Category Archives: Manufacturing

Knowles, Goertek and AAC ranked as the top three global suppliers of packaged MEMS microphones for 2015, according to the latest analysis from IHS Markit (NASDAQ: INFO), a world leader in critical information, analytics and solutions.

MEMS (micro-electromechanical systems) technology is utilized to produce microphones used in laptops, hearing aids, wearables and smartphones among many other products. Last year, MEMS microphones remained the healthiest sensors segment for suppliers, in terms of unit volume and revenue, said Marwan Boustany, senior analyst for IHS Technology.

“Our updated analysis of 2015 MEMS microphone supplier market share, shows that Knowles remained the dominant supplier with more than two times the units and revenue of the second-place supplier, Goertek,” Boustany said. “In addition to offering a wide range of analog and digital output microphones for many applications, Knowles has also started shipping its VoiceIQ ‘intelligent’ microphones with local processing as it seeks to address both mobile and IOT applications.”

2016 mems mic growth

Strong growth for MEMS’ runner-ups

Goertek MEMS microphone units grew by an impressive 104 percent CAGR between 2011 and 2015, thanks in large part to its design wins in Apple, the IHS Markit analysis shows. Apple accounts for approximately 70 percent (in units) of Goertek’s MEMS microphone business in 2015. Goertek entered in large volume in the iPhone in 2014 and has since continued to increase its share; this has had the impact of reducing the share of AAC and Knowles in subsequent years.

While still solidly in third position among packaged MEMS suppliers after Goertek, AAC has faced challenges from Goertek in both Apple and in Chinese OEMs. This has resulted in a reduction in unit volume shipped by AAC in 2015 of almost 9 percent, IHS Markit says. However, AAC invested in a new technology for MEMS microphones in 2016 when it officially partnered with Vesper MEMS, a piezoelectric MEMS microphone start-up.

Boosting audio performance in handsets

The general adoption trend for microphones in smartphones has been towards higher performance, IHS Markit says. Driving this trend: OEMs want better quality audio for calls and hand-free communication, noise cancellation, voice recognition such as Siri and Google Now, as well as the availability of lower-cost microphones due to the erosion of ASP (average selling price).

“These types of use cases also drive high-performance microphone adoption in smart watches, tablets, noise cancelling earphones, hearing aids and increasingly in automotive cabins,” Boustany said.

Beyond performance, the average number of microphones per handset increased in 2015 due to Apple adopting four microphones in its iPhone 6S, with most other OEMs using two or three microphones in their mid- to high-end smartphones, the IHS Markit analysis shows. In tablets, smart watches and hearing aids, the number of microphones is between one and two. Adoption of microphones in automotive cabins can potentially exceed eight, depending on use cases and implementation choices in the future.

Knowles tops list for die makers, too

According to the IHS Technology analysis, Knowles – which produces its own microphone dies – holds the number one spot for market share in MEMS microphone production, with a dominant 43 percent market share.

Infineon acts as the major supplier of MEMS microphone dies to Goertek, AAC and BSE among others and stands solidly in second place with a 31 percent market share. In third place is Omron, which has supplied into STMicroelectronics, ACC and Goertek among others and has a 13 percent market share, the analysis shows. Neither Infineon nor Omron supply fully packaged MEMS microphone die.

A new design for solar cells that uses inexpensive, commonly available materials could rival and even outperform conventional cells made of silicon.

A tandem perovskite solar cell boosts efficiency by absorbing high- and low-energy photons from the sun. Credit: Rongrong Cheacharoen/Stanford University

A tandem perovskite solar cell boosts efficiency by absorbing high- and low-energy photons from the sun. Credit: Rongrong Cheacharoen/Stanford University

Writing in the Oct. 21 edition of Science, researchers from Stanford and Oxford describe using tin and other abundant elements to create novel forms of perovskite – a photovoltaic crystalline material that’s thinner, more flexible and easier to manufacture than silicon crystals.

“Perovskite semiconductors have shown great promise for making high-efficiency solar cells at low cost,” said study co-author Michael McGehee, a professor of materials science and engineering at Stanford. “We have designed a robust, all-perovskite device that converts sunlight into electricity with an efficiency of 20.3 percent, a rate comparable to silicon solar cells on the market today.”

The new device consists of two perovskite solar cells stacked in tandem. Each cell is printed on glass, but the same technology could be used to print the cells on plastic, McGehee added.

“The all-perovskite tandem cells we have demonstrated clearly outline a roadmap for thin-film solar cells to deliver over 30 percent efficiency,” said co-author Henry Snaith, a professor of physics at Oxford. “This is just the beginning.”

Tandem technology

Previous studies showed that adding a layer of perovskite can improve the efficiency of silicon solar cells. But a tandem device consisting of two all-perovskite cells would be cheaper and less energy-intensive to build, the authors said.

“A silicon solar panel begins by converting silica rock into silicon crystals through a process that involves temperatures above 3,000 degrees Fahrenheit (1,600 degrees Celsius),” said co-lead author Tomas Leijtens, a postdoctoral scholar at Stanford. “Perovskite cells can be processed in a laboratory from common materials like lead, tin and bromine, then printed on glass at room temperature.”

But building an all-perovskite tandem device has been a difficult challenge. The main problem is creating stable perovskite materials capable of capturing enough energy from the sun to produce a decent voltage.

A typical perovskite cell harvests photons from the visible part of the solar spectrum. Higher-energy photons can cause electrons in the perovskite crystal to jump across an “energy gap” and create an electric current.

A solar cell with a small energy gap can absorb most photons but produces a very low voltage. A cell with a larger energy gap generates a higher voltage, but lower-energy photons pass right through it.

An efficient tandem device would consist of two ideally matched cells, said co-lead author Giles Eperon, an Oxford postdoctoral scholar currently at the University of Washington.

“The cell with the larger energy gap would absorb higher-energy photons and generate an additional voltage,” Eperon said. “The cell with the smaller energy gap can harvest photons that aren’t collected by the first cell and still produce a voltage.”

The smaller gap has proven to be the bigger challenge for scientists. Working together, Eperon and Leijtens used a unique combination of tin, lead, cesium, iodine and organic materials to create an efficient cell with a small energy gap.

“We developed a novel perovskite that absorbs lower-energy infrared light and delivers a 14.8 percent conversion efficiency,” Eperon said. “We then combined it with a perovskite cell composed of similar materials but with a larger energy gap.”

The result: A tandem device consisting of two perovskite cells with a combined efficiency of 20.3 percent.

“There are thousands of possible compounds for perovskites,” Leijtens added, “but this one works very well, quite a bit better than anything before it.”

Seeking stability

One concern with perovskites is stability. Rooftop solar panels made of silicon typically last 25 years or more. But some perovskites degrade quickly when exposed to moisture or light. In previous experiments, perovskites made with tin were found to be particularly unstable.

To assess stability, the research team subjected both experimental cells to temperatures of 212 degrees Fahrenheit (100 degrees Celsius) for four days.

“Crucially, we found that our cells exhibit excellent thermal and atmospheric stability, unprecedented for tin-based perovskites,” the authors wrote.

“The efficiency of our tandem device is already far in excess of the best tandem solar cells made with other low-cost semiconductors, such as organic small molecules and microcrystalline silicon,” McGehee said. “Those who see the potential realize that these results are amazing.”

The next step is to optimize the composition of the materials to absorb more light and generate an even higher current, Snaith said.

“The versatility of perovskites, the low cost of materials and manufacturing, now coupled with the potential to achieve very high efficiencies, will be transformative to the photovoltaic industry once manufacturability and acceptable stability are also proven,” he said.

MEMS & Sensors Industry Group (MSIG)’s annual MEMS & Sensors Technology Showcase at MEMS & Sensors Executive Congress® 2016 (November 9-11, 2016 in Scottsdale, AZ) highlights some of the newest and most unique MEMS/sensors-enabled applications in the industry. MSIG today announced the shortlist of finalists who will compete for the title of winner at this year’s event.

i-BLADES’ Smartplatform
i-BLADES’ mobile Smartcase is a new modular accessory that dramatically accelerates time to market and reach for MEMS and Internet of Things (IoT) technologies. It lets new technologies quickly reach mass-market mobile consumers through one integrated smartphone accessory — a mobile phone case. It not only provides protection but also a Smartplatform that forms a “hard-wired” smartphone connection, enabling add-on MEMS and IoT technologies. Developers can add new sensors to Smartcase directly or through snap-on Smartblade modules.

With i-BLADES, technologies can quickly go onto hundreds of millions of smartphones as an after-market opportunity, making smartphones “smarter.” i-BLADES partnered with Bosch to deploy successfully the BME680 sensor faster than via other routes. For more information, visit: www.i-blades.com or watch video: https://www.youtube.com/watch?v=dVcOewMhopE&feature=youtu.be

Chirp Microsystems’ MEMS-Based Ultrasonic Sensing Solution
Today’s VR and gaming systems are limited by their reliance on complex computer vision techniques for controller tracking, resulting in higher cost, limited tracking area and lack of mobility due to high power consumption. Chirp Microsystems’ ultrasonic tracking technology addresses these limitations, offering solutions that enable truly mobile VR and AR systems at attractive price points suitable for multiple tiers of products.

Chirp Microsystems’ new ultrasonic time-of-flight (ToF) technology uses pulses of ultrasound to measure an object’s range with millimeter accuracy. This ultra-low power ultrasonic ToF technology enables low-latency, millimeter-accurate 6 degrees of freedom (DOF) inside-out controller tracking for VR/AR and gaming systems. This system solution is enabled by Chirp’s ultra-low power ultrasonic ToF sensor, which offers ultra-wide field-of-view, noise and light immunity, fast sample rate, and small package size. The ToF sensor is a system in package (SiP) that combines a MEMS ultrasound transducer with a power-efficient digital signal processor (DSP) on a custom integrated circuit. In wearable applications, Chirp’s ultrasonic SiP provides a transformative and intuitive touchless gesture interface. For more information, visit: www.chirpmicro.com

Integrated Device Technology’s Gas Sensor for Air Quality and Breath Detection
Integrated Device Technology’s (IDT’s) new highly sensitive gas sensor family based on the ZMOD3250 targets indoor air quality with a roadmap that includes environmental (outdoor) air quality and breath detection. The ZMOD3250 family detects total volatile organic compounds (VOCs) and odors, and can be used to selectively identify several VOCs, including formaldehyde, ethanol and toluene. The company is promoting several features and applications of this new gas sensor product line, including the off-gassing detection of chemicals from common home and office materials, odor detection, selective measurements among VOCs and detection of several breath components.

IDT’s flagship product, the ZMOD3250, features a unique silicon microhotplate with nanostructured sensing material that enables a highly sensitive measurement of gas. The accompanying ASIC provides a flexible solution for integration of the sensor with various consumer devices, including mobile phones, wearables and appliances. Packaged in a 12 pin LGA assembly (3.0 mm x 3.0 mm x 0.7 mm), the sensor emulates a sensor array with a single sensor element. Suitable for a wide range of applications, the sensor features programmable-measurement sequence and highly integrated CMOS design. To request more information about the ZMOD3250, visit: www.idt.com or watch video: http://www.idt.com/video/uv-sensor-and-gas-sensor-demonstration-idt

Valencell’s Biometric Gaming
Biometric input adds a new element to gaming. For example, fitness games can use heart rate as a key control measure, or action games can require users to hold their breath while their characters are swimming. Audio earbuds, headsets, armbands and wrist devices — all of which make good use of MEMS/sensors — are natural peripherals for gaming — and as well as for exercising.

Valencell has created a demonstration game that not only involves real-time biometric data to affect the gaming experience, but also collects meaningful health metrics in the background. This has implications not only for the gaming industry, but also for healthcare and medical markets. In fact, healthcare practitioners are integrating biometric game play into physical therapy and surgery recovery protocols to measure and manage recovery processes. Valencell will demonstrate the game as well as its biometric output and analysis. For more information, visit: www.valencell.com or watch video: https://www.youtube.com/watch?v=QMTJP6OBmjA

Vesper’s Wake-on Sound MEMS Microphone
Always-listening MEMS microphones may signal a new era of ubiquitous sensors that can run indefinitely on small batteries. That’s good news for developers of TV remote controls, smart speakers, smartphones, intelligent sensor nodes, hearables and other electronic devices. It’s even better news for consumers who want to cut the power cord but end up incessantly charging devices or replacing batteries, even when those devices aren’t in regular use.

Vesper — developer of the world’s only piezoelectric MEMS microphones — will demonstrate VM1010, the first quiescent-sensing MEMS microphone, during MEMS & Sensors Technology Showcase. VM1010 alleviates the heavy power consumption typical of speech recognition–which consumes up to 1000 µW or more. Because it supports wake-on sound at practically zero power draw (a mere 3 µA of current while in listening mode), VM1010 reduces standby power by two orders of magnitude and can increase standby time by a factor of 100.

Vesper will also demonstrate the extremely fast response time of VM1010, showing how it can go to full power within microseconds, quick enough to record what a user is saying and capture keywords and other acoustic event triggers. For more information, visit: www.vespermems.com or watch video: https://www.youtube.com/watch?v=KhFtrjbpffE

New research, led by the University of Southampton, has demonstrated that a nanoscale device, called a memristor, could be used to power artificial systems that can mimic the human brain.

First demonstration of brain-inspired device to power artificial systems. Credit: University of Southampton

First demonstration of brain-inspired device to power artificial systems. Credit: University of Southampton

Artificial neural networks (ANNs) exhibit learning abilities and can perform tasks which are difficult for conventional computing systems, such as pattern recognition, on-line learning and classification. Practical ANN implementations are currently hampered by the lack of efficient hardware synapses; a key component that every ANN requires in large numbers.

In the study, published in Nature Communications, the Southampton research team experimentally demonstrated an ANN that used memristor synapses supporting sophisticated learning rules in order to carry out reversible learning of noisy input data.

Memristors are electrical components that limit or regulate the flow of electrical current in a circuit and can remember the amount of charge that was flowing through it and retain the data, even when the power is turned off.

Lead author Dr Alex Serb, from Electronics and Computer Science at the University of Southampton, said: “If we want to build artificial systems that can mimic the brain in function and power we need to use hundreds of billions, perhaps even trillions of artificial synapses, many of which must be able to implement learning rules of varying degrees of complexity. Whilst currently available electronic components can certainly be pieced together to create such synapses, the required power and area efficiency benchmarks will be extremely difficult to meet -if even possible at all- without designing new and bespoke ‘synapse components’.

“Memristors offer a possible route towards that end by supporting many fundamental features of learning synapses (memory storage, on-line learning, computationally powerful learning rule implementation, two-terminal structure) in extremely compact volumes and at exceptionally low energy costs. If artificial brains are ever going to become reality, therefore, memristive synapses have to succeed.”

Acting like synapses in the brain, the metal-oxide memristor array was capable of learning and re-learning input patterns in an unsupervised manner within a probabilistic winner-take-all (WTA) network. This is extremely useful for enabling low-power embedded processors (needed for the Internet of Things) that can process in real-time big data without any prior knowledge of the data.

Co-author Dr Themis Prodromakis, Reader in Nanoelectronics and EPSRC Fellow in Electronics and Computer Science at the University of Southampton, said: “The uptake of any new technology is typically hampered by the lack of practical demonstrators that showcase the technology’s benefits in practical applications. Our work establishes such a technological paradigm shift, proving that nanoscale memristors can indeed be used to formulate in-silico neural circuits for processing big-data in real-time; a key challenge of modern society.

“We have shown that such hardware platforms can independently adapt to its environment without any human intervention and are very resilient in processing even noisy data in real-time reliably. This new type of hardware could find a diverse range of applications in pervasive sensing technologies to fuel real-time monitoring in harsh or inaccessible environments; a highly desirable capability for enabling the Internet of Things vision.”

Scientists have created a material that could make reading biological signals, from heartbeats to brainwaves, much more sensitive.

Organic electrochemical transistors (OECTs) are designed to measure signals created by electrical impulses in the body, such as heartbeats or brainwaves. However, they are currently only able to measure certain signals.

Now researchers led by a team from Imperial College London have created a material that measures signals in a different way to traditional OECTs that they believe could be used in complementary circuits, paving the way for new biological sensor technologies.

Semiconducting materials can conduct electronic signals, carried by either electrons or their positively charged counterparts, called holes. Holes in this sense are the absence of electrons – the spaces within atoms that can be filled by them.

Electrons can be passed between atoms but so can holes. Materials that use primarily hole-driven transport are called ‘p-type’ materials, and those that use primarily electron-driven transport are called, and ‘n-type’ materials.

An ‘ambipolar’ material is the combination of both types, allowing the transport of holes and electrons within the same material, leading to potentially more sensitive devices. However, it has not previously been possible to create ambipolar materials that work in the body.

The current most sensitive OECTs use a material where only holes are transported. Electron transport in these devices however has not been possible, since n-type materials readily break down in water-based environments like the human body.

But in research published today in Nature Communications, the team have demonstrated the first ambipolar OECT that can conduct electrons as well as holes with high stability in water-based solutions.

The team overcame the seemingly inherent instability of n-type materials in water by designing new structures that prevent electrons from engaging in side-reactions, which would otherwise degrade the device.

These new devices can detect positively charged sodium and potassium ions, important for neuron activities in the body, particularly in the brain. In the future, the team hope to be able to create materials tuned to detect particular ions, allowing ion-specific signals to be detected.

Lead author Alexander Giovannitti, a PhD student under the supervision of Professor Iain McCulloch, from the Department of Chemistry and Centre for Plastic Electronics at Imperial said: “Proving that an n-type organic electrochemical transistor can operate in water paves the way for new sensor electronics with improved sensitivity.

“It will also allow new applications, particularly in the sensing of biologically important positive ions, which are not feasible with current devices. For example, these materials might be able to detect abnormalities in sodium and potassium ion concentrations in the brain, responsible for neuron diseases such as epilepsy.”

imec and Holst Centre (established by imec and TNO), today announced a new sensor hub integrated as a system-on-chip (SoC) intended for a broad range of wearable health devices and applications. The SoC combines an unprecedented number of biomedical analog interfaces into a single chip, on-board digital signal processing, high fidelity operation, and multi-day monitoring capability with a single battery.  Thanks to its small form factor, the SoC can be easily integrated in new innovative designs enabling maximum user comfort. This new SoC is an enabler towards the transformation of today’s mainly curative approach to healthcare to one that is preventative, predictive and personalized.

biomed hub

The biomedical analog interfaces include three ECG channels, photo-plethysmography (PPG), galvanic skin response (GSR), two multi-frequency bio-impedance (BIO-Z) channels to support new applications such as impedance-tomography, body fluid analysis and stroke volume measurements, and three reconfigurable channels.

While high performance multi-modal analog readouts have been demonstrated, they lack on-board signal processing capabilities, or are too large in size. Alternatively, existing reconfigurable readouts are smaller, but have limited performance. Imec’s and Holst Centre’s SoC moves beyond current solutions and combines advanced biomedical readouts, supported by an ARM Cortex M0+ controller and accelerators for sample-rate conversion, matrix processing, data compaction, and power management circuitry (PMIC).  The PMIC operates from a battery source (2.9- 4.5V) and generates the required voltages for the readout IC. It supports dynamic voltage scaling optimized for, but not limited to, low power and high performance applications, and can be fully customized for specific healthcare applications.

“There is a clear need for accurate and reliable bio-sensing in wearables, and we are working on the building blocks to enable this,” stated Chris Van Hoof, program director wearable health at imec. “Our new SoC sensor hub underscores patient-centric capabilities and can be integrated in numerous wearable fitness and healthcare applications such as patch monitors, chest band heart rate monitors, respiration or hydration monitors and devices for blood-pressure calculation.”

Silicon Labs (NASDAQ: SLAB) today announced the acquisition of Micrium, a supplier of real-time operating system (RTOS) software for the Internet of Things (IoT). This strategic acquisition helps simplify IoT design for all developers by combining a commercial-grade embedded RTOS with Silicon Labs’ IoT expertise and solutions. Micrium’s RTOS and software tools will continue to be available to all silicon partners worldwide, giving customers a wide range of options, even when using non-Silicon Labs hardware. Micrium will continue to fully support existing as well as new customers.

Founded in 1999, Micrium has consistently held a leadership position in embedded software components. The company’s flagship µC/OS RTOS family is recognized for reliability, performance, dependability, impeccable source code and extensive documentation.

“With an installed base of millions of devices, Micrium’s RTOS software has established itself as one of the most reliable and trusted platforms over the last 10 years,” said Jean-Michel Orsat, Chief Technology Officer, ICT Standards and Connectivity Solutions at Somfy. “Micrium has been a rock-solid RTOS solution partner for Somfy, and we look forward to using Micrium’s RTOS software family for years to come, delivering the reliability and performance we need for our IoT applications.”

Micrium’s widely deployed RTOS software has been ported to more than 50 microcontroller architectures and has a global footprint with more than 250,000 downloads across all embedded vertical markets, with solutions certified to meet safety-critical standards for medical electronics, avionics, communications, consumer electronics and industrial control.

“By combining forces with Silicon Labs, the Micrium team will drive advances in embedded connectivity for the IoT while giving customers a flexible choice of hardware platforms, wireless stacks and development tools based on the industry’s foremost embedded RTOS,” said Jean J. Labrosse, Founder, CEO and President of Micrium. “We will continue to provide our customers with an exceptional level of support, which is a Micrium hallmark.”

The combination of Micrium’s RTOS and Silicon Labs’ multiprotocol SoCs, wireless modules, wireless stacks and Simplicity Studio development tools gives customers a faster, easier on-ramp from connected devices to the cloud with end-to-end solutions for embedded IoT design.

“IoT products are increasingly defined by software. Explosive growth of memory/processor capabilities in low-end embedded products is driving a greater need for RTOS software in connected device applications,” said Daniel Cooley, Senior Vice President and General Manager of Silicon Labs’ IoT products. “The acquisition of Micrium means that connected device makers will have easier access to a proven embedded RTOS geared toward multiprotocol silicon, software and solutions from Silicon Labs.”

SiTime Corporation, a MEMS and analog semiconductor company and a wholly owned subsidiary of MegaChips Corporation (Tokyo Stock Exchange: 6875), today introduced an innovative Elite Platform encompassing Super-TCXOs (temperature compensated oscillators) and oscillators. These precision devices are engineered to solve long-standing timing problems in telecommunications and networking equipment.

“Network densification is driving rapid deployment of equipment in uncontrolled environments such as basements, curbsides, rooftops, and on poles. Precision timing components in these systems must now operate in the presence of high temperature, thermal shock, vibration and unpredictable airflow. Service providers are questioning if quartz technology is up to this challenge,” said Rajesh Vashist, CEO at SiTime. “Customers have enthusiastically validated SiTime’s MEMS-based Elite Platform, as it uniquely solves such environmental issues. We believe that our new Elite solutions will transform the $1.5 billiontelecommunications and networking timing market.”

Elite timing solutions are based on an innovative DualMEMS architecture with TurboCompensation. This architecture delivers exceptional dynamic performance with three key elements:

  • Robust, reliable, and proven TempFlat MEMS that eliminates activity dips and enables 30 times better vibration immunity than quartz
  • DualMEMS temperature sensing with 100% accurate thermal coupling that enables 40 times faster temperature tracking, which ensures the best performance under airflow and rapid temperature changes
  • Highly integrated mixed-signal circuits with on-chip regulators, a TDC (temperature to digital converter) and a low-noise PLL that deliver 5 times better immunity to power-supply noise, 30 uK temperature resolution that is 10 times better than quartz, and support for any frequency between 1 and 700 MHz

“New telecom infrastructure uses 4G/5G small cells and Synchronous Ethernet to increase network data capacity; the high-power components that are used in such systems will have high and constantly changing heat loads,” said Joe Madden, founder and principal analyst at Mobile Experts. “The dynamic performance of precision timing components during rapid temperature change will become a critical requirement in such equipment. MEMS technology inherently performs better in the presence of dynamic environmental conditions, and has become a very interesting alternative to quartz technology.”

By David W. Price and Douglas G. Sutherland

Author’s Note: The Process Watch series explores key concepts about process control—defect inspection and metrology—for the semiconductor industry. Following the previous installments, which examined the 10 fundamental truths of process control, this new series of articles highlights additional trends in process control, including successful implementation strategies and the benefits for IC manufacturing. 

Introduction

In a previous Process Watch article [1], we showed that big excursions are usually easy to detect but finding small excursions requires a combination of high capture rate and low noise. We also made the point that, in our experience, it’s usually the smaller excursions which end up costing the fab more in lost product. Catastrophic excursions have a large initial impact but are almost always detected quickly. By contrast, smaller “micro-excursions” sometimes last for weeks, exposing hundreds or thousands of lots to suppressed yield.

Figure 1 shows an example of a micro-excursion. For reference, the top chart depicts what is actually happening in the fab with an excursion occurring at lot number 300. The middle chart shows the same excursion through the eyes of an effective inspection strategy; while there is some noise due to sampling and imperfect capture rate, it is generally possible to identify the excursion within a few lots. The bottom chart shows how this excursion would look if the fab employed a compromised inspection strategy—low capture rate, high capture rate variability, or a large number of defects that are not of interest; in this case, dozens of lots are exposed before the fab engineer can identify the excursion with enough confidence to take corrective action.

Figure 1. Illustration of a micro-excursion. Top: what is actually happening in the fab. Middle: the excursion through the lens of an effective control strategy (average 2.5 exposed lots). Bottom: the excursion from the perspective of a compromised inspection strategy (~40 exposed lots).

Figure 1. Illustration of a micro-excursion. Top: what is actually happening in the fab. Middle: the excursion through the lens of an effective control strategy (average 2.5 exposed lots). Bottom: the excursion from the perspective of a compromised inspection strategy (~40 exposed lots).

Unfortunately, the scenario depicted in the bottom of Figure 1 is all too common. Seemingly innocuous cost-saving tactics such as reduced sampling or using a less sensitive inspector can quickly render a control strategy to be ineffective [2]. Moreover, the fab may gain a false sense of security that the layer is being effectively monitored by virtue of its ability to find the larger excursions. 

Micro-Excursions 

Table 1 illustrates the difference between catastrophic and micro-excursions. As the name implies, micro-excursions are subtle shifts away from the baseline. Of course, excursions may also take the form of anything in between these two.

Table 1: Catastrophic vs. Micro-Excursions

Table 1: Catastrophic vs. Micro-Excursions

Such baseline shifts happen to most, if not all, process tools—after all, that’s why fabs employ rigorous preventative maintenance (PM) schedules. But PM’s are expensive (parts, labor, lost production time), therefore fabs tend to put them off as long as possible.

Because the individual micro-excursions are so small, they are difficult observe from end-of-line (EOL) yield data. They are frequently only seen in EOL yield data through the cumulative impact of dozens of micro-excursions occurring simultaneously; even then it more often appears to be baseline yield loss. As a result, fab engineers sometimes use the terms “salami slicing” or “penny shaving” since these phrases describe how a series of many small actions can, as an accumulated whole, produce a large result [3].

Micro-excursions are typically brought to an end because: (a) a fab detects them and puts the tool responsible for the excursion down; or, (b) the fab gets lucky and a regular PM resolves the problem and restores the tool to its baseline. In the latter case, the fab may never know there was a problem.

The Superposition of Multiple Simultaneous Micro-Excursions

To understand the combined impact of these multiple micro-excursions, it is important to recognize:

  1. Micro-excursions on different layers (different process tools) will come and go at different times
  2. Micro-excursions have different magnitudes in defectivity or baseline shift
  3. Micro-excursions have different durations

In other words, each micro-excursion has a characteristic phase, amplitude and wavelength. Indeed, it is helpful to imagine individual micro-excursions as wave forms which combine to create a cumulative wave form. Mathematically, we can apply the Principle of Superposition [4] to model the resulting impact on yield from the contributing micro-excursions.

Figure 2 illustrates the cumulative effect of one, five, and 10 micro-excursions happening simultaneously in a 1,000 step semiconductor process. In this case, we are assuming a baseline yield of 90 percent, that each micro-excursion has a magnitude of 2 percent baseline yield loss, and that they are detected on the 10th lot after it starts. As expected, the impact of a single micro-excursion is negligible but the combined impact is large.

Figure 2. The cumulative impact of one, five, and 10 simultaneous micro-excursions happening in a 1,000 step process: increased yield loss and yield variation.

Figure 2. The cumulative impact of one, five, and 10 simultaneous micro-excursions happening in a 1,000 step process: increased yield loss and yield variation.

It is interesting to note that the bottom curve in Figure 2 would seem to suggest that the fab is suffering from a baseline yield problem. However, what appears to be 80 percent baseline yield is actually 90 percent baseline yield with multiple simultaneous micro-excursions, which brings the average yield down to 80 percent. This distinction is important since it points to different approaches in how the fab might go about improving the average yield. A true baseline yield problem would suggest that the fab devote resources to run experiments to evaluate potential process improvements (design of experiments (DOEs), split lot experiments, failure analysis, etc.). These activities would ultimately prove frustrating as the engineers would be trying to pinpoint a dozen constantly-changing sources of yield loss.

The fab engineer who correctly surmises that this yield loss is, in fact, driven by micro-excursions would instead focus on implementing tighter process tool monitoring strategies. Specifically, they would examine the sensitivity and frequency of process tool monitor inspections; depending on the process tool, these monitors could be bare wafer inspectors on blanket wafers and/or laser scanning inspectors on product wafers. The goal is to ensure these inspections provide timely detection of small micro-excursions, not just the big excursions.

The impact of an improved process tool monitoring strategy can be seen in Figure 3. By improving the capture rate (sensitivity), reducing the number of non-critical defects (by doing pre/post inspections or using an effective binning routine), and reducing other sources of noise, the fab can bring the exposed product down from 40 lots to 2.5 lots. This, in turn, significantly reduces the yield loss and yield variation.

Figure 3. The impact of 10 simultaneous micro-excursions for the fab with a compromised inspection strategy (brown curve, ~40 lots at risk), and a fab with an effective process tool monitoring strategy (blue curve, ~2.5 lots at risk).

Figure 3. The impact of 10 simultaneous micro-excursions for the fab with a compromised inspection strategy (brown curve, ~40 lots at risk), and a fab with an effective process tool monitoring strategy (blue curve, ~2.5 lots at risk).

Summary

Most fabs do a good job of finding the catastrophic defect excursions. Micro-excursions are much more common and much harder to detect. There are usually very small excursions happening simultaneously at many different layers that go completely undetected. The superposition of these micro-excursions leads to unexplained yield loss and unexplained yield variation.

As a yield engineer, you must be wary of this. An inspection strategy that guards only against catastrophic excursions can create the false sense of security that the layer is being effectively monitored—when in reality you are missing many of these smaller events that chip away or “salami slice” your yield.

References:

About the Author: 

Dr. David W. Price is a Senior Director at KLA-Tencor Corp. Dr. Douglas Sutherland is a Principal Scientist at KLA-Tencor Corp. Over the last 10 years, Dr. Price and Dr. Sutherland have worked directly with more than 50 semiconductor IC manufacturers to help them optimize their overall inspection strategy to achieve the lowest total cost. This series of articles attempts to summarize some of the universal lessons they have observed through these engagements.

MEMS & Sensors Industry Group (MSIG) today announced highlights of its twelfth annual business conference, MEMS & Sensors Executive Congress 2016 in Scottsdale, AZ on November 9-11, 2016. Spanning mobile & wireless, automotive, medical devices, energy, and the intersection of human-computer networks, speakers will share some of the most compelling examples of MicroElectroMechanical Systems (MEMS)/sensors technology with an executive audience from the MEMS and sensors supply chain.

AT&T VP of Product Development for Internet of Things (IoT) Solution Cameron Coursey will offer a carrier’s perspective on technologies advancing the IoT, including low-power wide-area cellular technologies, standard radio module configurations, embedded SIMs, cloud-based data storage and virtualized networks. As part of his keynote, Coursey will explain how MEMS/sensors suppliers can play a more pivotal role in IoT applications such as asset monitoring, wearables, connected cars and smart cities.

During his keynote, Local Motors General Manager Phillip Rayer will exhort Congress attendees to fearlessly embrace co-creation and open collaboration, which he believes could change the world of transportation. As a case in point, Rayer will share his company’s experiences working with a global network of inspired innovators as Local Motors prepares the first 3D-printed autonomous car for highway-ready certification.

“Invention, co-creation and collaboration will continue to fuel the greatest achievements in MEMS and sensors,” said Karen Lightman, executive director, MEMS & Sensors Industry Group. “Attendees of this year’s MEMS & Sensors Executive Congress will hear how both titans of industry and nimble innovators approach technological innovation holistically — leveraging internal and external ecosystems to introduce meaningful products to market. And for the first time, they can also delve deeper into current, near-term and future MEMS/sensors solutions during breakout sessions led by both business and academic experts.”

Other highlighted presentations include:

For the complete agenda, please visit: http://msigevents.org/msec2016/agenda/