON Europa 2018 will host dedicated talent pipeline sessions to help the industry tackle its skills challenges. ISS Europe 2018 sessions on Gaining, Training and Retaining World Class Talent will disseminate best practices to the wider industry. Also this year, SEMI Europe plans to start a new advisory group, “Workforce 4.0,” dedicated to bringing together human resources leaders in the sector to give the electronics manufacturing industry a stronger voice on workforce development.

 

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $37.7 billion for the month of November 2017, an increase of 21.5 percent compared to the November 2016 total of $31.0 billion and 1.6 percent more than the October 2017 total of $37.1 billion. All major regional markets posted both year-to-year and month-to-month sales increases in November, with the Americas market leading the way. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“The global semiconductor industry reached another key milestone in November, notching its highest-ever monthly sales, and appears poised to reach $400 billion in annual sales for the first time,” said SIA President & CEO John Neuffer. “Global market growth continues to be led by sales of memory products, but sales of all other major semiconductor categories also increased both month-to-month and year-to-year in November. All regional markets also experienced growth in November, with the Americas continuing to post the strongest gains.”

Regionally, year-to-year sales increased in the Americas (40.2 percent), Europe (18.8 percent), China (18.5 percent), Asia Pacific/All Other (16.2 percent), and Japan (10.6 percent). Month-to-month sales increased in the Americas (2.6 percent), China (2.1 percent), Europe (1.8 percent), Asia Pacific/All Other (0.5 percent), and Japan (0.3 percent).

To find out how to purchase the WSTS Subscription Package, which includes comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, please visit http://www.semiconductors.org/industry_statistics/wsts_subscription_package/. For detailed data on the global and U.S. semiconductor industry and market, consider purchasing the 2017 SIA Databook: https://www.semiconductors.org/forms/sia_databook/.

Nov 2017

Billions

Month-to-Month Sales                              

Market

Last Month

Current Month

% Change

Americas

8.54

8.77

2.6%

Europe

3.37

3.43

1.8%

Japan

3.20

3.21

0.3%

China

11.65

11.90

2.1%

Asia Pacific/All Other

10.33

10.39

0.5%

Total

37.09

37.69

1.6%

Year-to-Year Sales                         

Market

Last Year

Current Month

% Change

Americas

6.25

8.77

40.2%

Europe

2.88

3.43

18.8%

Japan

2.90

3.21

10.6%

China

10.04

11.90

18.5%

Asia Pacific/All Other

8.94

10.39

16.2%

Total

31.02

37.69

21.5%

Three-Month-Moving Average Sales

Market

Jun/Jul/Aug

Sep/Oct/Nov

% Change

Americas

7.55

8.77

16.1%

Europe

3.22

3.43

6.4%

Japan

3.13

3.21

2.6%

China

11.08

11.90

7.4%

Asia Pacific/All Other

9.98

10.39

4.0%

Total

34.96

37.69

7.8%

The year-end update to the SEMI World Fab Forecast report reveals 2017 spending on fab equipment investments will reach an all-time high of $57 billion. High chip demand, strong pricing for memory, and fierce competition are driving the high-level of fab investments, with many companies investing at previously unseen levels for new fab construction and fab equipment. See figure 1.

Figure 1

Figure 1

The SEMI World Fab Forecast data shows fab equipment spending in 2017 totaling US$57 billion, an increase of 41 percent year-over-year (YoY). In 2018, spending is expected to increase 11 percent to US$63 billion.

While many companies, including Intel, Micron, Toshiba (and Western Digital), and GLOBALFOUNDRIES increased fab investments for 2017 and 2018, the strong increase reflects spending by just two companies and primarily one region.

SEMI data shows a surge of investments in Korea, due primarily to Samsung, which is expected to increase its fab equipment spending by 128 percent in 2017, from US$8 billion to US$18 billion. SK Hynix also increased fab equipment spending, by about 70 percent, to US$5.5 billion, the largest spending level in its history. While the majority of Samsung and SK Hynix spending remains in Korea, some will take place in China and the United States. Both Samsung and SK Hynix are expected to maintain high levels of investments in 2018. See figure 2.

Figure 2

Figure 2

In 2018, China is expected to begin equipping many fabs constructed in 2017. In the past, non-Chinese companies accounted for most fab investments in China. For the first time, in 2018 Chinese-owned device manufacturers will approach parity, spending nearly as much on fab equipment as their non-Chinese counterparts. In 2018, Chinese-owned companies are expected to invest about US$5.8 billion, while non-Chinese will invest US$6.7 billion. Many new companies such as Yangtze Memory Technology, Fujian Jin Hua, Hua Li, and Hefei Chang Xin Memory are investing heavily in the region.

Historic highs in equipment spending in 2017 and 2018 reflect growing demand for advanced devices. This spending follows unprecedented growth in construction spending for new fabs also detailed in the SEMI World Fab Forecast report. Construction spending will reach all-time highs with China construction spending taking the lead at US$6 billion in 2017 and US$6.6 billion in 2018, establishing another record: no region has ever spent more than US$6 billion in a single year for construction.

The coldest chip in the world


December 20, 2017

Physicists at the University of Basel have succeeded in cooling a nanoelectronic chip to a temperature lower than 3 millikelvin. The scientists from the Department of Physics and the Swiss Nanoscience Institute set this record in collaboration with colleagues from Germany and Finland. They used magnetic cooling to cool the electrical connections as well as the chip itself. The results were published in the journal Applied Physics Letters.

Even scientists like to compete for records, which is why numerous working groups worldwide are using high-tech refrigerators to reach temperatures as close to absolute zero as possible. Absolute zero is 0 kelvin or -273.15°C. Physicists aim to cool their equipment to as close to absolute zero as possible, because these extremely low temperatures offer the ideal conditions for quantum experiments and allow entirely new physical phenomena to be examined.

A chip with a Coulomb blockade thermometer on it is prepared for experiments at extremely low temperatures. Credit: University of Basel, Department of Physics

A chip with a Coulomb blockade thermometer on it is prepared for experiments at extremely low temperatures. Credit: University of Basel, Department of Physics

Cooling by turning off a magnetic field

The group led by Basel physicist Professor Dominik Zumbühl had previously suggested utilizing the principle of magnetic cooling in nanoelectronics in order to cool nanoelectronic devices to unprecedented temperatures close to absolute zero. Magnetic cooling is based on the fact that a system can cool down when an applied magnetic field is ramped down while any external heat flow is avoided. Before ramping down, the heat of magnetization needs to be removed with another method to obtain efficient magnetic cooling.

A successful combination

This is how Zumbühl’s team succeeded in cooling a nanoelectronic chip to a temperature below 2.8 millikelvin, thereby achieving a new low temperature record. Dr Mario Palma, lead author of the study, and his colleague Christian Scheller successfully used a combination of two cooling systems, both of which were based on magnetic cooling. They cooled all of the chip’s electrical connections to temperatures of 150 microkelvin – a temperature that is less than a thousandth of a degree away from absolute zero.

They then integrated a second cooling system directly into the chip itself, and also placed a Coulomb blockade thermometer on it. The construction and the material composition enabled them to magnetically cool this thermometer to a temperature almost as low as absolute zero as well.

“The combination of cooling systems allowed us to cool our chip down to below 3 millikelvin, and we are optimistic than we can use the same method to reach the magic 1 millikelvin limit,” says Zumbühl. It is also remarkable that the scientists are in a position to maintain these extremely low temperatures for a period of seven hours. This provides enough time to conduct various experiments that will help to understand the properties of physics close to absolute zero.