Category Archives: OLEDs

Almost two years after GTAT’s bankruptcy, the sapphire industry is still there. Its decor and characters have, of course, changed but the story is still unfolding. Survival strategies, emerging applications and niche markets, mergers and acquisitions. All the protagonists are contributing to altering the landscape, trying to identify new business opportunities to absorb the sapphire overcapacity. China is a major contributor to the story with new investments and emerging companies in this already saturated industry. What is the impact on the sapphire supply chain? What are the strategies to be adopted to succeed? What are the long-term perspectives?

Figure 1

Figure 1

In this tense economic environment, Yole Développement (Yole) and its partner CIOE are organizing a 1.5 day conference to learn more about the status of the sapphire industry. The event will provide an opportunity for all the participants to discuss the future of this industry and to find answers. Sapphire is now more affordable than ever and new capabilities have enabled the manufacturing of components for very diverse applications. The 2nd International Forum on Sapphire Market & Technologies is the place to be to understand today’s economic and technical challenges and build tomorrow’s industry.

The Yole & CIOE Forum will take place from September 6 to 7 in Shenzhen, China, alongside the 18th China International Optoelectronic Expo 2016. To find out more about this event, visit: Sapphire Forum Agenda – Sapphire Forum Registration.

Figure 2

Figure 2

 The LED sector still has the highest demand for sapphire, but the expected volumes cannot sustain the one hundred or so sapphire producers currently competing in the industry.
Some sapphire companies are leaving the most commoditized markets and shifting their development strategies toward niche markets with higher added-value such as medical, industrial and military applications. Other business opportunities could materialize, including microLED arrays and other consumer applications.

Most sapphire companies are chasing any opportunity to survive and optimize their cost structure within a market which is currently characterized by a relentless price war. In Q1- 2016, the sapphire price plunged to its lowest ever level and most companies experienced a drastic decrease in revenue.

In this highly competitive market with significant economic constraints, Yole and CIOE are organizing the 2nd International Forum on Sapphire Market & Technologies (Shenzhen, China – September 6&7, 2016).

“The Sapphire Forum is an opportunity for the entire supply chain to come together to assess the current status of the industry, understand what lies ahead and determine the best strategies to make it through the crisis”, comments Dr. Eric Virey, Senior Technology & Market Analyst, Yole.

GC Asahi Glass (AGC) today announced it has developed a uniform amorphous thin film using a unique sputtering target material, and has started industrialization and commercial production of the material. Called C12A7 Electride, the material is essential to mass production of both the new thin film and large organic electroluminescent (EL) panels – also known as organic LEDs (OLEDs) – utilizing the film.

Asahi Glass Co. Electride Target

Asahi Glass Co. Electride Target

Currently, lithium fluoride (LiF) and alkali-doped organic materials are used as the electron injection material for an OLED display. However, these materials are unstable and are used in an unstable state, which contributes to manufacturing challenges associated with OLED. To address this problem, the AGC Group developed the more stable amorphous C12A7 Electride thin film.

C12A7 is a component of alumina cement. Its structure comprises interconnected “cages,” measuring about 0.4 nanometers (nm) in inner diameter, that contain oxygen ions. C12A7 Electride was developed at the Tokyo Institute of Technology by a research group under Professor Hideo Hosono, a material scientist known for the discovery of iron-based superconductors. All of the oxygen ions in the cages are replaced with electrons, enabling the material to conduct electric current like a metal, maintain chemical and thermal stability, and be easy to handle, while retaining the characteristic of readily emitting electrons.

The amorphous C12A7 Electride thin film, which can be formed through a sputtering process [1] at room temperature using the AGC Group-developed target material, has the following unique characteristics: it is transparent in the visible range; it can emit electrons as easily as metal lithium can; and it is chemically stable even in the atmosphere. By combining this with the TFT element, which uses a transparent amorphous oxide semiconductor (TAOS), the low-driving-voltage electron transport layer can be manufactured stably and with high production yields, even when used in an OLED display with an inverted structure.

Market research firm IDTechEx forecasts the market for OLED displays will reach nearly US$16 billion this year and will grow to US$57 billion in 2026. AGC Group’s Naomichi Miyakawa, Principal Manager, New Product R&D Center, Technology General Division, noted, “TAOS-TFT is suitable for driving a large OLED panel, but there was no available material that functions properly as both an electron injection layer and an electron transport layer – both of which are necessary to realize the inverted structure that makes the best of the panel’s performance. With the commercialization of our C12A7 Electride material, we expect to see substantially improved production of oxide TFT-driven OLED panels.”

AGC anticipates OLED panels integrating the new C12A7 Electride-based thin film to begin manufacture in the year of Tokyo Olympic Games, 2020 or earlier.

The car is not a simple mode of transportation anymore. In addition to security and autonomous driving features, car manufacturers are considering more and more functionalities to propose vehicles as custom and fashion item.

During the last few years, electronic, optoelectronic, software and various digital technologies along with societal changes are increasingly pressuring the automotive players in transforming offerings and business models faster than ever before. Under this context, automotive OEM firms remain focused on core competencies and also develop new ones. Lighting technologies are part of them.
The lighting market for automotive applications should reach a 23.7% compound annual growth rate (CAGR) 2015-2121 reaching a US$27.7 billion market in 2021, announces Yole Développement (Yole) in its latest LED report entitled “Automotive Lighting: Technology, Industry and Market trends”. The increasing role of design and the introduction of new functionalities including ambient light, rear light, turn signal, parking & day ruing lights, fog light, low/high beam light and more are the reasons of this success. But what are the companies behind this impressive growth? What will be the impact on the supply chain? LED, OLED – which technologies are today able to answer to the market needs? The market research and strategy consulting offers today its vision of this industry.

With this new technology & market analysis, the “More than Moore” company, Yole investigates the attractive world of lighting solutions for automotive applications. The automotive lighting report from Yole analyzes the status of the market and its applications. It reviews the structure of the automotive lighting industry and details the market and technology trends. Under this new analysis, Yole’s experts present the main lighting technologies developed for automotive applications and propose valuable roadmaps until 2021. They cover the whole supply chain from devices to systems and give market insights between 2013 and 2021.

With the recent integration of LED technology, lighting has evolved from a basic, functional feature to a distinctive feature with high-value potential in automotive. Indeed, LED technology has given manufacturers the opportunity for strong differentiation via lighting design and additional functionalities. This is particularly true for exterior lighting, but it is also spreading to interior lighting. These changes are heavily impacting the supply chain, with new suppliers and a new value chain emerging.

In 2015, the automotive lighting market totaled nearly US$22.4 billion, up 5.4% from 2014. “This growth was driven by increased lighting system content per vehicle and a more favorable product mix driven by strong adoption of LED-based front lighting systems,” says Pars Mukish, Business Manager, LED, OLED and sapphire activities at Yole. Indeed, headlamp and DRL systems represented 43% and 28% of total 2015 revenue, respectively. Other lighting systems including rear combination light/center high-mounted signal light, interior light, and side turn-signal light comprised the remaining 29% of 2015 revenue. According to Yole’s analysts, the automotive lighting market will continue growing, reaching a market size of almost US$27.7 billion by 2021 – +23.7% compared to 2015, and driven by different growth areas:
• Short-term: increased LED technology penetration rate into different automotive lighting applications/systems, and increased lighting content per vehicle.
• Middle/long-term: potential integration of new lighting technologies like OLED and laser, development of AFLS and other security functions, and incredible developments employing lighting as a new design feature.

automotive lighting industry

“From a geographic point of view, Asia is the largest market for automotive lighting systems, reflecting the trends in term of vehicle production location but with higher share of revenue from Europe due to more favorable product mix in this area,” explains Pierric Boulay, Technology & Market Analyst at Yole. However European and Japanese companies dominate and supply together 81% of the market:
• Koito, Stanley and Ichikoh capture 40% of the revenue
• From an European side, Yole’s analysts announce 13-14% market share for each key European players: Magneti Marelli, Hella and Valeo.

Yole’s report presents all automotive lighting applications and the associated market revenue for the period 2013 – 2021, with details concerning drivers and challenges, integration status of different lighting technologies and systems, recent trends, and market size per application

Kateeva today announced that it has closed its Series E funding round with $88 million in new financing.

The Silicon Valley technology leader disrupted the flat panel display industry when it launched a breakthrough equipment solution to mass-produce flexible Organic Light Emitting Diodes (OLEDs). Flexible OLED technology gives limitless stretch to new product design innovation by liberating panel manufacturers from the constraints of glass substrates. It enables ultra-thin, feather-light displays that are bendable, roll-able, and even fold-able. Kateeva’s solution, known as the YIELDjet™ platform, leverages inkjet printing with novel innovations to perform critical steps in the OLED manufacturing process. Today, YIELDjet tools are helping to accelerate the adoption of OLED technology — a trend that’s taking the global display industry to exciting new heights.

The new Kateeva investors are: BOECybernaut VentureGP Capital ShanghaiRedview Capital, and TCL Capital, all located in China. They join existing investors that include: Samsung Venture Investment Corporation (SVIC), Sigma PartnersSpark CapitalMadrone Capital PartnersDBL PartnersNew Science Ventures, and VEECO Instruments, Inc.

The company has raised $200 million since it was founded in 2008.

New Board seats will be filled by an executive from BOE, Redview Capital, and TCL Capital respectively.

The funds will accelerate new product development. The money will also help Kateeva expand manufacturing capacity at its Silicon Valley headquarters, where production systems are being built. In addition, the funds will strengthen Kateeva’s customer satisfaction infrastructure in Asia, and support continued R&D.

The round closes as demand for flexible OLED displays soars. This year, the market for plastic and flexible OLED displays will reach $2.1 billion, says Guillaume Chansin, Ph.D., Senior Technology Analyst at research firm IDTechEx. By 2020, it will surpass $18 billion. While mobile phones and wearables are currently the two main applications, Chansin expects that the technology will be found in tablets and automotive in the coming years.

The market trajectory is due to the confluence of two trends: first, voracious demand for flexible devices made possible by the enabling advantages of OLED technology; and second, the introduction of manufacturing tools like Kateeva’s YIELDjet platform that provided a pathway to cost-effective mass-production of flexible OLEDs for the first time.

Kateeva Chairman and CEO Alain Harrus, Ph.D. noted how OLED technology first transformed the viewing experience by giving spectacular color quality and brightness to rigid displays on mobile phones. “Now, it’s giving extraordinary new shape, lightness and thinness to those products and others that have yet to be invented,” he said. “Kateeva started enabling this “freedom from glass” display innovation in 2008 when our founders began pioneering a superior mass-production equipment solution for OLEDs. Today, Kateeva tools are positioned in top OLED manufacturing fabs. Our investors were stalwart partners along the way. We’re grateful for their support, and we welcome our new investors.”

Flexible OLED is the first major application for Kateeva’s YIELDjet platform, according to President and Co-Founder Conor Madigan, Ph.D. “Next up is OLED TV,” he said. “Having mastered the technical challenges of mass-producing Thin Film Encapsulation (TFE) — the layer that gives thinness and flexibility to the OLED device, we’re now applying YIELDjet technology to help display manufacturers mass-produce the OLED RGB layer, which enables OLED TVs. The new funds will accelerate new product development, and support ongoing R&D.”

Kateeva executives will be present at Display Week 2016. The premier international symposium for the display industry will be held May 22-27 at the Moscone Convention Center in San Francisco, Calif. President and Co-Founder Conor Madigan, Ph.D. will present on Kateeva’s technology on Monday, May 23. Chairman and CEO Alain Harrus, Ph.D. will speak at the Investors Conference on Tuesday, May 24.

Instead of reading a label, consumers could be interacting with an electronic screen on packaging in the future, thanks to a revolutionary new development by scientists at the University of Sheffield.

The scientists collaborated with technology company Novalia to create a new way of displaying information on packaging, a move that could revolutionise the packaging industry.

This technology could be used in greetings cards or products where a customer could receive a simple message. More complex developments could include a countdown timer on the side of a packet to indicate when a timed product was ready – such as hair-dye, pregnancy tests or home-baking using a ‘traffic lights’ system.

In a paper published in the IEEE Journal of Display Technology, the team explain how a screen can be fixed onto packaging to display information.

The process involves printing electronic tracks onto paper and then fixing low-cost electronics and a polymer LED display to the paper using an adhesive that conducts electricity.

Working together, University of Sheffield scientists and Novalia also designed and constructed a touch-pad keyboard on the paper that allows a user to selectively ‘drive’ the LEDs in the display.

The research has been funded by the Engineering and Physical Sciences Research Council (EPSRC) and testing so far has taken place on paper but the process could potentially be printed on other surfaces.

The team’s next steps are to create fully flexible organic displays on a plastic substrate that then fix onto the electronic tracks. The LED devices need to be low-cost and flexible enough to be used on all packaging.

Professor David Lidzey from the University’s Department of Physics and Astronomy said: “Labels on packaging could become much more innovative, and allow customers to interact with and explore new products. The use of displays or light emitting panels on packaging will also allow companies to communicate brand awareness in a more sophisticated manner.”

Chris Jones from Novalia said: “The paper-based packaging industry is worth billions of dollars. This innovative system we have developed with the University of Sheffield could give manufacturers a way to gain market share by being able to distinguish its products from competitors.”

Liquid crystal display (LCD) manufacturer inventory adjustments and continued slowing demand are causing TV and information technology (IT) display prices to fall, further eroding panel makers’ profitability. TV and IT display shipments in the first quarter (Q1) of 2016 are expected to decline 8 percent compared to the same period last year, to register just 196 million units. This is the first time since 2009 that panel shipments have declined in the first quarter year over year, according to IHS Inc., a global source of critical information and insight.

Although unit shipments of LCD display also declined last year, shipment area increased thanks to the growing popularity of large-screen TV sets, which sustained the display industry. Large-area TFT LCD shipment area increased by 5 percent in 2015 year over year, while unit shipments declined 4 percent, reaching 694 million units, according to the IHS Large Area Display Market Tracker“Due to global currency exchange issues and slower demand from emerging markets, global TV display demand in 2015 was lower than initially forecast,” said Yoonsung Chung, director of large area display research for IHS Technology.

“TV panel demand in early of 2016 will continue to falter, because of excess panel inventory carried over from last year,” said Linda Lin, senior analyst, large displays, IHS Technology. “To control the deficits caused by overproduction of IT and TV panels, panel makers will have to reduce fab utilization early this year, since average selling prices are nearing manufacturing costs.”

Notebook PC panel shipments are expected to experience the most serious year-over-year decline, falling 14 percent to reach 40.9 million units in Q1 2016. OLED TV panels will be the only display segment forecast to experience growth in Q1.

TV_IT_LCD_Shipment_Forecast

The oversupply in LCD TV panels is forecast to continue into the first quarter, according to the latest IHS TV Display Supply Chain Tracker – China. The leading six TV manufacturers in China expect to lower their panel purchasing by 37 percent quarter over quarter and 15 percent year over year. Meanwhile, Samsung Electronics and LG Electronics will slightly reduce panel purchases in Q1.

“Leading display manufacturers have not dramatically reduced fab utilization in the fourth quarter of last year, but the situation will change in the first quarter of 2016, as they will be pressed to reduce the loading,” Lin said. “The Chinese New Year holiday, planned fab maintenance and repairs, and the transition to thinner glass will also reduce output. BOE, ChinaStar, CEC-Panda and other leading Chinese manufacturers that are ramping up new Gen8 fabs will have to reduce their capacity utilization in the first quarter to fight declining panel prices and shipments.”

With just a tiny tweak, researchers at Kyushu University greatly increased the device lifetime of organic light-emitting diodes (OLEDs) that use a recently developed class of molecules to convert electricity into light with the potential for increased efficiency at a lower cost in future displays and lighting.

Using the OLED structure in this schematic, researchers were able to delay the degradation in brightness of an OLED with the TADF emitter 4CzIPN by eight to sixteen times. Credit: Daniel Ping-Kuen Tsang and William John Potscavage Jr.

Using the OLED structure in this schematic, researchers were able to delay the degradation in brightness of an OLED with the TADF emitter 4CzIPN by eight to sixteen times. Credit: Daniel Ping-Kuen Tsang and William John Potscavage Jr.

The easily implemented modifications can also potentially increase the lifetime of OLEDs currently used in smartphone displays and large-screen televisions.

Typical OLEDs consist of multiple layers of organic films with various functions. At the core of an OLED is an organic molecule that emits light when a negatively charged electron and a positively charged hole, which can be thought of as a missing electron, meet on the molecule.

Until recently, the light-emitting molecules were either fluorescent materials, which can be low cost but can only use about 25% of electrical charges, or phosphorescent materials, which can harvest 100% of charges but include an expensive metal such as platinum or iridium.

Researchers at Kyushu University’s Center for Organic Photonic and Electronics Research (OPERA) changed this in 2012 with the demonstration of efficient emitters based on a process called thermally activated delayed fluorescence (TADF).

Through clever molecular design, these TADF materials can convert nearly all of the electrical charges to light without the expensive metal used in phosphorescent materials, making both high efficiency and low cost possible.

However, OLEDs under constant operation degrade and become dimmer over time regardless of the emitting material.

Devices that degrade slowly are key for practical applications, and concerns remained that the lifetime of early TADF devices was still on the short side.

But with the leap in lifetime reported in a paper published online March 1, 2016, in Scientific Reports, many of those concerns can now be put to rest.

“While our initial TADF devices lost 5% of their brightness after only 85 hours,” said postdoctoral researcher Daniel Tsang, lead author on the study, “we have now extended that more than eight times just by making a simple modification to the device structure.”

The newly developed modification was to put two extremely thin (1-3 nm) layers of the lithium-containing molecule Liq on each side of the hole blocking layer, which brings electrons to the TADF material, the green emitter 4CzIPN in this case, while preventing holes from exiting the device before contributing to emission.

The devices will last even longer in practical applications because the tests are performed at extreme brightnesses to accelerate the degradation.

Applying additional optimizations that have been previously reported, the 5% drop was further delayed to longer than 1,300 hours, over 16 times that of the initial devices.

“What we are finding is that the TADF materials themselves can be very stable, making them really promising for future displays and lighting,” said Professor Chihaya Adachi, director of OPERA.

The benefits of the Liq layers are not limited to TADF-based OLEDs as the researchers also found an improvement using a similar device structure with a phosphorescent emitter.

Though still trying to completely unravel the degradation mechanism, the researchers found that devices with the Liq layers contain a much lower number of traps, a type of defect that can capture and hold a charge, preventing it from moving freely in the device.

These defects were observed by measuring tiny electrical currents created when charges that were frozen in the traps at extremely cold temperatures escape by receiving a jolt of thermal energy as the device is heated, a process called thermally stimulated current.

Having charges stuck in these traps may increase the chance for interactions with other charges and electrical excitations that can destroy the molecules and lead to degradation.

One of the next major challenges for TADF is stable and efficient blue emitting materials, which are necessary for full color displays and are also still difficult using phosphorescence.

“With the continued development of new materials and device structures,” said Prof. Adachi, “we think that TADF has the potential to solve the challenge of efficient and stable blue emission.”

Demonstrating a strategy that could form the basis for a new class of electronic devices with uniquely tunable properties, researchers at Kyushu University were able to widely vary the emission color and efficiency of organic light-emitting diodes based on exciplexes simply by changing the distance between key molecules in the devices by a few nanometers.

This new way to control electrical properties by slightly changing the device thickness instead of the materials could lead to new kinds of organic electronic devices with switching behavior or light emission that reacts to external factors.

Organic electronic devices such as OLEDs and organic solar cells use thin films of organic molecules for the electrically active materials, making flexible and low-cost devices possible.

A key factor determining the properties of organic devices is the behavior of packets of electrical energy called excitons. An exciton consists of a negative electron attracted to a positive hole, which can be thought of as a missing electron.

In OLEDs, the energy in these excitons is released as light when the electron loses energy and fills the vacancy of the hole. Varying the exciton energy, for example, will change the emission color.

However, excitons are commonly localized on a single organic molecule and tightly bound with binding energies of about 0.5 eV. Thus, entirely new molecules must usually be designed and synthesized to obtain different properties from these Frenkel-type excitons, such as red, green, or blue emission for displays.

Researchers at Kyushu University’s Center for Organic Photonics and Electronics Research (OPERA) instead focused on a different type of exciton called an exciplex, which is formed by a hole and electron located on two different molecules instead of the same molecule.

By manipulating the molecular distance between the electron-donating molecule (donor) and the electron-accepting molecule (acceptor) that carry the exciplex’s hole and electron, respectively, the researchers could modify the properties of these weakly bound excitons.

“What we did is similar to placing sheets of paper between a magnet and a refrigerator,” said Associate Professor Hajime Nakanotani, lead author of the paper reporting these results published online February 26, 2016, in the journal Science Advances.

“By increasing the thickness of an extremely thin layer of organic molecules inserted as a spacer between the donor and acceptor, we could reduce the attraction between the hole and electron in the exciplex and thereby greatly influence the exciplex’s energy, lifetime, and emission color and efficiency.”

Indeed, the changes can be large: by inserting a spacer layer with a thickness of only 5 nm between a donor layer and an acceptor layer in an OLED, the emission color shifted from orange to yellowish green and the light emission efficiency increased 700%.

For this to work, the organic molecule used for the spacer layer must have an excitation energy higher than those of the donor and acceptor, but such materials are already widely available.

While the molecular distance is currently determined by the thickness of the vacuum-deposited spacer layer, the researchers are now looking into other ways to control the distance.

“This gives us a powerful way to greatly vary device properties without redesigning or changing any of the materials,” said Professor Chihaya Adachi, director of OPERA. “In the future, we envision new types of exciton-based devices that respond to external forces like pressure to control the distance and electrical behavior.”

In addition, the researchers found that the exciplexes were still formed when the spacer was 10 nm thick, which is long on a molecular scale.

“This is some of the first evidence that electrons and holes could still interact like this across such a long distance,” commented Professor Adachi, “so this structure may also be a useful tool for studying and understanding the physics of excitons to design better OLEDs and organic solar cells in the future.”

“From both scientific and applications standpoints, we are excited to see where this new path for exciton engineering takes us and hope to establish a new category of exciton-based electronics.”

Applied Materials, Inc. today announced that Dr. Robert Visser has received a 2016 Special Recognition Award from the Society of Information Display, an industry organization comprised of the top scientists, engineers, corporate researchers and business people of the display field. The award is for his “pioneering research and commercialization of new display technologies related to OLEDs*, LCD* materials and barrier films, including encapsulation technologies for OLED and flexible displays.” Dr. Visser is senior director of advanced chemistry and materials for the Advanced Technology Group at Applied Materials, where he is responsible for creating business opportunities in new and adjacent markets related to displays and roll-to-roll barrier films, as well as developing novel chemistries for semiconductor manufacturing. 

“Robert contributed to turning the concept of flexible displays into a reality by helping establish the principles for successful encapsulation of highly sensitive devices, such as OLED displays,” said Dr. Om Nalamasu, senior vice president and CTO of Applied Materials. “Robert continues to be a critical source of insight and expertise on display materials, and I congratulate him on this well-deserved award.”

Dr. Visser’s work in the display industry spans more than three decades. Most recently at Applied, he helped the display group develop new thin-film encapsulation systems that enable the volume production of high-resolution, thin and lightweight flexible OLED displays for mobile products and TVs. He also works closely with the Roll-to-Roll Coating Products Division to design new equipment for depositing barrier films that can be used throughout the world for a wide variety of flexible packaging and labeling applications. 

Prior to joining Applied, Dr. Visser was CTO of Vitex Systems, where he led a multi-disciplinary team to demonstrate and refine multi-layer barrier technology for use in OLED displays. This work eventually became the basis on which many of today’s plastic, curved OLED displays are built. Dr. Visser began his career at Philips Research, where he led several research teams and helped create the PolyLED business serving as the group’s CEO and CTO. Under his leadership, the group launched one of the first OLED displays on the market in 2002. Also during this time he worked with other researchers and members of academia to make significant improvements in performance and yield of early OLED display manufacturing.

Dr. Visser holds a master’s degree in theoretical organic chemistry and physics, and a Ph.D. in physical and organic chemistry, both from Leiden University, Netherlands. He has numerous patents and publications to his name.

Shipments of organic light-emitting materials used to produce organic light-emitting diode (OLED) displays grew 12 percent year over year in 2015, reaching 26,000 tons. With the rapid growth of white OLED (WOLED) TV display shipments, shipments of organic light-emitting materials are expected to reach 100,000 tons in 2018, according to IHS Inc. (NYSE: IHS), a global source of critical information and insight. Revenues from organic materials used to produce OLED displays also grew 12 percent year over year, reaching $465 million in 2015. Revenue is expected to amount to $1.8 billion in 2018.

“The market for small and medium OLED displays is stable, and OLED TV shipments are increasing, which is supporting OLED light-emitting materials market growth,” said Kihyun Kim, senior analyst for chemical materials research at IHS Technology.  “Shipments of organic light-emitting materials for WOLED are expected to increase along with WOLED TV shipments, as more manufacturers are planning to adopt the technology. WOLED materials are expected to outstrip fine-metal-mask red-green-blue (FMM RGB) materials in 2017 for the first time.”

Organic light-emitting materials used in the FMM RGB technology, mostly used to produce smartphone displays, dominated the OLED materials market in 2015, with an 82 percent share. WOLED materials, mainly used for TVs, will account for 51 percent of the total OLED materials market in 2017 and 55 percent in 2018, in terms of shipments.

Revenue from WOLED materials, which made up 31 percent of the market in 2015, will account for 55 percent of the total organic light-emitting materials used to produce OLED displays in 2016. The growth in revenue is faster than that in shipments, because WOLED materials are more expensive than FMM RGB materials, because they haven’t yet reached an economy of scale.

OLED_Chemicals_Chart