Category Archives: Materials and Equipment

University at Buffalo engineers have created a more efficient way to catch rainbows, an advancement in photonics that could lead to technological breakthroughs in solar energy, stealth technology and other areas of research.

University of Buffalo engineerQiaoqiang Gan, PhD, an assistant professor of electrical engineering at UB, and a team of graduate students described their work in a paper called “Rainbow Trapping in Hyperbolic Metamaterial Waveguide,” published Feb. 13 in the online journal Scientific Reports.

They developed a “hyperbolic metamaterial waveguide,” which is essentially an advanced microchip made of alternate ultra-thin films of metal and semiconductors and/or insulators. The waveguide halts and ultimately absorbs each frequency of light, at slightly different places in a vertical direction, to catch a “rainbow” of wavelengths.

Gan is a researcher within UB’s new Center of Excellence in Materials Informatics. 

“Electromagnetic absorbers have been studied for many years, especially for military radar systems,” Gan said. “Right now, researchers are developing compact light absorbers based on optically thick semiconductors or carbon nanotubes. However, it is still challenging to realize the perfect absorber in ultra-thin films with tunable absorption band.

“We are developing ultra-thin films that will slow the light and therefore allow much more efficient absorption, which will address the long existing challenge.”

In their initial attempts to slow light, researchers relied upon cryogenic gases. But because cryogenic gases are very cold – roughly 240 degrees below zero Fahrenheit – they are difficult to work with outside a laboratory.

Before joining UB, Gan helped pioneer a way to slow light without cryogenic gases. He and other researchers at Lehigh University made nano-scale-sized grooves in metallic surfaces at different depths, a process that altered the optical properties of the metal. While the grooves worked, they had limitations. For example, the energy of the incident light cannot be transferred onto the metal surface efficiently, which hampered its use for practical applications, Gan said.

The hyperbolic metamaterial waveguide solves that problem because it is a large area of patterned film that can collect the incident light efficiently. It is referred to as an artificial medium with subwavelength features whose frequency surface is hyperboloid, which allows it to capture a wide range of wavelengths in different frequencies including visible, near-infrared, mid-infrared, terahertz and microwaves.

It could lead to advancements in an array of fields.

For example, in electronics there is a phenomenon known as crosstalk, in which a signal transmitted on one circuit or channel creates an undesired effect in another circuit or channel. The on-chip absorber could potentially prevent this.

The on-chip absorber may also be applied to solar panels and other energy-harvesting devices. It could be especially useful in mid-infrared spectral regions as thermal absorber for devices that recycle heat after sundown, Gan said.

Technology such as the Stealth bomber involves materials that make planes, ships and other devices invisible to radar, infrared, sonar and other detection methods. Because the on-chip absorber has the potential to absorb different wavelengths at a multitude of frequencies, it could be useful as a stealth coating material.

Additional authors of the paper include Haifeng Hu, Dengxin Ji, Xie Zeng and Kai Liu, all PhD candidates in UB’s Department of Electrical Engineering. The work was sponsored by the National Science Foundation and UB’s electrical engineering department.

Smartphones and media tablets continue to the prime movers of technology industries, with the two mobile platforms spurring a double-digit increase in the market for microelectromechanical system (MEMS) motion sensors this year.

Revenue this year for MEMS motion sensors used in cellphones and tablets will amount to $1.5 billion, up 13 percent from $1.3 billion in 2012, according to the an IHS iSuppli MEMS Special Report from information and analytics provider HIS. While this will be down from the robust 21 percent increase in 2012 and the phenomenal 85 percent boom in 2011, it still represents a strong rise compared to the tepid growth expected for most electronic components during 2013.

After 2013, there will be two more years of double-digit increases before the market starts moderating in 2016 with $2.21 billion. By then, more than 6 billion motion sensors will ship in mobile handsets and tablets, up from just 1.6 billion units in 2011.

“The growth of MEMS motions sensors in wireless devices is being driven by four key factors: the robust sales of smartphones and tablets; the boom of Chinese smartphone makers; the fast adoption rate of pressure sensors; and the addition in some cases of a second gyroscope in the camera modules for optical image stabilization,” said Jérémie Bouchaud, director and senior principal analyst for MEMS & sensors at IHS.

Earlier forecasts showing the market would slow by 2014 will no longer be true given new vigor in the industry because of these four variables, IHS believes.

Apple sets market in motion

First initiated by Apple in its iPhone for auto screen rotation, motion sensors have grown to become one of the most dynamic segments in the overall MEMS market, paving the way for next-generation, gesture-based menu navigation in the user interface of cellphones.

While accelerometers and electronic compasses are already standard in smartphones, other MEMS devices are also gaining heavy traction. Pressure sensors that can help with indoor navigation came to greater prominence in 2012 as Samsung adopted the MEMS device in high-end smartphones more aggressively than expected. After Samsung, Sony and other smaller handset manufacturers, such as Xiaomi from China, also started equipping smartphones with pressure sensors.

Axis power

A new motion sensor likewise is making headway this year in the form of dual-axis gyroscopes, intended for optical image stabilization (OIS) in the camera module of handsets. The new sensor is in addition to the 3-axis gyroscope already found on the main printed circuit boards of handsets. As the camera function increasingly becomes a key differentiator in mid- and high-end smartphones, OIS will become a key feature in camera phones of more than 8 megapixels.

Gray market fades

Also helping spur the motion sensor market in 2012 was a dramatic surge in the number of legitimate, officially sanctioned smartphones in China—as opposed to the hordes of illegal, gray-market handsets still widely proliferating in that country.

The number of authorized smartphones produced by Chinese handset original equipment manufacturers (OEM) exceeded 150 million units last year, up from 67 million in 2011. The Chinese-made handsets now all feature at least one accelerometer, with compasses and gyroscopes expected to be integrated later. Smartphone shipments from Chinese OEMs will continue to climb in the next few years, further stoking the MEMS motion sensor market for handsets.

Combo sensors enjoy fast growth

While discrete MEMS motion sensor devices like accelerometers, gyroscopes and electronic compasses continue to be the major revenue earners, the combo sensor market—in which several sensors are integrated into a module—is also expanding rapidly.

In terms of revenue, approximately 16 percent of motion sensors were shipped as part of a combo sensor in 2012, up from just 3 percent in 2011, on the way to 53 percent by 2016. Six-axis inertial measurements units (IMU) comprising a 3-axis accelerometer and a 3-axis gyroscope in the same package will be the most popular combo sensor, ahead of 6-axis compasses and 9-axis IMUs.

Controlling the market: the biggest buyers—and their suppliers

Apple and Samsung were the biggest buyers in 2012 of motion sensors in handsets, accounting for 57 percent of consumption, up from just 25 percent in 2009. The American and South Korean giants have now surpassed Nokia as the top purchasers. Also rising to become a major force is the group of Chinese OEMs including Huawei, ZTE, Lenovo and Coolpad, along with a number of other smaller China-based players.

On the supply side, four suppliers claimed 84 percent of total motion sensor revenue last year.

French-Italian STMicroelectronics led the field with a 48 percent share, followed by Japan’s AKM with 18 percent, German-based Bosch with 10 percent and InvenSense from California with 9 percent.

MEMS motion sensor
By Haraldino80 (Own work) via Wikimedia Commons

MEMS microphone market to doubleSilicon microphones are among a broad range of devices known as micro-electromechanical systems (MEMS), an emerging field in which various sensors and mechanical devices are constructed on a single wafer using processes developed for making integrated circuits (ICs). The chief advantage of micromachining silicon microphones is cost. Several sensors can be processed on a chip simultaneously and can be integrated with passive and active electronic devices.

According to a new market research study from Innovative Research and Products, or iRAP, titled MEMS Microphones – A Global Technology, Industry and Market Analysis (ET-118), silicon micro-machined microphones (also known as silicon microphones or MEMS microphones) have begun to emerge as a competitor technology to the electret condenser microphone (ECM). The global market for MEMS microphones has reached approximately $422 million in 2012. The market is predicted to increase to $865 million in 2017, with increasingly high uptake of MEMS microphones over alternatives for a variety of applications. Thanks to Apple Inc., which has spurred on this phenomenal growth by adopting MEMS microphones for their products, namely the iPhone, iPad and iTouch, hence paving the way for other smartphone and tablet manufactures to adopt the same.

MEMS microphones are more compact than traditional microphone systems, because they capture sound and convert it to a digital signal on the same chip. MEMS microphone solutions developed on the CMOS (complimentary metal oxide semiconductors) MEMS platform frees consumer electronic device designers and manufacturers from many of the problems associated with ECMs. CMOS MEMS microphones also integrate an analog-to-digital converter on the chip, creating a microphone with a robust digital output. Since the majority of portable applications will ultimately convert the analogue output of the microphone to a digital signal for processing, the system architecture can be made completely digital, removing noise-prone analogue signals from the circuit board and simplifying the overall design.

Report Highlights

The new iRAP study has focused on MEMS microphones that can be used in mobile phones, digicams, camcorders, laptops, automotive hands-free calling and hearing aids. It provides market data about the size and growth of the MEMS microphones application segments, new developments including a detailed patent analysis, company profiles and industry trends. The report also covered the underlying economic issues driving the MEMS microphones business, as well as assessments of new advanced MEMS microphones that are being developed.

Manufacturers of MEMS microphones expect competition to persist and intensify in the future from a number of different sources. Microphones are facing competition in a new, rapidly evolving and highly competitive sector of the audio communication market. Increased competition could result in reduced prices and gross margins for microphone products and could require increased spending by research and development, sales and marketing and customer support.

Micro-machined microphone chips can match and extend the performance of existing devices, for instance, by using sensor arrays. Silicon microphones also offer advantages to the OEM in the form of improved manufacturing methods (reliability, yield, assembly cost) combined with robustness. They also offer additional functionality, such as the ability to incorporate multiple microphones into portable electronic devices for noise suppression and beam forming.

The potential for smaller footprint components and resistance to electromagnetic interference also supports new cell phone designs. Moreover, MEMS microphones meet price points set by electret microphones by leveraging established high-volume silicon manufacturing processes. This combination of size, performance and functionality, and low cost are highly desirable for OEMs and consumers alike.

Many of these new “miniature” silicon microphones for consumer and computer communication devices are approximately one-half the size and operate on just one-third the power of conventional microphones.

The range of possible applications of these microphones derives from their important advantages as compared to conventional ECM technologies. Based on silicon MEMS technology, the new microphone achieves the same acoustic and electrical properties as conventional microphones, but is more rugged and exhibits higher heat resistance. These properties offer designers of a wide range of products greater flexibility and new opportunities to integrate microphones.

Report Conclusions

Major findings of this report are:

  • The MEMS microphones market is an attractive, and still growing, 100s of million-dollar market characterized by very high production volumes of MEMS microphones that are extremely reliable and low in cost.
  • Mobile phones would consistently have the largest share through 2017, followed by laptops and tablets, camcorders, hearing aids, headphones and automotive.
  • From 2012 to 2017, hearing aids will have the highest growth rate with AAGR at 27.46%, followed by headphones at 25% AAGR.
  • Regionally, North America had about 25.3% of the market in 2012, followed by Europe at 19.7 %, Japan at 15.7% and the rest of world at 39.5%.
  • In 2012, More than ten companies and institutions worldwide are active in the field of MEMS microphones, which can be divided in two different technological concepts – single-chip and two-chip. The number of active market participants is expected to double by 2017.
  • By 2017, MEMS microphones will achieve penetrations of 92% in the mobile phone market segment and 95% in PDAs, digicams and camcorders market.
  • In terms of technology, the largest share will be for two-chip integration.

solid state thin film batteryVarious power factors have impacted the advancement and development of micro devices. Power density, cell weight, battery life and form factor all have proven significant and cumbersome when considered for micro applications. Markets for solid state thin-film batteries at $65.9 million in 2012 are anticipated to reach $5.95 billion by 2019, according to a new report released by ReportsnReports.com. Market growth is a result of the implementation of a connected world of sensors.

The report points out that development trends are pointing toward integration and miniaturization. Many technologies have progressed down the curve, but traditional batteries have not kept pace. The technology adoption of solid state batteries has implications to the chip grid. One key implication is a drive to integrate intelligent rechargeable energy storage into the chip grid. In order to achieve this requirement, a new product technology has been embraced: solid state rechargeable energy storage devices are far more useful than non-rechargeable devices.

Thin film battery market driving forces include creating business inflection by delivering technology that supports entirely new capabilities. Sensor networks are creating demand for thin film solid state devices. Vendors doubled revenue and almost tripled production volume from first quarter. Multiple customers are moving into production with innovative products after successful trials.

A solid state battery electrolyte is a solid, not porous liquid. The solid is denser than liquid, contributing to the higher energy density. Charging is complex. In an energy-harvesting application, where the discharge is only a little and then there is a trickle back up, the number of recharge cycles goes way up. The cycles increase by the inverse of the depth of discharge. Long shelf life is a benefit of being a solid state battery. The fact that the battery housing does not need to deal with gases and vapors as a part of the charging/discharging process is another advantage of the solid state thin film battery.

Traditional lithium-ion (Li-Ion) technology uses active materials, such as lithium cobalt-oxide or lithium iron phosphate, with particles that range in size between 5 and 20 micrometers. Nano-engineering improves many of the failings of present battery technology. Re-charging time and battery memory are important aspects of nano-structures. Researching battery micro- and nanostructure is a whole new approach that is only just beginning to be explored.

Industrial production of nano batteries requires production of the electrode coatings in large batches so that large numbers of cells can be produced from the same material. Manufacturers using nano materials in their chemistry had to develop unique mixing and handling technologies.

Cymbet millimeter scale solid state battery applications are evolving. In the case of the intra-ocular pressure monitor, it is desirable to place microelectronic systems in very small spaces. Advances in ultra-low power integrated circuits, MEMS sensors and solid state batteries are making these systems a reality. Miniature wireless sensors, data loggers and computers can be embedded in hundreds of applications and millions of locations.

Imagers

Since 2010, there has been growth beyond expectations in the adoption of mobile devices, such as smart phones and tablets, which has called for larger volumes of CMOS image sensor chips to be produced. The resolution and miniaturization races are ongoing, and performance metrics are also becoming more stringent. In addition to the conventional pixel shrinkage, a “more than Moore” trend is increasingly evident. Resolutions of over 20 Mpixels are commercially available for mobile devices employing enhanced small-size pixels. Thanks to the innovative readout and ADC architectures embedded at the column and chip levels, data rates approaching 50Gb/s and a noise floor below single electron have been demonstrated. In addition to the conventional applications, ultra-low-power vision sensors, 3D, high-speed, and multispectral imaging are the front-running emerging technologies.

Back-side Illumination (BSI) is now the mainstream technology for high-volume, high-performance mobile applications, 1.12μm BSI pixels are available, and the industry is potentially moving towards 0.9μm pixel pitch and below. Additional innovative technologies outside of the traditional scaling include advanced 3D stacking of a specialized image sensor layer on top of deep-submicron digital CMOS (65nm 1P7M) using through silicon vias (TSVs) and micro-bumps. The importance of digital-signal-processing technology in cameras continues to grow in order to mitigate sensor imperfections and noise, and to compensate for optical limitations. The level of sensor computation is increasing to thousands of operations-per pixel, requiring high-performance and low-power digital-signal-processing solutions. In parallel with these efforts is a trend throughout the image sensor industry toward higher levels of integration to reduce system costs.

Ultra-low-power vision sensors are being reported in which more programmability and computation is performed at the pixel level in order to extract scene information such as object features and motion.

Lightfield/plenoptic commercial cameras, which have been available since 2010, are now gaining popularity and are being marketed for 3D imaging and/or all-in-focus 2D imaging. On-chip stereoscopic vision has been demonstrated through digital micro lenses (DML), paving the way to next-generation passive 3D imaging for mobile and entertainment applications, e.g. through gesture control user interfaces.

Significant R&D effort is being spent on active 3D imaging time-of-flight (TOF) applications to support requirements from autonomous driving, gaming, and industrial applications, addressing open challenges like background light immunity, higher spatial resolution, and longer distance range. Deep-submicron CMOS single-photon avalanche diodes (SPADs) have been developed by several groups using different technology nodes. They are now capable of meeting the requirements for high resolution, high timing accuracy by employing highly parallel time-to-digital-converters (TDCs) and small pixel pitch with better fill factor.

Ultra-high-speed image sensors for scientific imaging applications with up to 20Mfps acquisition speed have been demonstrated.

Multispectral imaging is gaining a lot of interest from the image sensor community: several research groups have demonstrated fully CMOS room-temperature THz image sensors, and a hybrid sensor capable of simultaneous visible, IR, and THz detection has been reported.

The share of CCDs continues to shrink in machine vision, compact DSC and security applications. Only for high-end digital cameras for astronomy and medical imaging do CCDs still maintain a significant market share.

Sensors & MEMS

A 4×4 array of sensing cells, developed by Dr. Peng Peng of Seagate Technology, from Flexible Microtactile Sensor for Normal and Shear Elasticity (IEEE Transactions on Industrial Electronics)

MEMS inertial sensors are finding widespread use in consumer applications to provide enhanced user interfaces, localization, and image stabilization. Accelerometers and gyroscopes are being combined with 3D magnetic-field sensors to form nine-degree-of-freedom devices, and pressure sensors will eventually add a 10th degree. The power consumption of such devices is becoming sufficiently low for the sensor to be on all the time, enhancing indoor navigation. There have been further advances in heterogeneous integration of MEMS with interface circuits in supporting increased performance, larger sensor arrays, reduced noise sensitivity, reduced size, and lower costs.

To address the stringent requirements of automotive, industrial, mobile, and scientific application, MEMS inertial sensors, pressure sensors and microphones are becoming more robust against electromagnetic interference (EMI), packaging parasitics, process voltage temperature (PVT) variations, humidity, and vibration.

Sensor interfaces achieve increasingly high resolution and dynamic range while maintaining or improving power or energy efficiency. This is achieved through techniques such as zooming, non-uniform quantization, and compensation for baseline values.

New calibration approaches, such as voltage calibration, are being adopted for BJT-based temperature sensors to reduce cost. In addition to thermal management applications (prevention of overheating in microprocessors and SoCs), temperature sensors are also increasingly co-integrated with other sensors (e.g. humidity, pressure, and current sensors) and MEMS resonators for cross-sensitivity compensation. Alternative temperature-sensing concepts find their way into applications with specific requirements not easily addressed by BJTs: thermal diffusivity-based sensing for high-temperature applications; thermistor-based and Q-based concepts for in-situ temperature sensing of MEMS devices and for ultra-low voltage operation.

MEMS oscillators continue to improve; phase noise is now low enough for demanding RF applications, 12kHz-to-20MHz integrated jitter is now below 0.5ps, and frequency accuracy is now better than 0.5ppm. Consumer applications are adopting new low-power and low-cost oscillators.

Biomedical

There have been continuous achievements in the area of ICs for neural and biopotential interfacing technologies. Spatial resolution of neural monitoring devices is being reduced utilizing the benefits of CMOS technology. IC providers are increasing their component offerings towards miniaturization of portable medical devices.

Telemedicine and remote-monitoring applications are expanding with support from IC manufacturing companies. The applications of such systems are not limited to services targeted for elderly or chronically ill patients; for example there are several technologies developed to enhance the way clinical trials are conducted by monitoring patient adherence and by improving data collection. Low power WiFi, and Bluetooth-low-energy is emerging as a standard wireless connection between portable communication services and wearable technology.

Smart biomolecular sensing is another major trend that marries solid-state and biochemical worlds together with the ultimate goal of enabling a more predictive and preventative medicine. With the help of the accuracy and parallelism enabled by CMOS technology, time, cost, and error rate of DNA sequencing may be significantly improved. Direct electronic readout may relax the need for complex biochemical assays. Similar trends are becoming increasingly evident in the space of proteomics and sample preparation.

Even for medical imaging, there is a trend from hospital imaging toward point-of-care and portable devices. A key example is in the space of portable high-resolution ultrasounds in which larger scientific imaging setups are being integrated onto the sensor by process technology (e.g. integrated spectral filters, CMUT). Another example is in the space of molecular imaging. The advent of silicon photomultipliers (SiPM) providing a solid-state alternative to PMTs enable the realization of PET scanners compatible with MRI, opening the way to new frontiers in the field of cancer diagnostics. More recently, SiPMs realized within deep-submicron CMOS technologies have allowed the integration at pixel- and chip-level of extra features, e.g. multiple timestamp extraction, allowing in perspective a dramatic reduction of the system cost.

Displays

The desire to put much higher-resolution and higher-definition displays into mobile applications is one of the display technology trends, and it is now opening a Full HD smartphone era.  440ppi high-definition displays are expected, even for 5-inch display sizes. Low-temperature polysilicon (LTPS) technology seems to have more merits over a-Si TFT technology. But a-Si TFT and oxide TFT technologies supported by compensating driver systems are being prepared to compete with it. Very-large-size LCD TVs over 84 inches, and UD (3840×2160) resolution are now the leading entertainment systems. 55-inch AMOLED TVs with Full HD resolution are also opening new opportunities in consumer applications.

As touch-screen displays for mobile devices become increasingly thin, capacitive touch sensors move closer to the display. The resulting in-cell touch displays come with reduced signal levels due to increased parasitics, and increased interference from the display and switched-mode chargers. Noise immunity is improved by adopting noise filtering and new signal modulation approaches.

This and other related topics will be discussed at length at ISSCC 2013, the foremost global forum for new developments in the integrated-circuit industry. ISSCC, the International Solid-State Circuits Conference, will be held on February 17-21, 2013, at the San Francisco Marriott Marquis Hotel.

large area flexible displaysTechnology directions in the field of large-area and low-temperature electronics focuses on lowering the cost-per-unit-area, instead of increasing the number of functions-per-unit-area that is accomplished in crystalline Si technology according to the well-known Moore’s law.

A clear breakthrough in research for large area electronics in the last decade has been the development of thin-filmtransistor, or TFT processes with an extremely low temperature budget of (<150°C) enabling manufacturing of flexible and inexpensive substrates like plastic films and paper.

The materials used for these developments have for a long time been carbon-based organic molecules like pentacene with properties of p-type semiconductors. More recently, air-stable organic n-type semiconductors and amorphous metal oxides, which are also n-type semiconductors, have emerged. The most popular metal oxide semiconductor is amorphous Indium Gallium Zinc Oxide, or IGZO, but variants exist, such as Zinc Oxide, Zinc Tin Oxide, and so on. The mobility of n- and p-type organic semiconductors has reached values exceeding 10 cm2Vs, which is already at par or exceeding the performance of amorphous silicon. Amorphous metal oxide transistors have typical charge carrier mobility of 10 to 20 cm2/Vs. Operational stability of all semiconductor materials has greatly improved, and should be sufficient to enable commercial applications, especially in combination with large-area compatible barrier layers to seal the transistor stack.

In the state-of-the-art p-type only, n-type only and complementary technologies are available. For the latter, all-organic implementations have been shown, but also hybrid solutions, featuring the integration of p-type organic with n-type oxide TFTs. Most TFTs are still manufactured with technologies from display-lines, using subtractive methods based on lithography. However, there is a clear emphasis on the development of technologies that could provide higher production throughput, based on different technologies borrowed from the graphic printing world like screen and inkjet printing. The feature sizes and spread of characteristics of printed TFT technologies are still larger than those made by lithography, but there is clear progress in the field.

The prime application for these TFT families are backplanes for active-matrix displays, including in particular flexible displays. Organic TFTs are well-suited for electronic paper-type displays, whereas oxide TFTs are targeting OLED displays. Furthermore, these thin-film transistors on foil are well-suited for integration with temperature or chemical sensors, pressure-sensitive foils, photodiode arrays, antennas, sheets capable of distributing RF power to appliances, energy scavenging devices, and so on, which will lead to hybrid integrated systems on foil. Early demonstrations include smart labels, smart shop shelves, smart medical patches, etc. They are enabled by a continuous progress in the complexity of analog TFT circuits targeting the interface with sensors and actuators, to modulate, amplify and convert analog signals as well as progress in digital TFT circuits and non-volatile memory to process and store information.

In line with this trend, ISSCC 2013 features three papers representing the latest state-of-the-art of organic thin-film transistor circuits. A front-end amplifier array for EMG measurement is demonstrated for the first time with organic electronics in paper 6.4. Transistor mismatch and power consumption of the amplifier are reduced by 92% and 56%, respectively, by selecting and connecting the transistors trough a post-inkjet printing. Papers 6.5 and 6.6 present advances in analog-to-digital converters for sensing applications. Papers 6.5 demonstrates the first ADC that integrates on the same chips resistors and printed n and p-type transistors. The ADC achieves an SNDR of 19.6dB, SNR of 25.7dB and BW of 2Hz. In Papers 6.6, an ADC made only with p-type transistors is presented that has the highest linearity without calibration and that is 14 times smaller than previous works using the same technology.

This and other related topics will be discussed at length at ISSCC 2013, the foremost global forum for new developments in the integrated-circuit industry. ISSCC, the International Solid-State Circuits Conference, will be held on February 17-21, 2013, at the San Francisco Marriott Marquis Hotel.

Packaging and assembly are key segments of the growing semiconductor supply chain in China. Based on our tracking of 139 companies, and considering numerous small companies not tracked in detail, there are over 200 companies competing in the packaging and assembly market in China. Although many are small companies manufacturing low-pin count devices, all of the world’s “Top 10” OSAT, Outsourced Semiconductor Assembly and Test, players have one or more assembly and testing facilities in China as shown below. Eight of the world top 10 IDM companies have assembly and test manufacturing facilities in China, and most entered into China earlier than the OSAT players, in the mid-1990s.

Top Ten OSAT Facilities in China

1)    ASE

2)    Amkor

3)    SPIL

4)    STATS ChipPAC

5)    Powertech

6)    UTAC

7)    ChipMOS

8)    JCET

9)    KYEC

10)    Unisem

In addition to the international companies, domestic subcontractor companies are increasingly joining the global outsourcing market. The assembly of small-size optoelectronic chips like CMOS image sensors is the most mature 3D through-silicon via platform at the moment and China players occupy an important place through transferring authorized technology from oversea partners. Also, domestic semiconductor equipment suppliers that previously focused on front-end tool development are applying their products in wafer level package and TSV assembly.

With the growth of semiconductor packaging industry in China, domestic packaging material suppliers are emerging with the industry and are now starting to serve the worldwide leading packaging houses. Given the emphasis on low-cost manufacturing, packaging houses will continue to evaluate China-based suppliers to realize lower material cost. On the other hand, to enhance their competitive power, stabilize sales and marketing channels, and reduce operational risk, China-headquartered material suppliers are forming partnerships with leading packaging houses. In the China Semiconductor Packaging Market Outlook 2012/2013 report, we discuss semiconductor packaging material segment market and supply in China, and include both manufacturing facilities owned by foreign companies and domestic companies. 

In the first of two installments, we examine the global issues facing the semiconductor industry, as released by Linx Consulting in The Econometric Semiconductor Forecast. Part two predicts that semiconductor growth should recover by 2014.

United States’ economic outlook 

The January 1st “fiscal cliff” deadline in the US dominates the near term outlook for the world economy.  ANY settlement will stabilize the situation, but any politically acceptable near term agreement in Washington will not be enough to truly begin to solve the longer-term problems. The political dynamics are not yet in place to lead to a long-term solution to debt restructuring or reducing excessive growth in entitlements. The first fiscal cliff compromise, which includes higher taxes on the wealthier income-earners, elimination of the 2% social security tax reduction, and a permanent fix to the alternative minimum tax levels, gave clarity to consumers on their tax situations. Discretionary and entitlement government spending controls or cuts to reduce government debt burdens were deferred, leaving key questions about policy to later negotiations. That extension of uncertainty will dampen investment spending and government purchases of equipment at least into the first half of 2013. Economic growth will stagnate in the beginning of the year, and then bounce briefly when the new policy environment becomes clear.  Post bounce, the longer term issues will begin to re-surface, and economic growth should settle back into a sluggish trend that lags potential output. This modest growth will be slow to lower unemployment.  Without a strong labor market, businesses will plan for very modest gains in consumer spending, relatively low inflation, and no significant change in interest rates.

Europe’s economic outlook

Most economies are in mild recession, as central governments raise taxes and/or cut spending in attempt to reduce debt. Austerity measures, coupled with potential national bankruptcies in Greece, and recessions in Spain and Italy which will likely extend into early 2014, produce severe stress on euro currency. For the euro to survive, Germany and the most troubled countries will need to compromise national needs to develop an approach that will satisfy financial markets.  France introduces a growing uncertainty to the European outlook. It continues to head in the opposite direction from most countries, expanding the central government’s involvement in the economy, ignoring debt growth, and pushing income redistribution measures which could stifle growth. While the Eurozone should survive intact, the political process will likely keep markets uncertain and most countries’ fiscal budgets austere.  Overall economic activity measured by real GDP most likely will contract slightly in 2013.

Asia’s economic outlook

With key developed world markets in recession or growing weakly, Asian economies will have difficulty producing strong expansions in 2013. With the exception of Japan, however, rates of growth are likely to improve from 2012. Led by China, which moved a bit too aggressively to cool its economy in 2012, policies have become slightly more expansive across the region and should produce slightly stronger real growth rates. Growth will come more from internal regional development than export-led growth.

Risks affecting the semiconductor industry 

Negative risks dominate discussions among serious analysts. In Europe, a financial calamity from either a banking system failure or the breakup of the Eurozone would produce a severe recession with global implications. In the US, an imbalanced solution to the fiscal cliff could stifle growth and tumble the economy into a brief recession. Emerging commodity-focused or dependent economies would be negatively impacted by a weaker Asian expansion. Positive risks, which get very little discussion in popular press these days, include a much sharper boost in the US following a settlement of the “fiscal cliff” dilemma, and a slowly improving European situation (most likely led by Germany or a group of northern European economies) that stabilizes more rapidly the fiscal situation in Europe.  A number of US forecasters surveyed by the National Association for Business Economics on December 17th expect US growth to rebound sharply and exceed 3 ½% by the end of 2013 as the uncertainty “discount” is removed from markets. While an equal number expect growth to stagnate around 1%, the upside should be at least acknowledged as a possible upside risk to the current consensus.

A new econometric semiconductor industry forecast predicts semiconductor wafer area production to grow slightly less than 6% in 2013, according to Linx Consulting.

Using a macroeconomic forecasting tool that incorporates measures of economic uncertainty, global economic shocks, and regional volatility, the forecasting service, called The Econometric Semiconductor Forecast, predicts a slow first quarter in 2013 will be followed by a strong second quarter with moderate growth in the second half of the year. This modest growth forecast is believed to be demand-driven, since inventory levels have not shown a significant increase in 2012.

The Econometric Semiconductor Forecast is the first to use global GDP macroeconomic models to provide semiconductor industry forecasts at a quarterly frequency with monthly updates, allowing forecast recipients to plan for short-term fluctuations in the volatile semiconductor industry.

“An unstable global economy leads to wide variations in economic forecasts, making it difficult to develop meaningful demand-side forecasts,” said Mark Thirsk, managing partner of Linx Consulting. “Our econometric forecast model allows us to develop more accurate forecasts on a monthly and quarterly basis, which are vital for operations planning and business forecasting in the semiconductor supply chain.”

Based on a demand-driven equation that captures >98% of the long run variation in semiconductors, the economic forecast model used by Linx Consulting includes global real GDP growth from consensus forecasts, US consumer and business spending on technology goods, inventory-shipments ratio, computer and electronics, and financial crisis shock indicator to capture panic behavior in the latest cycle.

Headwinds in the Global Economy

Uncertainty surrounding government policies and ongoing fallout from the financial crisis combine to restrain growth in 2013. Protracted periods of uncertainty followed financial crises in the past, accompanied by prolonged subdued growth rates as major economic policies changed and debt restructuring dampened investment and spending.  Few of today’s policymakers or business leaders have experience dealing with this type of an environment. That lack of experience adds to the uncertainty in the current outlook, as it tends to increase cautious economic behavior by consumers and businesses. In 2013, policies should become a bit more settled in the first half of the year, improving confidence somewhat.  Global economic growth is unlikely to recover to its longer-term potential until after 2013 as fundamental structural imbalances will improve slowly at best.

In the face of these headwinds, the more than 250 forecasters surveyed in the December 2012 Consensus Forecasts produced a consensus subdued, below-trend global growth of 2.6% in 2013.  This is a slight improvement over the 2.5% now expected for 2012, but less than the 3.1% achieved in 2011 and below the long-term potential real global growth rate of around 3.5%.  While the consensus averages to 2.6% for 2013, there is a relatively wide range in individual forecasts, reflecting the uncertainty in the outlook.  Individual outlooks depend most on how forecasters see developments in the US and Eurozone.

Read more from The Econometric Semiconductor Forecast: Regional developments to affect growth of semiconductor industry

The forecasting service will provide subscribers with monthly updates of quarterly forecasts of total semiconductor production in Million Square Inches of silicon processed, as well as segmentation by device, including DRAM, flash, MPU, ASIC, analog and discrete.

 

Image by IBM ResearchDow Corning and IBM scientists unveiled a major step in photonics yesterday at the Photonics West conference, using a new type of polymer material to transmit light instead of electrical signals within supercomputers and data centers. This new silicone-based material offers better physical properties, including robustness and flexibility, making it ideal for applications in Big Data and for the development of future exascale computers, which are capable of performing a billion billion computations per second.

With exabytes of structured and unstructured data growing annually at 60 percent, scientists have been researching a range of technological advancements to drastically reduce the energy required to move all that data from the processor to the printed circuit board within a computer. Optical interconnect technology offers bandwidth and power efficiency advantages compared to established electrical signaling.

“Polymer waveguides provide an integrated means to route optical signals similar to how copper lines route electrical signals,” said Dr. Bert Jan Offrein, manager of the Photonics Research Group at IBM Research. “Our design is highly flexible, resistant to high temperatures and has strong adhesion properties – these waveguides were designed with no compromises.”

In a collaboration with Dow Corning, the scientists fabricated thin sheets of optical waveguide that show no curling and can bend to a 1 mm radius and is stable at extreme operating conditions including 85 percent humidity and 85°C. This new polymer, based on silicone materials, offers an optimized combination of properties for integration in established electrical printed circuit board technology. In addition, the material can be fabricated into waveguides using conventional manufacturing techniques available today.

“Dow Corning’s breakthrough polymer waveguide silicone has positioned us at the forefront of a new era in robust, data-rich computing, especially as we continue to collaborate with outstanding industry leaders like IBM,” said Eric Peeters, vice president, Dow Corning Electronic Solutions. “Optical waveguides made from Dow Corning’s silicone polymer technology offer customers revolutionary new options for transmitting data substantially faster, and with lower heat and energy consumption. We are confident that silicone-based board-level interconnects will quickly supersede conventional electronic signal distribution to deliver the amazing speeds needed for tomorrow’s supercomputers.”

A presentation, entitled Stable and Easily Processable Optical Silicones for Low-Loss Polymer Waveguides, given here by Brandon Swatowski, application engineer for Dow Corning Electronics Solutions, reported that fabrication of full waveguide builds can be completed in less than 45 minutes, and enable a high degree of process flexibility. Silicone polymer material, which is dispensed as a liquid, processes more quickly than competitive waveguide materials such as glass and does not require a controlled atmosphere chamber.

Swatowski’s presentation went on to say that waveguide builds based on the silicone polymer showed excellent adhesion to polyimide substrates. It also discussed how optical characterization of the new polymer waveguides silicones showed losses as low as 0.03 dB/cm, with environmental stability extending past 2,000 hours exposure to high humidity and temperature, and good performance sustained over 500 thermal cycles between -40°C and 120°C.