Category Archives: OLEDs

Researchers at Kyushu University’s Center for Organic Photonics and Electronics Research (OPERA) in Japan have demonstrated a way to split energy in organic light-emitting diodes (OLEDs) and surpass the 100% limit for exciton production, opening a promising new route for creating low-cost and high-intensity near-infrared light sources for sensing and communications applications.

OLEDs use layers of carbon-containing organic molecules to convert electrical charges into light. In normal OLEDs, one positive charge and one negative charge come together on a molecule to form a packet of energy called an exciton. One exciton can release its energy to create at most one beam of light, or photon.

Illustration of the singlet fission process used to boost the number of excitons in an OLED and break the 100 percent limit for exciton production efficiency. The emitting layer consists of a mixture of rubrene molecules, which are responsible for singlet fission, and ErQ3 molecules, which produce the emission. A singlet exciton, which is created when a positive charge and a negative charge combine on a rubrene molecule, can transfer half of its energy to a second rubrene molecule through the process of singlet fission, resulting in two triplet excitons. The triplet excitons then transfer to ErQ3 molecules, and the exciton energy is released as near-infrared emission by ErQ3. Credit: William J. Potscavage Jr.

When all charges form excitons that emit light, a maximum 100% internal quantum efficiency is achieved. However, the new technology uses a process called singlet fission to split the energy from an exciton into two, making it possible to exceed the 100% limit for the efficiency of converting charge pairs into excitons, also known as the exciton production efficiency

“Put simply, we incorporated molecules that act as change machines for excitons in OLEDs. Similar to a change machine that converts a $10 bill into two $5 bills, the molecules convert an expensive, high-energy exciton into two half-price, low-energy excitons,” explains Hajime Nakanotani, associate professor at Kyushu University and co-author of the paper describing the new results.

Excitons come in two forms, singlets and triplets, and molecules can only receive singlets or triplets with certain energies. The researchers overcame the limit of one exciton per one pair of charges by using molecules that can accept a triplet exciton with an energy that is half the energy of the molecule’s singlet exciton.

In such molecules, the singlet can transfer half of its energy to a neighboring molecule while keeping half of the energy for itself, resulting in the creation of two triplets from one singlet. This process is called singlet fission.

The triplet excitons are then transferred to a second type of molecule that uses the energy to emit near-infrared light. In the present work, the researchers were able to convert the charge pairs into 100.8% triplets, indicating that 100% is no longer the limit. This is the first report of an OLED using singlet fission, though it has previously been observed in organic solar cells.

Furthermore, the researchers could easily evaluate the singlet fission efficiency, which is often difficult to estimate, based on comparison of the near-infrared emission and trace amounts of visible emission from remaining singlets when the device is exposed to various magnetic fields.

“Near-infrared light plays a key role in biological and medical applications along with communications technologies,” says Chihaya Adachi, director of OPERA. “Now that we know singlet fission can be used in an OLED, we have a new path to potentially overcome the challenge of creating an efficient near-infrared OLED, which would find immediate practical use.”

Overall efficiency is still relatively low in this early work because near-infrared emission from organic emitters is traditionally inefficient, and energy efficiency will, of course, always be limited to a maximum 100%. Nonetheless, this new method offers a way to increase efficiency and intensity without changing the emitter molecule, and the researchers are also looking into improving the emitter molecules themselves.

With further improvements, the researchers hope to get the exciton production efficiency up to 125%, which would be the next limit since electrical operation naturally leads to 25% singlets and 75% triplets. After that, they are considering ideas to convert triplets into singlets and possibly reach a quantum efficiency of 200%.

Notch design of smartphone displays is estimated to raise manufacturing cost of display panels by more than 20 percent, according to IHS Markit.

According to the OLED Display Cost Model by IHS Markit, manufacturing cost of the 5.9-inch organic light-emitting diode (OLED) panel with notch design, as in the Apple iPhone X, is estimated to be $29. It is found to be 25 percent higher than manufacturing cost of full-display OLED panel without the notch design used in the 5.8-inch display for the Samsung Galaxy S9. Similar cost gap is also found in the thin-film transistor liquid crystal display (TFT-LCD). Manufacturing cost of a 6-inch notch TFT-LCD panel is estimated to be $19, 20 percent higher than similar-sized non-notch, full-display LCD panel.

“Notch cutting should accompany yield loss, resulting in increases in manufacturing cost. In case of TFT-LCD, a notch design may push up the manufacturing cost even to the level of rigid, full-screen OLED’s,” said Jimmy Kim, Ph.D. and senior principal analyst for display materials at IHS Markit. “For OLED panels, cost increase caused by notch design seems to be even higher.”

Quarterly shipments of the iPhone X, Apple’s first smartphone model using OLED panels, have reportedly been smaller than previous iPhone models’ so far, mainly due to higher selling price, caused by expensive OLED panels. “Apple seems to be in the middle of manufacturing optimization,” Kim said.

“Eventually, manufacturing cost for notch OLED will fall more rapidly than that for notch TFT-LCD. The plastic substrate for OLED is not as brittle as glass used in TFT-LCD, so it should be easier to cut the notch, theoretically.”

The OLED Display Cost Model by IHS Markit includes manufacturing cost analysis and forecasts of OLED display panels in mass production for smartwatch, smartphone, tablet PC and TV.

Organic light-emitting diodes (OLEDs) truly have matured enough to allow for first commercial products in form of small and large displays. In order to compete in further markets and even open new possibilities (automotive lighting, head-mounted-displays, micro displays, etc.), OLEDs need to see further improvements in device lifetime while operating at their best possible efficiency. Currently, intrinsic performance progress is solely driven by material development.

This is a graphic about improving OLEDS on the nanoscale. Credit: Joan Rafols Ribé (UAB) and Paul Anton Will (TU Dresden)To

Now researchers from the Universitat Autònoma de Barcelona and Technische Universität Dresden demonstrate the possibility of using ultrastable film formation to improve the performance of state-of-the-art OLEDs. In their joint paper published in Science Advances with the title ‘High-performance organic light-emitting diodes comprising ultrastable glass layers’, the researchers show in a detailed study significant increases of efficiency and operational stability (> 15% for both parameters and all cases, significantly higher for individual samples) are achieved for four different phosphorescent emitters. To achieve these results, the emission layers of the respective OLEDs were grown as ultrastable glasses – a growth condition that allows for thermodynamically most stable amorphous solids.

This finding is significant, because it is an optimization which does neither involve a change of materials used nor changes to the device architecture. Both are the typical levers for improvements in the field of OLEDs. This concept can universally be explored in every given specific OLED stack, which will be equally appreciated by leading industry. This in particular includes thermally activated delayed fluorescence (TADF) OLEDs, which see a tremendous research and development interest at the moment. Furthermore, the improvements that, as shown by the researchers, can be tracked back to differences on the exciton dynamics on the nanoscale suggest that also other fundamental properties of organic semiconductors (e.g. transport, charge separation, energy transfer) can be equally affected.

Photolithography of organic semiconductors is an emerging technology that can enable high resolution OLED displays.

BY PAWEL MALINOWSKI and TUNGHUEI KE, imec, Leuven, Belgium

Modern society has grown accustomed to an overflow of visual information, with displays in the center of most user interfaces. The pace of introducing new technologies and of reducing cost of manufacturing has been impressive and does not seem to slow down. The most prominent examples are OLED displays (based on organic light emitting diodes), evolving from a curiosity only some years ago to a technology that is dominating the market position today. 2017 has seen major increase in both shipments (more than 400 million units) and revenue (around $25 billion) for AMOLED display panels (according to UBI Research and DSCC).

From the very beginning of OLED history, it was crucial to find a way to maintain efficient emission in stacks composed of very fragile materials. As most of the materials used in an OLED structure are highly sensitive to a lot of elements (e.g., air, moisture, solvents, temper- ature, radiation), protecting the device has always been crucial, both during fabrication and during operation. This has evolved into several research tracks. Firstly, great effort by material companies to synthesize new molecules and polymers resulted in many OLED families, both for thermal evaporation and solution processing. Secondly, equipment advances made it possible to uniformly deposit stacks on large substrates with indus- trial takt time. Thirdly, different encapsulations were developed to protect the OLED stack during usage to ensure enough lifetime for consumer applications. All of the above required years of research and significant investments, which makes it challenging to introduce new OLED manufacturing techniques and change the existing process flows.

At the same time, current manufacturing methods have their limitations. Two main approaches are color-by- white (WOLED) and side-by-side red-green-blue (RGB OLED), differing by the way that the colors are realized in subpixels (FIGURE 1). In WOLED, the light source is a continuous layer of a broadband (white) OLED emitter and the three basic colors are selected by passing the light through color filters (CF). The advantage is that the pixel density is limited only by the backplane resolution and the CF resolution, which is why this is the main concept used for OLED microdisplays with CMOS circuitry. The disad- vantage is that significant portion of the light is lost due to CF absorption, which impacts the display power efficiency. In RGB OLED, each subpixel is a different material stack, so each subpixel is a separate light emitter. This is typically realized by depositing each stack by thermal evaporation through a fine metal mask (FMM) and is used for most smartphone OLED displays. The advantage is that each color is optimized, so the display efficiency is much higher. At the same time, it is difficult to scale the FMM technique both in substrate size (masks tend to bend under their own weight, so the motherglass has to be cut for OLED deposition) and in resolution (standard masks are not suitable for resolutions above several hundred ppi and the cross-fading area limits the aperture ratio).

An alternative way to realize side-by-side RGB pixels is to use photolithography techniques known very well from the semiconductor industry (and used in displays for the TFT backplane fabrication). In such case, after depositing a blanket OLED stack, photoresists could be used to transfer the pattern and remove the unnec- essary material by etching (FIGURE 2). The challenge here is, again, susceptibility of OLED materials to solvents – using standard (semiconductor) photo- resist chemistry results in dissolution/removal of the stack. Still, the gains are definitely worth the extra effort, as litho can provide both very high pixel density (submicron pixel pitch) and, at the same time, very high aperture ratio (emitting area maximized thanks to minimizing pixel spacing). Over the years, some new approaches for photolithography have been proposed. One way, followed by Orthogonal Inc, is to use fluorinated materials which should not have any chemical interaction with the organic stacks (thus, orthogonal to OLED). The other approach, followed by imec together with Fujifilm, is to pattern organic stacks using a non-fluorinated, chemically amplified photoresist system.

For imec, R&D hub with long traditions of devel- oping new photolithography nodes, organic photolithography is a way to address the challenges of next- generation high resolution displays. In virtual and augmented reality (VR/AR) applications, the display is very near to the eye of the user. This results in very aggressive requirements in terms of pixel density in order to avoid annoying “pixilation.” The same goes for required minimum pixel spacing, to avoid “screen door effect”. With photolithography, these two challenges can be addressed simultaneously. The OSR photoresist system from Fujifilm can deliver lines and spaces with 1 μm pitch, which fits in the roadmap towards several thousand ppi resolution for the OLED frontplane. We have realized a dot pattern transfer to OLED emission layer with 3 μm pitch, which corresponds to 8400 ppi resolution in a monochrome array. After stripping off the photoresist, the EML remains on the substrate, as verified by photolumines- cence (FIGURE 3).

On the device level, we have fabricated OLED arrays with 10 μm pixel pitch (FIGURE 4), corresponding to 2500 ppi. In this case, an important parameter is the alignment accuracy, which defines how much of the total display area can be used for emission. Another limitation is the resolution of the PDL (pixel definition layer), a dielectric layer separating the OLED stack from the bottom contact level. The resolution of this layer limits the maximum opening that can be achieved, which translates to the aperture ratio of the pixel – or the percentage of the area that is used for OLED emission. In this example, the “photo- luminescence aperture ratio”, or the relation of the OLED island to the pixel area is around 50%, which is enabled by small spacing (<3 μm). However, the “electroluminescence aperture ratio”, of the relation of the area emitting light, is 25% because of the PDL area and the necessary overlap of the OLED island. Assuming minimum line spacing of 1 μm, one can envision PL ratio of 81% (9 x 9 μm) and EL ratio of 64% (8 x 8 μm) for a subpixel of 10 x 10 μm. With such scaling, the usable area of the array can be enlarged, which results in longer device lifetime (since we can reduce the driving current density) and in reduction or elimi- nation of the screen-door effects.

Obviously, interrupting the optimum deposition process in ultra-high vacuum and exposing the OLED stack to photolithography materials has an impact on the device performance. Just breaking the vacuum results in a hit on lifetime performance. Additionally, our initial process flow includes exposure of the stack to ambient atmosphere (air and humidity), as we have been using standard cleanroom equipment. In the beginning, such “worst case scenario” resulted in proof-of-concept of emitting OLEDs after patterning, but, unsurprisingly, with device lifetime of only few minutes. In the course of the development, we have introduced improvements on three fronts. Firstly, there have been continuous upgrades of the photoresist system to make it more compatible with the organic stack. Secondly, the process flow has been optimized to reduce the impact of process parameters on device performance. Thirdly, the OLED stacks have been tuned for robustness, for example by introducing additional protection layers for the most critical interfaces. All these actions resulted in device lifetimes of several hundred hours at 1000 nit luminance. As the lifetime is the major concern when it comes to the readiness of this technology, this is an ongoing effort to bring all the parameters to a level acceptable by the industry.

In parallel to performance improvement, we have been developing a route for patterning of multicolor arrays with photolithography. The main challenge in this case is to protect the previous “color” (OLED stack) while patterning the next one. Once this condition is satisfied, side-by-side arrays with several stacks can be realized – and, this is not limited to light emitters. Next to red-green-blue OLEDs, for example an organic photo- detector subpixel could be fabricated to add functionality to the display. In terms of manufacturing, each “color” of the frontplane would be fabricated in a similar way as it is done for each layer of the backplane.

In our recent work, we fabricated a 2-color passive OLED display and this prototype was demonstrated at the Touch Taiwan 2017 exhibition (FIGURE 5). The 1400 x 1400 pixel array has a subpixel pitch of 10 μm, resulting in a resolution of 1250 ppi. The stacks are phosphorescent red and green small molecule OLEDs, deposited by thermal evaporation. The display is designed for top emission and uses glass encapsulation. Thanks to the separate driving of two groups of subpixels, the two colors can be displayed independently. The prototype has been in operation for tens of hours with all pixels turned on, with no visible degradation. This indicates that the process flow for multicolor patterning proves basic functionality and already ensures stability for reasonable working time. A similar frontplane can be integrated with a TFT or CMOS backplane, enabling then video mode of operation, with individual driving of each subpixel. In a separate demonstration, we have also verified that the fabrication process is compatible with a FPD backplane process using IGZO TFT and flexible substrate.

Taking everything into account, photolithography of organic semiconductors is an emerging technology that can enable high resolution OLED displays. Many technology milestones have been already cleared – we know that we can achieve patterns of few microns, realize side-by-side multicolor pixels, integrate the pixelated frontplane on different backplanes, and get encouraging efficiency and lifetime performance. Currently, optimization of OLED performance after patterning is still the top priority. At the same time, we are addressing the complete integration flow and manufacturability aspects. To have this technology fully incorporated in a fab process flow, material and equipment developments are required. Still, the prospect of ultra-high resolution with simultaneous high aperture ratio in a process flow based on standard semiconductor techniques remains very attractive and justifies going the extra mile to tackle the pending engineering challenges.

3D-Micromac AG, a supplier of laser micromachining and roll-to-roll laser systems for the photovoltaic, medical device and electronics markets, today announced it has received an order for the company’s new microMIRA excimer laser lift-off (LLO) system from dpiX, a leading manufacturer of high-resolution digital sensors. The microMIRA system will be shipped to dpiX’s fab in Colorado Springs, Colo., where it will provide laser lift-off processing from Gen 4.5 glass substrates used in manufacturing X-ray sensors for medical, industrial and military applications.

The new microMIRA excimer laser lift-off system from 3D-Micromac provides highly uniform, force-free lift-off of flexible layers on large surface areas and at high speeds.

The new microMIRA excimer laser lift-off system from 3D-Micromac provides highly uniform, force-free lift-off of flexible layers on large surface areas and at high speeds.

3D-Micromac’s new microMIRA laser lift-off system provides highly uniform, force-free lift-off of flexible layers on large surface areas and at high speeds (up to 500 wafers/hour and up to 200 sheets/hour on Gen 6 substrates depending on the application). The system is built on a highly customizable platform that can incorporate different laser sources, wavelengths and beam paths to meet each customer’s unique requirements.

The microMIRA system can be used for a variety of applications, such as device lift-off from glass and sapphire substrates in semiconductor manufacturing as well as organic light emitting diode (OLED) and microLED display manufacturing. Additional applications include laser annealing and crystallization for surface modification, including printed electronics such as near-field communication (NFC) sensors and tags.

“In evaluating various laser approaches for our manufacturing needs, 3D-Micromac’s microMIRA laser lift-off system provided the best possible combination of cost of ownership, throughput and uniformity results,” stated Frank Caris, President and CEO of dpiX. “We look forward to installing this system in our production fab for use in manufacturing our latest silicon-based X-ray sensor arrays.”

In addition to its high configurability, speed and uniformity, 3D-Micromac’s microMIRA laser lift-off system provides many other benefits, including:

  • Force-free and extremely selective laser processing
  • No damage due to thermo-mechanical effects
  • Low production costs, including the ability to recycle/reuse carrier substrates
  • Elimination of costly and polluting wet chemical processes
  • Easy integration of adjacent manufacturing steps for greater fab productivity

“Our new microMIRA laser lift-off system takes advantage of the extensive process and applications knowledge we have built up from the more than 400 3D-Micromac laser systems installed and in use worldwide to date, including dozens of excimer laser systems used for display and microelectronics manufacturing,” stated Uwe Wagner, 3D-Micromac’s chief technology officer. “We look forward to closer engagement with dpiX to explore new opportunities and applications that can benefit from our laser products, processes and expertise.”

UC Berkeley engineers have built a bright-light emitting device that is millimeters wide and fully transparent when turned off. The light emitting material in this device is a monolayer semiconductor, which is just three atoms thick.

The device opens the door to invisible displays on walls and windows – displays that would be bright when turned on but see-through when turned off — or in futuristic applications such as light-emitting tattoos, according to the researchers.

Gif of the device in action. Probes inject positive and negative charges in the light emitting device, which is transparent under the campanile outline, producing bright light. Credit: Javey lab.

Gif of the device in action. Probes inject positive and negative charges in the light emitting device, which is transparent under the campanile outline, producing bright light. Credit: Javey lab.

“The materials are so thin and flexible that the device can be made transparent and can conform to curved surfaces,” said Der-Hsien Lien, a postdoctoral fellow at UC Berkeley and a co-first author along with Matin Amani and Sujay Desai, both doctoral students in the Department of Electrical Engineering and Computer Sciences at Berkeley.

Their study was published March 26 in the journal Nature Communications. The work was funded by the National Science Foundation and the Department of Energy.

The device was developed in the laboratory of Ali Javey, professor of Electrical Engineering and Computer Sciences at Berkeley. In 2015, Javey’s lab published research in the journal Science showing that monolayer semiconductors are capable of emitting bright light, but stopped short of building a light-emitting device. The new work in Nature Communicationsovercame fundamental barriers in utilizing LED technology on monolayer semiconductors, allowing for such devices to be scaled from sizes smaller than the width of a human hair up to several millimeters. That means that researchers can keep the thickness small, but make the lateral dimensions (width and length) large, so that the light intensity can be high.

Commercial LEDs consist of a semiconductor material that is electrically injected with positive and negative charges, which produce light when they meet. Typically, two contact points are used in a semiconductor-based light emitting device; one for injecting negatively charged particles and one injecting positively charged particles. Making contacts that can efficiently inject these charges is a fundamental challenge for LEDs, and it is particularly challenging for monolayer semiconductors since there is so little material to work with.

The Berkeley research team engineered a way to circumvent this challenge by designing a new device that only requires one contact on the semiconductor. By laying the semiconductor monolayer on an insulator and placing electrodes on the monolayer and underneath the insulator, the researchers could apply an AC signal across the insulator. During the moment when the AC signal switches its polarity from positive to negative (and vice versa), both positive and negative charges are present at the same time in the semiconductor, creating light.

The researchers showed that this mechanism works in four different monolayer materials, all of which emit different colors of light.

This device is a proof-of-concept, and much research still remains, primarily to improve efficiency. Measuring this device’s efficiency is not straightforward, but the researchers think it’s about 1 percent efficient. Commercial LEDs have efficiencies of around 25 to 30 percent.

The concept may be applicable to other devices and other kinds of materials, the device could one day have applications in a number of fields where having invisible displays are warranted. That could be an atomically thin display that’s imprinted on a wall or even on human skin.

“A lot of work remains to be done and a number of challenges need to be overcome to further advance the technology for practical applications,” Javey said. “However, this is one step forward by presenting a device architecture for easy injection of both charges into monolayer semiconductors.”

By Jay Chittooran, SEMI Public Policy

Following through on his 2016 campaign promise, President Trump is implementing trade policies that buck conventional wisdom in Washington, D.C. and among U.S. businesses. Stiff tariffs and the dismantling of longstanding trade agreements – cornerstones of these new actions – will ripple through the semiconductor industry with particularly damaging effect. China, a chief target of criticism from President Trump, has again found itself in the crosshairs of the administration, with trade tensions rising to a fever pitch.

The Trump Administration has long criticized China for what it considers unfair trade practices, often zeroing in on intellectual property. In August 2017, the Office of the U.S. Trade Representative (USTR), charged with developing and recommending U.S trade policy to the president, launched a Section 301 investigation into whether China’s practice of forced technology transfer has discriminated against U.S. firms. As the probe continues, it is becoming increasingly clear that the United States will impose tariffs on China based on its current findings. Reports suggest that the tariffs could come soon, hitting a range of products from consumer electronics to toys. Other measures could include tightening restrictions on the trade of dual-use goods – those with both commercial and military applications – curbing Chinese investment in the United States, and imposing strict limits on the number of visas issued to Chinese citizens.

With China a major and intensifying force in the semiconductor supply chain, raising tariffs hangs like the Sword of Damocles over the U.S. and global economies. A tariff-ignited trade war with China could stifle innovation, undermine the long-term health of the semiconductor industry, and lead to unintended consequences such as higher consumer prices, lower productivity, job losses and, on a global scale, a brake on economic growth.

Other recently announced U.S. trade actions could also cloud the future for semiconductor companies. The Trump administration, based on two separate Section 232 investigations claiming that overproduction of both steel and aluminum are a threat to U.S. national security, recently levied a series of tariffs and quotas on every country except Canada and Mexico. While these tariffs have yet to take effect, the mere prospect has angered U.S. trading partners – most notably Korea, the European Union and China. Several countries have threatened retaliatory action and others have taken their case to the World Trade Organization.

Trade is oxygen to the semiconductor industry, which grew by nearly 30 percent last year and is expected to be valued at an estimated $1 trillion by 2030. Make no mistake: SEMI fully supports efforts to buttress intellectual property protections. However, the Trump administration’s unfolding trade policy could antagonize U.S. trade partners.

For its part, SEMI is weighing in with USTR on these issues, underscoring the critical importance of trade to the semiconductor industry as we educate policymakers on trade barriers to industry growth and encourage unobstructed cross-border commerce to advance semiconductors and the emerging technologies they enable. On behalf of our members, we continue our work to increase global market access and lessen the regulatory burden on global trade. If you are interested in more information on trade, or how to be involved in SEMI’s public policy program, please contact Jay Chittooran, Public Policy Manager, at [email protected].

Originally published on the SEMI blog.

Thanks to a sudden increase in demand , shipment revenue of flexible active-matrix organic light-emitting diode (AMOLED) displays more than tripled in 2017, accounting for 54.6 percent of total AMOLED panel shipment revenue, according to business information provider IHS Markit (Nasdaq: INFO).

The flexible AMOLED panel market expanded by about 250 percent in 2017 to $12 billion from $3.5 billion in 2016, while rigid AMOLED panel shipment revenue contracted by 14 percent during the same period. Samsung Display started supplying its flexible AMOLED displays for the iPhone X in the third quarter of 2017, which greatly contributed to the overall shipment revenue increase. LG Display, BOE and Kunshan Govisionox Optoelectronics also started producing flexible AMOLED panels for smartphones and smartwatches in 2017, helping the market growth.

“High-end smartphone brands have increasingly applied flexible AMOLED panels to their products for unique and special design,” said Jerry Kang, senior principal analyst at IHS Markit. “The number of flexible AMOLED panel suppliers is also increasing, but the supplying capacity is still concentrated in Samsung Display.”

The flat type flexible AMOLED panels accounted for about a half of total flexible AMOLED shipment units in 2017, shifting from the curved type that used to be the major flexible AMOLED display form factor until 2016.

“As Apple applied the flat type to the iPhone X, the form factor of smartphone displays has diversified,” Kang said.

According to the latest AMOLED & Flexible Display Intelligence Service by IHS Markit, the demand for flexible AMOLED panels is not expected to grow as fast as supply capacity in 2018. “In a way to overcome potential oversupply, many panel makers are trying to develop another innovative form factor, such as foldable or rollable, within a few years,” Kang said.


Each year, Solid State Technology turns to industry leaders to hear viewpoints on the technological and economic outlook for the upcoming year. Read through these expert opinions on what to expect in 2018.

Enabling the AI Era with Materials Engineering

Screen Shot 2018-03-05 at 12.24.49 PMPrabu Raja, Senior Vice President, Semiconductor Products Group, Applied Materials

A broad set of emerging market trends such as IoT, Big Data, Industry 4.0, VR/AR/MR, and autonomous vehicles is accelerating the transformative era of Artificial Intelligence (AI). AI, when employed in the cloud and in the edge, will usher in the age of “Smart Everything” from automobiles, to planes, factories, buildings, and our homes, bringing fundamental changes to the way we live

Semiconductors and semiconductor processing technol- ogies will play a key enabling role in the AI revolution. The increasing need for greater computing perfor- mance to handle Deep Learning/Machine Learning workloads requires new processor architectures beyond traditional CPUs, such as GPUs, FPGAs and TPUs, along with new packaging solutions that employ high-density DRAM for higher memory bandwidth and reduced latency. Edge AI computing will require processors that balance the performance and power equation given their dependency on battery life. The exploding demand for data storage is driving adoption of 3D NAND SSDs in cloud servers with the roadmap for continued storage density increase every year.

In 2018, we will see the volume ramp of 10nm/7nm devices in Logic/Foundry to address the higher performance needs. Interconnect and patterning areas present a myriad of challenges best addressed by new materials and materials engineering technologies. In Inter- connect, cobalt is being used as a copper replacement metal in the lower level wiring layers to address the ever growing resistance problem. The introduction of Cobalt constitutes the biggest material change in the back-end-of-line in the past 15 years. In addition to its role as the conductor metal, cobalt serves two other critical functions – as a metal capping film for electro- migration control and as a seed layer for enhancing gapfill inside the narrow vias and trenches.

In patterning, spacer-based double patterning and quad patterning approaches are enabling the continued shrink of device features. These schemes require advanced precision deposition and etch technologies for reduced variability and greater pattern fidelity. Besides conventional Etch, new selective materials removal technologies are being increasingly adopted for their unique capabilities to deliver damage- and residue-free extreme selective processing. New e-beam inspection and metrology capabilities are also needed to analyze the fine pitch patterned structures. Looking ahead to the 5nm and 3nm nodes, placement or layer-to-layer vertical alignment of features will become a major industry challenge that can be primarily solved through materials engineering and self-aligned structures. EUV lithography is on the horizon for industry adoption in 2019 and beyond, and we expect 20 percent of layers to make the migration to EUV while the remaining 80 percent will use spacer multi- patterning approaches. EUV patterning also requires new materials in hardmasks/underlayer films and new etch solutions for line-edge-roughness problems.

Packaging is a key enabler for AI performance and is poised for strong growth in the coming years. Stacking DRAM chips together in a 3D TSV scheme helps bring High Bandwidth Memory (HBM) to market; these chips are further packaged with the GPU in a 2.5D interposer design to bring compute and memory together for a big increase in performance.

In 2018, we expect DRAM chipmakers to continue their device scaling to the 1Xnm node for volume production. We also see adoption of higher perfor- mance logic technologies on the horizon for the periphery transistors to enable advanced perfor- mance at lower power.

3D NAND manufacturers continue to pursue multiple approaches for vertical scaling, including more pairs, multi-tiers or new schemes such as CMOS under array for increased storage density. The industry migration from 64 pairs to 96 pairs is expected in 2018. Etch (high aspect ratio), dielectric films (for gate stacks and hardmasks) along with integrated etch and CVD solutions (for high aspect ratio processing) will be critical enabling technologies.

In summary, we see incredible inflections in new processor architectures, next-generation devices, and packaging schemes to enable the AI era. New materials and materials engineering solutions are at the very heart of it and will play a critical role across all device segments.

Entering 2018 on solid ground

February 22, 2018

By Walt Custer, Custer Consulting Group

2017 finished on an upturn – both in the USA and globally.  Based on consolidated fourth-quarter actual and estimated revenues of 213 large, global electronic manufactures, sales rose in excess of 7 percent in 4Q’17 vs. 4Q’16 (Chart 1).  This was the highest global electronic equipment sales growth rate since the third quarter of 2011. Because some companies in our sample didn’t close their financial quarter until the end of January, final results will take a few more weeks – but all evidence points to a very strong fourth quarter of last year.



Using regional (country specific) data (Chart 2), the normal, consumer electronics driven seasonal downturn began again in January.  However the recent year-over-year growth is still substantial.  On a total electronic equipment revenue basis, January 2018 was up almost 19.5 percent over January 2017.


Because this regional data in local currencies was converted to U.S. dollars at fluctuating exchange, the dollar denominated-growth was amplified by currency exchange effects.  At constant exchange the January growth was only 14 percent.   That is, when the stronger non-U.S. currencies were converted to weakening dollars, the dollar-denominated January 2018 fluctuating exchange growth was amplified by 5.5 percent.

Chart 3 shows 4Q’17/4Q’16 growth of the domestic electronic supply chain.  U.S. electronic equipment shipments were up 9.1 percent.  Only computer equipment and non-defense aircraft sales declined in the fourth quarter.  And of note, SEMI equipment shipments to North America rose almost 31 percent!



Chart 4 shows estimated fourth-quarter growth for the world electronic supply chain.  Only “Business & Office” equipment revenues declined in 4Q’17 vs. 4Q’16.


Total global electronic equipment sales increased more than 7 percent in the fourth quarter and SEMI equipment revenues rose 32 percent.

2017 was a strong year and 2018 is off to a good start!  The 2017 lofty growth rates will temper, but this current expansion will likely continue.  Watch the monthly numbers!

Originally published on the SEMI blog.