Category Archives: Metrology

GLOBALFOUNDRIES yesterday announced plans to expand its global manufacturing footprint in response to growing customer demand for its comprehensive and differentiated technology portfolio. The company is investing in its existing leading-edge fabs in the United States and Germany, expanding its footprint in China with a fab in Chengdu, and adding capacity for mainstream technologies in Singapore.

“We continue to invest in capacity and technology to meet the needs of our worldwide customer base,” said GF CEO Sanjay Jha. “We are seeing strong demand for both our mainstream and advanced technologies, from our world-class RF-SOI platform for connected devices to our FD-SOI and FinFET roadmap at the leading edge. These new investments will allow us to expand our existing fabs while growing our presence in China through a partnership in Chengdu.”

In the United States, GF plans to expand 14nm FinFET capacity by an additional 20 percent at its Fab 8 facility in New York, with the new production capabilities to come online in the beginning of 2018. This expansion builds on the approximately $13 billion invested in the United States over the last eight years, with an associated 9,000 direct jobs across four locations and 15,000 jobs within the regional ecosystem. New York will continue to be the center of leading-edge technology development for 7nm and extreme ultraviolet (EUV) lithography, with 7nm production planned for Q2 2018.

In Germany, GF plans to build up 22FDX 22nm FD-SOI capacity at is Fab 1 facility in Dresden to meet demand for the Internet of Things (IoT), smartphone processors, automotive electronics, and other battery-powered wirelessly connected applications, growing the overall fab capacity by 40 percent by 2020. Dresden will continue to be the center for FDX technology development. GF engineers in Dresden are already developing the company’s next-generation 12FDX technology, with customer product tape-outs expected to begin in the middle of 2018.

In China, GF and the Chengdu municipality have formed a partnership to build a fab in Chengdu. The partners plan to establish a 300mm fab to support the growth of the Chinese semiconductor market and to meet accelerating global customer demand for 22FDX. The fab will begin production of mainstream process technologies in 2018 and then focus on manufacturing GF’s commercially available 22FDX process technology, with volume production expected to start in 2019.

In Singapore, GF will increase 40nm capacity at its 300mm fab by 35 percent, while also enabling more 180nm production on its 200mm manufacturing lines. The company will also add new capabilities to produce its industry-leading RF-SOI technology.

“GF has had a strong foundry relationship with Qualcomm Technologies for many years across a wide range of process nodes,” said Roawen Chen, senior vice president, QCT global operations, Qualcomm Technologies, Inc. “We are excited to see GF making these new investments in differentiated technology and expanding global capacity to support Qualcomm Technologies in delivering the next wave of innovation across a range of integrated circuits that support our business.”

“Collaborative foundry partnerships are critical for us to differentiate ourselves in the competitive market for mobile SoCs,” said Min Li, chief executive officer of Rockchip. “We are pleased to see GF bringing its innovative 22FDX technology to China and investing in the capacity necessary to support the country’s growing fabless semiconductor industry.”

“As our customers increasingly demand more from their mobile experiences, the need for a strong manufacturing partner is greater than ever,” said Joe Chen, co-chief operating officer of MediaTek. “We are thrilled to have a partner like GF that invests in the global capacity we need to deliver powerful and efficient mobile technologies for markets ranging from networking and connectivity to the Internet of Things.”

Toshiba Corporation (TOKYO:6502) today announced that it has started construction of a new semiconductor fabrication facility, Fab 6, and a new R&D center, the Memory R&D Center, at Yokkaichi Operations in Mie prefecture, Japan, the company’s main memory production base.

Fab 6 will be dedicated to production of BiCS FLASH, Toshiba’s 3D Flash memory. Like Fab 5, construction will take place in two phases, allowing the pace of investment to be optimized against market trends, with completion of Phase 1 scheduled for summer 2018. Toshiba will determine installed capacity and output targets and schedules by closely monitoring the market.

Toshiba will also construct a Memory R&D Center adjacent to the new fab, with completion targeting December 2017. The facility will advance development of BiCS FLASH and new memories.

Toshiba is determined to enhance its competitiveness in the memory business by timely expansion of BiCS FLASH production in line with market trends, and to retain leadership in innovation in the memory business.

Intel Corporation yesterday announced plans to invest more than $7 billion to complete Fab 42, a project Intel had previously started and then left vacant. The high-volume factory is in Chandler, Ariz., and is targeted to use the 7 nanometer (nm) manufacturing process. The announcement was made by U.S. President Donald Trump and Intel CEO Brian Krzanich at the White House.

Intel Corporation on Tuesday, Feb. 8, 2017, announced plans to invest more than $7 billion to complete Fab 42. On completion, Fab 42 in Chandler, Ariz., is expected to be the most advanced semiconductor factory in the world. (Credit: Intel Corporation)

Intel Corporation on Tuesday, Feb. 8, 2017, announced plans to invest more than $7 billion to complete Fab 42. On completion, Fab 42 in Chandler, Ariz., is expected to be the most advanced semiconductor factory in the world. (Credit: Intel Corporation)

According to Intel’s official press release, the completion of Fab 42 in 3 to 4 years will directly create approximately 3,000 high-tech, high-wage Intel jobs for process engineers, equipment technicians, and facilities-support engineers and technicians who will work at the site. Combined with the indirect impact on businesses that will help support the factory’s operations, Fab 42 is expected to create more than 10,000 total long-term jobs in Arizona.

Mr. Trump said of the announcement: “The people of Arizona will be very happy. It’s a lot of jobs.”

There will be no incentives from the federal government for the Intel project, the White House said.

Context for the investment was outlined in an e-mail from Intel’s CEO to employees.

“Intel’s business continues to grow and investment in manufacturing capacity and R&D ensures that the pace of Moore’s law continues to march on, fueling technology innovations the world loves and depends on,” said Krzanich. “This factory will help the U.S. maintain its position as the global leader in the semiconductor industry.”

“Intel is a global manufacturing and technology company, yet we think of ourselves as a leading American innovation enterprise,” Krzanich added. “America has a unique combination of talent, a vibrant business environment and access to global markets, which has enabled U.S. companies like Intel to foster economic growth and innovation. Our factories support jobs — high-wage, high-tech manufacturing jobs that are the economic engines of the states where they are located.”

Intel is America’s largest high-technology capital expenditure investor ($5.1 billion in the U.S. 2015) and its third largest investor in global R&D ($12.1 billion in 20151). The majority of Intel’s manufacturing and R&D is in the United States. As a result, Intel employs more than 50,000 people in the United States, while directly supporting almost half a million other U.S. jobs across a range of industries, including semiconductor tooling, software, logistics, channels, OEMs and other manufacturers that incorporate our products into theirs.

The 7nm semiconductor manufacturing process targeted for Fab 42 will be the most advanced semiconductor process technology used in the world and represents the future of Moore’s Law. In 1968, Intel co-founder Gordon Moore predicted that computing power will become significantly more capable and yet cost less year after year.

The chips made on the 7nm process will power the most sophisticated computers, data centers, sensors and other high-tech devices, and enable things like artificial intelligence, more advanced cars and transportation services, breakthroughs in medical research and treatment, and more. These are areas that depend upon having the highest amount of computing power, access to the fastest networks, the most data storage, the smallest chip sizes, and other benefits that come from advancing Moore’s Law.

After the announcement, President Trump tweeted his thanks to Krzanich, calling the factory a great investment in jobs and innovation. In his email to employees, Krzanich said that he had chosen to announce the expansion at the White House to “level the global playing field and make U.S. manufacturing competitive worldwide through new regulatory standards and investment policies.”

“When we disagree, we don’t walk away,” he wrote. “We believe that we must be part of the conversation to voice our views on key issues such as immigration, H1B visas and other policies that are essential to innovation.”

During Mr. Trump’s presidential campaign, Krzanich had reportedly planned a Trump fundraiser event and then cancelled following numerous controversial statements from Trump regarding his proposed immigration policies. Intel has continued to be critical of the Trump administration’s immigration policies, joining over 100 other companies to file a legal brief challenging President Trump’s January 27 executive order which blocked entry of all refugees and immigrants from seven predominantly Muslim countries. Recently, Krzanich took to Twitter to criticize the order, voicing the company’s support of lawful immigration.

In 2012, Paul Otellini, then Intel’s CEO, made a similar promise about Fab 42 in the company of Obama, during a visit to Hillsboro, Oregon.

IC Insights’ 20th anniversary, 2017 edition of The McClean Report shows that since 2010, worldwide economic growth has been the primary influencer of IC industry growth.  In this “global economy-driven” IC industry, factors such as interest rates, oil prices, and fiscal stimulus are the primary drivers of IC market growth.  This is much different than prior to 2010, when capital spending, IC industry capacity, and IC pricing characteristics drove IC industry cycles.

Figure 1 plots the actual annual growth rates for worldwide GDP and the IC market from 1992 and includes IC Insights’ 2017 forecast.  As shown, both of these categories displayed extremely volatile behavior from 1992 through 2010 before registering much more subdued growth rates from 2011 through 2016.  Moreover, IC Insights forecasts similar restrained annual growth rates for worldwide GDP and the IC market through 2021.

Figure 1

Figure 1

Some observations regarding worldwide economic growth (GDP) include the following.

•    Since 1980, the annual worldwide GDP growth has averaged 2.8%. The average annual worldwide GDP growth rate has declined every decade since the 1960s with a slight rebound forecast to be registered in the first seven years of the current decade.

•    Worldwide GDP growth of 2.5% or less is currently considered by most economists to be indicative of a global recession, which puts 2016’s growth right at the threshold.  The 2017 global growth rate is forecast to come in only slightly better at 2.6%.  Prior to the late 1990s, when emerging markets like China and India represented a much smaller share of the worldwide economy, a global recession was typically defined as 2.0% or less growth.  The global recession threshold has never been a “hard and fast” rule, but the guidelines discussed here are useful for this analysis.

Figure 2 compares the actual annual growth rates of worldwide GDP and the worldwide IC market from 2011 through IC Insights’ 2017 forecast.  It is worth mentioning that the same scale used in Figure 1 for both worldwide GDP growth (-2% to 5%) and IC market growth (-40% to 50%) was used for this chart.  It is clear when looking at this specific timeperiod and using the historical growth rate scale end points, that IC market and worldwide GDP growth volatility from 2011 through 2017 is expected to be much more tame than in the past.

Figure 2

Figure 2

Worldwide GDP growth rates are expected to range from 2.5% to 3.0% from 2016 through 2021.  IC Insights’ expects the IC market to mirror the narrow range of worldwide GDP growth with forecasted growth rates ranging from a low of 2% to a high of 7% through 2021.

Given the tight correlation between annual worldwide GDP growth rates and IC market growth rates, IC Insights believes that a significant and noticeable IC market cycle will not occur through 2021 unless there is a significant departure from trend, up or down, for worldwide GDP growth (e.g., <2% growth on the low side and >3.0% growth on the high side).

SEMICON Korea 2017, opening today at COEX in Seoul, celebrates its 30th anniversary with its largest-ever exhibition. The gathering of the Korean semiconductor and electronics supply chain, SEMICON Korea runs February 8 to 10 and features 600 exhibiting companies and expects more than 40,000 attendees.

SEMI, the global industry association representing more than 2,000 companies in the electronics manufacturing supply chain, and host of global SEMICONs, held a press conference this morning.  SEMI’s Dan Tracy reported the global semiconductor industry has an upbeat outlook for 2017 with key electronics drivers including storage, industrial, wireless and automotive. For overall semiconductor equipment, demand is expected to increase 9 percent, according to the SEMI 2016 Year-End Equipment Forecast.

Korea is expected to make the largest regional investment, globally, in semiconductor fab equipment at a projected US$9.7 billion in 2017, a 36 percent increase over 2016. For fab materials markets, Tracy expects 3.1 percent growth globally in 2017, and 4.3 percent in Korea ($4.8 billion).

Highlights of SEMICON Korea:

  • At the Opening Ceremony on February 8, in honor of SEMICON Korea’s 30-year anniversary, Yong-Han LEE, Chairman of SEMI’s Board of Directors (BoD), will address the attendees, followed by SEMI BoD members and Korean industry leaders cutting the ceremonial ribbon and opening the doors.
  • Four industry thought leaders ─ from SK Hynix, Hewlett-Packard, imec and Microsoft ─ will present keynote insights on the future of the global semiconductor industry, immediately following the opening ceremony.
  • The Supplier Search Program has been expanded this year with 70 meetings arranged; seven of the world’s leading companies (Samsung, SK Hynix, Intel, Micron, SONY, Toshiba and Lam Research) will look for new suppliers.
  • The Presidents Reception – an exclusive VIP networking event with more than 450 global industry leaders ─ is the premier executive connection opportunity, continuing to mark the growth of the Korea semiconductor industry over the last 50 years.
  • A sold-out exhibition brings the top companies to SEMICON Korea to connect with customers and decision makers and to demonstrate product and technology leadership. The exposition includes deep technical networking and business programs that give insight into the full Korean electronics manufacturing ecosystem.

SEMICON Korea 2017 is the leading semiconductor technology event for market trends and breaking technology developments, featuring technical forums, business programs and standards activities. The event is an opportunity to meet and learn from more 100 global experts.

For more information on SEMICON Korea, visit www.semiconkorea.org/en/.

Worldwide silicon wafer area shipments increased 3 percent in 2016 when compared to 2015 area shipments according to the SEMI Silicon Manufacturers Group (SMG) in its year-end analysis of the silicon wafer industry, while worldwide silicon revenues increased by 1 percent in 2016 compared to 2015.

Silicon wafer area shipments in 2016 totaled 10,738 million square inches (MSI), up from the previous market high of 10,434 million square inches shipped during 2015. Revenues totaled $7.21 billion, one percent higher from the $7.15 billion posted in 2015. “Annual semiconductor silicon volume shipments reached record levels for the third year in a row,” said Chungwei (C.W.) Lee, chairman SEMI SMG and Corporate Development VP of GlobalWafers. “However, despite historical shipment highs, the same cannot be said about silicon revenue. The market remains well below pre-downturn levels.”

Annual Silicon* Industry Trends

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

Area Shipments (MSI)

8,661

8,137

6,707

9,370

9,043

9,031

9,067

10,098

10,434

10,738

Revenues ($B)

12.1

11.4

6.7

9.7

9.9

8.7

7.5

7.6

7.2

7.2

*Shipments are for semiconductor applications only and do not include solar applications

Silicon wafers are the fundamental building material for semiconductors, which in turn, are vital components of virtually all electronics goods, including computers, telecommunications products, and consumer electronics. The highly engineered thin round disks are produced in various diameters (from one inch to 12 inches) and serve as the substrate material on which most semiconductor devices or “chips” are fabricated.

All data cited in this release is inclusive of polished silicon wafers, including virgin test wafers and epitaxial silicon wafers, as well as non-polished silicon wafers shipped by the wafer manufacturers to the end-users.

Samsung Electronics and Apple remained the top two semiconductor chip buyers in 2016, representing 18.2 percent of the total worldwide market, according to Gartner, Inc. (see Table 1). Samsung and Apple together consumed $61.7 billion of semiconductors in 2016, an increase of $0.4 billion from 2015.

“This is the sixth consecutive year that Samsung Electronics and Apple have topped the semiconductor consumption table,” said Masatsune Yamaji, principal research analyst at Gartner. “While both companies continue to exert considerable influence on technology and price trends for the wider semiconductor industry, their impact has lessened due to falling expectations for future growth.”

Although Samsung Electronics experienced intense competition from Chinese original equipment manufacturers (OEMs) in various markets including smartphones, LCD TV and LCD panel through 2016, the company increased its design total available market (TAM) and came back as the global top design TAM company in 2016 with 9.3 percent share. Apple decreased its design TAM in 2016 for the first time since Gartner started design TAM research in 2007, ending the year with 8.8 percent share of the market. The iPad did not sell well through 2016 and Apple also lost market share in the PC market.

Table 1. Preliminary Ranking of Top 10 Companies by Semiconductor Design TAM, Worldwide, 2016 (Millions of Dollars)

2015 Ranking

2016Ranking

Company

 2015

 2016

Growth (%) 2015-2016

2016 Market Share (%)

2

1

Samsung Electronics

30,343

31,667

4.4

9.3

1

2

Apple

30,885

29,989

-2.9

8.8

4

3

Dell

10,606

13,308

25.5

3.9

3

4

Lenovo

13,535

12,847

-5.1

3.8

6

5

Huawei

7,597

9,886

30.1

2.9

5

6

HP Inc.

8,673

8,481

-2.2

2.5

8

7

Hewlett Packard Enterprises

6,485

6,206

-4.3

1.8

7

8

Sony

6,892

6,071

-11.9

1.8

21

9

BBK Electronics

2,515

5,818

131.4

1.7

9

10

LG Electronics

5,502

5,172

-6.0

1.5

Others

211,736

210,238

-0.7

61.9

Total

334,768

339,684

1.5

100.0

Note: Numbers may not add to totals shown because of rounding.
Source: Gartner (February 2017)

Nine of the top 10 companies in 2015 remained in the top 10 in 2016. Cisco Systems dropped out of the top 10 in 2016 to be replaced by Chinese smartphone OEM, BBK Electronics, which grew rapidly in 2016. The top 10 now consists of four companies from the U.S., three companies from China, two from South Korea and one from Japan. This is the first time that three Chinese companies have ranked in the top 10, proving that even with the slowing macroeconomic situation in China, the importance of the Chinese electronics market is increasing.

“Even though the influence on the semiconductor industry of the top two strongest OEMs is weakening, the combined design TAM of the top 10 companies outperformed the average growth rate of the total semiconductor market in 2016,” said Mr. Yamaji. “However, semiconductor chip vendors can no longer secure their businesses by relying on a few strong customers because market share changes much faster these days. BBK Electronics grew very fast in 2016 and increased its design TAM, but this extraordinarily fast growth also underlines how volatile the businesses in China can be. Technology product marketing leaders at semiconductor chip vendors need to take the risks of their major customers into account, and always try to diversify their customer base.”

(Note: This is Part 2 of a two-part article; Part 1 is here)

By Denny McGuirk, president and CEO, SEMI

“Do not go where the path may lead, go instead where there is no path and leave a trail,” was how I started last week’s article.  In that article we looked back on 2016 and the incredible progress of the industry and how it continually cuts new trail and keeps moving at the speed of Moore’s Law.  In this week’s follow up, I would like to talk about where the industry is going and how SEMI is changing to keep up with it.  As not everyone is aware of all SEMI does, the following is a quick reminder on how SEMI works to represent the industry before looking ahead to 2017, specifically, and beyond.

SEMI, the global non-profit association connecting and representing the worldwide electronics manufacturing supply chain, has been growing with the industry for 47 years.  SEMI has evolved over the years, but it has remained as the central point to connect.  Whether connecting for business, connecting for collective action, or connecting to synchronize technology, SEMI connects for member growth and prosperity.

Our industry is in the midst of a vast change.  To deal with the escalating complexity (making a semiconductor chip now uses the great majority of the periodic table of the elements) and capital cost, many companies have had to combine, consolidate, and increasingly collaborate along the length of the electronics manufacturing supply chain.

Some companies have broadened their businesses by investing in adjacent segments such as Flexible Hybrid Electronics (FHE), MEMS, Sensors, LEDs, PV, and Display.  Lines are blurring between segments – PCBs have morphed into flexible substrates, SiP is both a device and a system.  Electronics integrators are rapidly innovating and driving new form factors, new requirements, and new technologies which require wide cooperation across the length of the electronics manufacturing supply chain and across a breadth of segments.

The business is changing and SEMI’s members are changing.  When SEMI’s members change, SEMI must change, too – and SEMI has, and is.  SEMI developed a transformation plan, SEMI 2020, which I wrote about at the beginning of 2016.  We’re well on our way on this path and I’d like to update you on what we’ve accomplished and what’s to come.

SEMI 2020: “The Only Time You Should Look Back is to See How Far You’ve Come”

SEMI organized its SEMI 2020 transformation into three basic pillars of the SEMI 2020 strategy.  First, “reenergizing the base,” where SEMI focuses on enriching delivered value for the present day needs of its traditionally engaged membership base.  Second, “building communities and collaboration,” where SEMI works to develop specific forums and groups to meet specific needs and focus on specific technologies and products.  Third, “evolving SEMI value propositions for 2020,” which is the work of changing and innovating SEMI products and services for the needs of the industry in the future.

To date, SEMI has made great progress on these three pillars, here are a few examples:

1. Reenergize Base

  • Grew membership to ~2,000 global SEMI member companies
  • Growth in SEMICON expositions:
    • 248,738 global exhibition visitors in 2016 (up 8 percent year-over-year)
    • 4,410 global exhibitors in 2016 (up 5 percent in m2 of exhibition space sold)
  • Realignment of SEMI with organization changes in Americas, China, Europe, and HQ

2. Build Communities and Collaboration

 

  • FlexTech joined SEMI as Strategic Association Partner: SEMI FLEX conferences and programs are now in America, Europe, Korea, SEA and Japan
  • MEMS and Sensors Industry Group (MSIG) joined SEMI as Strategic Association Partner
  • SEMI Special Interest Groups developed and globalized — Chemical and Gases Manufacturers Group (CGMG), SEMI integrated Packaging and Test (SiPAT), Semiconductor Components, Instruments & Subsystems (SCIS), etc. — integrating broad areas of the supply chain
  • Development of SEMI Collaborative Technology Platforms with initial activities in Interconnect, Heterogeneous Integration Roadmap (partnered with IEEE CPMT, EDS, & Photonics Societies), etc.
  • Introduction and co-sponsoring of special interest programs such as FUTURECAR and regional SMC conferences

 

3. Evolve SEMI Value Propositions for 2020

  • SEMI (automation) Standards adapted for Smart Manufacturing (Industry 4.0)
  • Improved channels: new SEMI Global Update, new website, social media (follow SEMI on LinkedIn and Twitter), infographics
  • New data products such as 200mm reportpackaging report, mobile version of fab database (FabView)
  • New programs such as SEMI European MEMS conference
  • SEMI Foundation widening scope on Workforce Development
  • Advocacy activities leveraging collective action on trade, industry funding, export control, taxation, and sustainable manufacturing (including regulation of safety, materials, and environmental impact).

 

SEMI 2020: “The Road to Success is Always Under Construction”

 

SEMI continues to conduct surveys, uses multiple means of gathering the voice of the customer, and constantly aligns with guidance from its various committees, regional advisory boards, and International Board of Directors.  Despite its name, SEMI 2020 is a journey and not a destination.  SEMI will continue to evolve, develop, and add critical communities, services, products, and industry advocacy as SEMI’s members evolve.

While many of the SEMI activities captured above will continue, the following provides a sampling of activities more specific to SEMI’s work in 2017.

1. Reenergize Base

  • Increase frequency and depth of SEMI outreach and grow SEMI’s global membership and engagement
  • Launch SEMICON Europa 2017 co-location with productronica in Munich to connect to electronics manufacturing supply chain while preserving SEMI’s core community within its own show
  • Launch new engagement and experiential components at SEMICON West and SEMICON Japan
  • Move HQ headquarters to more member-suited, collaborative, efficient, and smaller building in Milpitas

 

2. Build Communities and Collaboration

 

  • Develop four vertical application collaborative forums:  World of IoT, Smart Automobile, Smart Manufacturing, and Smart MedTech
  • Fully integrate FlexTech and MSIG into SEMI’s global infrastructure and develop regional communities and events for these distinct adjacent communities
  • Provide association services to the Fab Owners Association as a SEMI Strategic Association Partnership
  • Continue to develop and increase global participation in SEMI Special Interest Groups such as SCIS, CGMG, and SiPAT to provide the specific and current needs of SEMI’s members

 

3. Evolve SEMI Value Propositions for 2020

  • Provide greater inbound and outbound member visibility and member services for fast-developing China region
  • Further develop SEMI Standards for Smart Manufacturing including a focus on big data and security
  • Advocate for funding for SEMI member pre-competitive projects in all global regions
  • Develop and improve industry training and education capabilities in all regions
  • Raise visibility for SEMI in securing unrestricted trade for semiconductor manufacturing and extended supply chain

“Roads Were Made for Journeys, Not Destinations”  

This quotation, generally attributed to Confucius, ties the themes of the road of this year’s annual update to my personal journey.  As you may know, at the end of 2016, I announced my intention to retire and while I’ll remain until a successor is identified, this will be my last SEMI update.

My personal journey has definitely not been a straight line and that’s made it all the more interesting – and, I hope, made me a “more skillful driver.”  Instead of the road, the sky used to be my home (although, with trips to Asia and Europe, sometimes it still feels like I’m still there!), with many years flying with the United States Air Force.  After that, my path led to the world of non-profit leadership and eventually, prior to SEMI, leading IPC, the interconnect trade association.  As the industry has blurred the borders of PC boards and substrates and semiconductor packages, maybe it was natural that I would also shift from IPC to SEMI.

I’ve been at SEMI for over five years and have constantly been amazed by the speed of the industry, the exceptional professionals and their astounding innovations, and the tight global cooperation and support.  When I started, there was a flashpoint in the potential jump to pursue the 450mm wafer size.  I got to know our industry and our members very quickly!  But, I almost immediately learned, this is a unique industry where collaboration across the electronics manufacturing supply chain is critical, where global stakeholders are well connected, and where – with Moore’s Law as precedent – industry leaders are used to working together, no matter if collaborators or competitors, for the good of the industry.

I am grateful to call many in our industry friends.  It is with regret that I won’t be seeing these friends as frequently as before, certainly.  However, I am pleased to be leaving behind a sound a valued SEMI organization with the professionals and plans in place to carry SEMI 2020 forward and deliver more valued services, products, and above all connections for its members.  I am happy for my time at SEMI and am grateful to the SEMI staff, SEMI International Board of Directors, and SEMI Members for the opportunity to serve the amazing association

The newly released 2017 20th anniversary edition of The McClean Report contains an analysis of the three phases of China’s attempt to gain a stronger presence in the IC industry (Figure 1).  The analysis of Phase 3 includes a long list of the successes and setbacks that the Chinese have faced since initiating this strategy in 2014.

China’s government has a long-term goal to become self-sufficient with regards to IC devices.  Its “Made in China 2025” (MIC 2025) plan was published by the China State Council in May of 2015. The milestones in MIC 2025 are for China to be 40% self-sufficient in IC devices in 2020 and 70% in 2025.  In reality, it is naive to believe that being 40%, 70%, or whatever percentage less than 100%, is even close to being self-sufficient in the IC industry. In just about every case, the lack of just one low-value IC (e.g., a mixed-signal analog device), process material (e.g., a specific chemical or gas used in fabricating ICs), or package type will stop the entire electronic system from being produced and shipped.

Figure 1

Figure 1

As an example, in the early 1980s, the U.S. government attempted to make sure that every wafer processing and packaging material as well as every piece of semiconductor processing equipment that was used to make military ICs have at least one U.S. source. Even more than 30 years ago, when IC processing was much less complex than it is now, this program had to be abandoned due to the impossible task of making sure there was a U.S. source for literally thousands of items. The bottom line is that anything less than 100% self-sufficiency in the IC industry is not self-sufficient.

The success of MIC 2025 is fundamentally dependent upon two things—funding and technology. The goals of MIC 2025 have almost no chance of success without strong results in both of these areas. IC Insights considers each one to have equal weight on the potential final outcome.

There is near-unanimous consensus that funding will not be a hindrance for the potential success of MIC 2025. China’s National Government has approved approximately $20 billion of funding support for its IC industry programs with almost another $100 billion of possible support coming from local Chinese governments, provinces, and private investors. In total, the tens of billions of dollars of funding now targeting the IC industry is probably sufficient to construct at least 10 high-volume 300mm IC production fabrication facilities. It should be noted that regardless of what happens with China-based IC production in the long run, IC equipment companies are in prime position to benefit from this massive spending spree over the next few years.

IC Insights believes that the huge roadblock standing in the way of the success of MIC 2025 is the ability of the Chinese to acquire the IC technology to be used in the newly funded fabs. Beginning in 2014, the Chinese sought to acquire technology by acquiring existing IC suppliers. The Chinese had some early success in acquiring companies like ISSI and OmniVision, but most governments are now on “high alert” with regard to China’s IC industry ambitions and future foreign IC company acquisitions will be very difficult to complete. Essentially, the window of opportunity for the Chinese to attain IC technology through foreign company acquisitions is now closed.

Although the amount of money reported to be allocated toward constructing the new indigenous Chinese company IC fabs has been massive, the technology announced to be used in these fabs has in every case been at least two generations behind what the market leaders in that segment are currently using or will be using when the fab opens. Some examples are shown below.

  • XMC (purchased by Tsinghua Unigroup in July 2016 and put in a holding company called Yangtze
  • River Storage Technology)—32-layer 3D NAND technology.
  • Fujian Jin Hua Integrated Circuit—32nm DRAM technology.
  • Shanghai Huali (HLMC)—28nm foundry logic capability.

While all of the currently announced China IC fabs seem to be more than adequately funded, none of them appear to possess the IC technology needed to compete with the leaders in their respective product segments.

There have recently been reports that the Chinese companies building the new fabs discussed above are hiring IC engineers from Samsung, SK Hynix, and Intel’s China-based IC facilities. This method has been mentioned as one way for Chinese companies to “develop their own” IC technology as these engineers bring IC process knowledge/experience acquired at their former employer with them. In IC Insights’ opinion, this is a very dangerous way to “develop” IC process technology.

In 2003, in China-based pure-play foundry SMIC’s second year of production, TSMC filed a lawsuit alleging that SMIC hired more than 100 former TSMC employees and asked them to provide SMIC with TSMC trade secrets. Moreover, TSMC alleged that SMIC infringed on five of TSMC’s IC process technology patents (later expanded to eight patents). In early 2005, SMIC and TSMC settled the lawsuit with SMIC paying TSMC $175 million and TSMC gaining an 8% stake in SMIC. Prior to the settlement, a California jury returned a verdict against SMIC in a U.S. lawsuit filed by TSMC.

With the stakes so high, once the newly opened Chinese-owned memory fabs begin production, expect the reverse engineering teams at Samsung, SK Hynix, Micron, Intel, Toshiba, and Western Digital (SanDisk) to shift into high gear by taking apart the new Chinese DRAM and 3D NAND devices to determine which of their patents are being infringed upon by these new memory players. IC Insights believes that with the decades of high-volume DRAM and NAND flash production history of the major memory suppliers, it will be almost impossible to develop new DRAM and NAND flash technology without infringing on numerous patents within these companies’ extensive portfolios.

In 2016, IC production in China (including foreign companies) represented 11.6% of its $112 billion IC market, up less than two percentage points from 9.8% five years earlier in 2011. Moreover, China-based IC production is forecast to exhibit a very strong 2016-2021 CAGR of 18%. However, considering that China-based IC production was only $13.0 billion in 2016, this growth will start from a relatively small base.

Given the sheer size of the expected expenditures for new Chinese IC facilities, as well as an expanding presence of foreign IC producers (e.g., Intel, Samsung, etc.), IC Insights believes there will be a significant improvement in the share percentage of China-based IC production through 2025 (Figure 2), but nowhere near the levels forecast in the MIC 2025 plan. As shown, IC Insights forecasts that this share will increase to 17.0% in 2020 and to 25.0% in 2025, each less than half of the original MIC 2025 goals.

Figure 2

Figure 2

 

By Denny McGuirk, SEMI president and CEO

“Do not go where the path may lead, go instead where there is no path and leave a trail.”  Attributed to Ralph Waldo Emerson, this could be the credo of our industry.  Moore’s Law has created $13 trillion of market value and we’ve been pioneering the way forward – since even before Gordon Moore made the famous “observation” that became Moore’s Law more than 50 years ago.  Our industry paved the road forward with advancements in design, materials, processing, equipment, and integration, traveling at the speed of exponential growth number in transistors per chip (doubling approximately every two years).

Today, globally, we’re shipping more than one trillion ICs per year!  Leading-edge chips boast more than 10 billion transistors at the advanced 10nm (gate length) technology node and are made with 3D FinFET architectures formed by 193nm wavelength immersion multi-patterning lithography.  It’s become a very challenging – and very expensive – road (a single lithography tool alone costs in the tens of millions of dollars).  The companies building the road ahead are bigger and fewer as massive bets now need to be placed on new fabs costing more than $5 billion and even $10 billion and where a new single chip design alone costs more than $150 million to bring into production.

What follows, in Part 1 of this two-part article, is a quick look back at the industry in 2016 and the road ahead in 2017 followed by what SEMI achieved in 2016 and where SEMI’s road will lead in 2017 to keep pace our industry charging forward where there is no path. Part 2 (next week’s Global Update) will focus on SEMI 2020 initiatives.

A look back at 2016: “Straight roads do not make skillful drivers”

2016 was definitely not a straight road; truly it was a wild ride – so, SEMI members have become extremely skilled drivers. The semiconductor manufacturing industry had a slow first half with pessimism building throughout the first quarter, but by April semiconductors bottomed and NAND investment and a slate of new China projects drove a strong second half.  For semiconductor equipment, SEMI’s statistics indicate global sales in 2015 were $36.5 billion and 2016 came in at $39.7 billion, ultimately ending up about 9 percent.  For reference semiconductor materials in 2015 was $24.0 billion and 2016 came in at $24.6 billion, up nearly 2.6 percent year-over year (YoY).

But, it turns out, that’s not half the story.  2016 was full of surprises.  At the geopolitical level, Brexit, an impeachment in South Korea, and a Trump win were wholly unanticipated and leave a lot of questions as to how that road ahead might look.  In technology, the Galaxy Note 7 mobile phone became an airline hazard announcement and stalwarts like Yahoo! faded into the background (now part of Verizon).  In part due to challenges of the road ahead (and because the cost of capital remained low) M&A fever continued in semiconductors with more than $100B in deals announced in 2016.

It was an astonishing year for combinations with huge deal announcements such as Qualcomm buying NXP for $47 billion and SoftBank buying ARM for $32 billion.  Meanwhile, mergers in the equipment and materials space continued, to name a few notables ASML’s acquisition of Hermes Microvision, DuPont and Dow announcing the intent to merge (announced December 2015, but still in the works), and Lam Research and KLA-Tencor ultimately calling off their deal due to complications of regulatory pushback.  The extended supply chain was mixing things up, too, with acquisitions like the announcement by Siemens to acquire Mentor Graphics.  It has been very active, overall.  This was the second year of semiconductor M&A deals valued at more than $100 billion, a signal that size and scale is critical to build the road ahead.

A look ahead: “Difficult roads often lead to beautiful destinations”

With all the talk about roads, it’s no surprise that the automotive segment is gathering momentum as a strong growth driver for the electronics supply chain.  Not only is there increasing electronics content in cars for comfort and infotainment, but also for assisted and autonomous driving and electric vehicles which are ushering in a new era of electronics consumption.

Along with automotive, IoT (Internet of Things), 5G, AR/VR (Augmented Reality and Virtual Reality), and AI (Artificial Intelligence) round out a set of powerful IC and electronics applications drivers (see figure).  Per an IHS Study, 5G alone may enable as much as $12.3 trillion in goods and services in 2035. Gartner’s most recent forecast is cause for optimism further down the electronics manufacturing supply chain.  Gartner see IC revenue growing from 2016’s $339.7 billion to 2017’s $364.1 billion up 7.2 percent and growing further in 2018 at $377.9 billion up 3.8 percent.  For semiconductor equipment, SEMI’s forecast indicates 2015 was $36.5 billion, 2016 will come in at $39.7 billion, and 2017 is projected to be $43.4 billion, pointing to both 2016 and 2017 experiencing approximately 9 percent YoY growth.

In 2017, China investment is projected to continue as a major driver, likely consuming over 16 percent of the total global equipment investment (second only to South Korea).  SEMI is currently tracking 20 new fab projects.  Investments come from both multinationals and local Chinese ventures.  A sign of the rise of China is China’s upward production share trend of its own IC consumption market (IC Insights): 8 percent in 2009, 13 percent in 2015, and 21 percent in 2020. Further down in the electronics supply chain, fab equipment related spending in China will rise to more than $10 billion per year by 2018 and remain at that level or above for subsequent years.

NAND will continue to be a major driver with 3D NAND investment leading the way.  Silicon in Package (SiP) and heterogeneous integration will increasingly be solutions to augment traditional feature scaling to fit more transistors into less space at lower costs.  Materials innovations will be relied upon to solve front-end and packaging challenges while standard materials will be the focus of increased efficiencies and cost reduction. 200mm fab capacity will grow and stimulate new 200mm investment with upside driven by power devices and MEMS segments.  Investment in foundry MEMS will grow by an estimated 285 percent (2015 to 2017).

“There are far better things ahead than any we leave behind”

SEMI, the global non-profit association connecting and representing the worldwide electronics manufacturing supply chain, has been growing with the industry for 47 years.  SEMI has evolved over the years, but it has remained as the central point to connect.  Whether connecting for business, connecting for collective action, or connecting to synchronize technology, SEMI connects for member growth and prosperity.

As a reminder, here are SEMI’s mission, vision, and 2020 strategic focus areas.

  • Mission — our focus for the next five years
    • SEMI provides industry stewardship and engages our members to advance the interests of the global electronics manufacturing supply chain.
  • Vision — what we stand for
    • SEMI promotes the development of the global electronics manufacturing supply chain and positively influences the growth and prosperity of its members.  SEMI advances the mutual business interests of its membership and promotes a free and open global marketplace.
  • Members’ Growth — 2020 strategic focus
    • SEMI enables member growth opportunities by evolving SEMI communities and building new communities across the global electronics manufacturing supply chain via cooperation, partnerships, and integration.
  • Members’ Prosperity — 2020 strategic focus
    • SEMI enables members to prosper by building extended supply chain collaboration forums providing opportunities to increase value while optimizing the supply chain for SEMI members.

Our industry is in the midst of a vast change.  To deal with the escalating complexity (making a semiconductor chip now uses the great majority of the periodic table of the elements) and capital cost, many companies have had to combine, consolidate, and increasingly collaborate along the length of the electronics manufacturing supply chain.

Some companies have broadened their businesses by investing in adjacent segments such as Flexible Hybrid Electronics (FHE), MEMS, Sensors, LEDs, PV, and Display.  Lines are blurring between segments – PCBs have morphed into flexible substrates, SiP is both a device and a system.  Electronics integrators are rapidly innovating and driving new form factors, new requirements, and new technologies which require wide cooperation across the length of the electronics manufacturing supply chain and across a breadth of segments.

The business is changing and SEMI’s members are changing.  When SEMI’s members change, SEMI must change, too – and SEMI has, and is.  SEMI developed a transformation plan, SEMI 2020, which I wrote about at the beginning of 2016.  We’re well on our way on this path and in next week’s e-newsletter Global Update, I’d like to update you on what we’ve accomplished and what’s to come.