Category Archives: Packaging and Testing

Today at its Imec Technology Forum USA in San Francisco, imec, the research and innovation hub in nano-electronics and digital technology, announced that it has demonstrated ultra-low power, high-bandwidth optical transceivers through hybrid integration of Silicon Photonics and FinFET CMOS technologies. With a dynamic power consumption of only 230fJ/bit and a footprint of just 0.025mm2, the 40Gb/s non-return-to-zero optical transceivers mark an important milestone in realizing ultra-dense, multi-Tb/s optical I/O solutions for next-generation high-performance computing applications.

The exponentially growing demand for I/O bandwidth in datacenter switches and high-performance computing nodes is driving the need for tight co-integration of optical interconnects with advanced CMOS logic, covering a wide range of interconnect distances (1m-500m+). In the presented work, a differential FinFET driver was co-designed with a Silicon Photonics ring modulator, and achieved 40Gb/s NRZ optical modulation at 154fJ/bit dynamic power consumption. The receiver included a FinFET trans-impedance amplifier (TIA) optimized for operation with a Ge waveguide photodiode, enabling 40Gb/s NRZ photodetection with an estimated sensitivity of -10dBm at 75fJ/bit power consumption. High-quality data transmission and reception was also demonstrated in a loop-back experiment at 1330nm wavelength over standard single mode fiber (SMF) with 2dB link margin. Finally, a 4x40Gb/s, 0.1mm2wavelength-division multiplexing (WDM) transmitter with integrated thermal control was demonstrated, enabling bandwidth scaling beyond 100Gb/s per fiber.

“The demonstrated hybrid FinFET-Silicon Photonics platform integrates high-performance 14nm FinFET CMOS circuits with imec’s 300mm Silicon Photonics technology through dense, low-capacitance Cu micro-bumps. Careful co-design in this combined platform has enabled us to demonstrate 40Gb/s NRZ optical transceivers with extremely low power consumption and high bandwidth density,” says Joris Van Campenhout, director of the Optical I/O R&D program at imec. “Through design optimizations, we expect to further improve the single-channel data rates to 56Gb/s NRZ. Combined with wavelength-division multiplexing, these transceivers provide a scaling path to ultra-compact, multi-Tb/s optical interconnects, which are essential for next-generation high-performance systems.”

This work has been carried out as part of imec’s industrial affiliation R&D program on Optical I/O and was presented at the 2018 Symposia on VLSI Technology and Circuits (June 2018) in a “late news” paper. Imec’s 200mm and 300mm Silicon Photonics technologies are available for evaluation by companies and academia through imec’s prototyping service and the iSiPP50G multi-project wafer (MPW) service.

IC Insights recently released its Update to its 2018 IC Market Drivers Report.  The Update includes IC Insights’ latest outlooks on the smartphone, automotive, PC/tablet and Internet of Things (IoT) markets.

The Update shows a final 2017 ranking of the top smartphone leaders in terms of unit shipments.  As shown in Figure 1, 9 of the top 12 smartphone suppliers were headquartered in China.  Two South Korean companies (Samsung and LG) and one U.S. supplier (Apple) were the other leaders.

Figure 1

Samsung and Apple dominated the smartphone market from 2015 through 2017.  In total, these two companies shipped 526 million smartphones and held a combined 35% share of the total smartphone market in 2016. Moreover, these two companies shipped over one-half billion smartphones (533 million) in 2017 with their combined smartphone unit marketshare increasing one point to 36%.

Samsung’s total smartphone unit sales were up by 2% in 2017 to 317 million units, slightly outpacing the total smartphone market that grew by 1%.  Meanwhile, orders for new Apple iPhones fell 7% in 2016, much worse than the 4% growth rate exhibited for the worldwide smartphone market.  However, Apple rebounded somewhat in 2017 with its total smartphone unit shipments being flat last year.

It appears that the up-and-coming Chinese producers like Huawei, OPPO, Vivo, and Xiaomi are giving a serious challenge to Samsung and Apple for smartphone marketshare.  It should be noted, however, that Samsung and Apple still hold a commanding share of the high-end smartphone segment—that is, smartphones priced more than $200.

The number four and five ranked smartphone suppliers on the list are owned by the same China-based parent company—BBK Electronics.  Combined handset unit shipments from these two companies were 213.1 million in 2017, just 2.7 million less than second-ranked Apple.

Overall, there was very little middle ground with regard to smartphone shipment growth rates among the top 12 suppliers in 2017.  As shown, four of the top 12 companies registered double-digit unit growth while the other eight companies logged 2% or less increases and four of those displayed a double-digit decline.  Three Chinese smartphone suppliers (Xiaomi, OPPO, and Vivo) saw their shipments surge at least 24% in 2017.  Xiaomi displayed the highest growth rate of any of the top-12 smartphone suppliers (73%). Meanwhile, another three Chinese suppliers (LeEco/Coolpad, ZTE, and TCL) saw their smartphone shipments fall by more than 20% last year.

Combined, the nine leading smartphone suppliers based in China shipped 626 million smartphones in 2017, an 11% increase from 565 million smartphones that these nine companies shipped in 2016. The top nine Chinese smartphone suppliers together held a 42% share of the worldwide smartphone market in 2017, up four points from the 38% share these companies held in 2016 and eight points better than the 34% combined share these companies held in 2015.

IC Insights projects smartphone shipments in 2018 will rise 2%, to 1.53 billion units.  Moreover, smartphone unit shipments are forecast to grow at low single-digit annual rates through 2021.

STMicroelectronics CEO Jean-Marc Chery and SEMI President and CEO Ajit Manocha will kick off the co-located SEMIMEMS & Sensors Industry Group’s (SEMI-MSIG’s) European MEMS & Sensors Summit 2018 and European Imaging & Sensors Summit (September 19-21 in Grenoble, France). Global technology leaders will examine the influence of megatrends, such as artificial and autonomous intelligence, hyperscale data centers, cybersecurity, authentication, human-machine interface, and virtual reality/augmented reality (VR/AR) on MEMS, sensors and imaging. Speakers will also explore new platforms, models and materials that support the performance and volume requirements of tomorrow’s MEMS, sensors and imaging devices.

In his executive keynote, NXP Semiconductors SVP/CTO Lars Reger will discuss the powerful decentralized ways that sensors allow cars to perform more human-like decision-making in autonomous driving. Mr. Reger will highlight a complex automotive ecosystem that requires both MEMS and non-MEMS sensors — as well as other electronic measurement and control systems — to advance the autonomous vehicles of today and tomorrow. CEA Leti CEO Emmanuel Sabonnadière will present on how innovation is feeding technology, providing an overview on operational excellence, innovations in technology, talent management and leadership. An additional executive keynote speaker from Renault will be announced soon.

“Our European Summits offer influential stakeholders a unique forum to explore the technological developments — and manufacturing and materials advancements — that will dramatically improve MEMS, sensors and imaging technologies — and the markets in which they play,” said Laith Altimime, president, SEMI Europe. “Whether partners, competitors, suppliers or end-customers, attendees will also benefit from mutual engagement during the exhibition and networking events that make our European Summits so unique.”

Other Highlights

  • Feature Presentations

o   Megatrends impacts on the MEMS business — Eric Mounier, Yole Développement

o   Future trends and drivers for sensors markets — Dr. Michael Alexander, Roland Berger

o   Disruption in the authentication sensor market — Manuel Tagliavini, IHS Markit

o   Image sensors technology innovations enabling market megatrends — Roberto Bez, LFoundry

o   Embracing design for manufacturing in MEMS – success and disappointment — Ian Roane, Micralyne

o   Advanced substrates for MEMS and photonic applications — Vesa-Pekka Lempinen, Okmetic Oy

o   Sensors enabling smart HMI — Christian Mandl, Infineon Technologies

o   Image and vision sensors, systems and applications for smart cities — Thierry Ligozat, Teledyne e2v

o   Trends and recent developments in 3D microscopy for biomedical applications — Michael Kempe, Carl Zeiss AG

o   AI-enabled imaging at the edge — Petronel Bigiogi, XPERI

  • MEMS and Imaging Technology Showcase — several strictly vetted companies will perform live demos of their MEMS-, imaging- or sensors-based products as they compete for audience votes.
  • Joint Show-Floor Exhibition
  • Networking events such as the welcome reception and a gala dinner held for both MEMS and Sensors and Imaging & Sensors Summit attendees
  • MEMS & Sensors Summit: stay in touch via Twitter at www.twitter.com (use #MEMSEU).
  • Imaging & Sensors Summit: stay in touch via Twitter at www.twitter.com (use #imagingEU).
  • Registration: registration is open now, with early-bird pricing available until August 17, 2018. Visit: http://www.semi.org/eu/mems-and-sensors-2018-registration

 

SEMI-MSIG’s Summits will be held at the WTC in Grenoble, France, in the heart of the French Silicon Valley (5-7 Place Robert Schuman, 38000 Grenoble, France). Premier sponsors of the Summits include: Gold Sponsors ASE Group, Presto Engineering, Inc. and SUSS MicroTec Group; Silver Sponsors Applied Materials, EV Group, LFoundry, and SPTS Technologies. Event sponsors include: JSR Micro N.V., Materion, Okmetic, and Trymax.

Yole releases today its annual MEMS technology & market analysis: Status of the MEMS Industry. This 2018 edition presents the MEMS device market along with key industry changes and trends. The market research and strategy consulting company is following the MEMS industry for a while, tracking more than 200 applications and 300 MEMS companies. This report is a significant combination all of these applications into more than 15 major MEMS devices. This 15th version includes: global macro economical megatrends and their impact on MEMS and sensors business – MEMS and sensors market forecast – manufacturers rankings – analysis by device and application.

“MEMS market will experience a 17.5% growth in value between 2018 and 2023, to reach US$ 31 billion at the end of the period,” reported Dr. Eric Mounier, Principal Analyst, MEMS & Photonics, at Yole Développement (Yole). “The consumer market segment is showing the biggest share, with more than 50% . The good news is that almost all MEMS devices will contribute to this growth.”

 

However, the RF industry is still playing a key role in the MEMS industry development. Excluding RF, the MEMS market will grow at 9% over 2018 – 2023. With RF MEMS devices, CAGR reaches 17.5% during the same period. Driven by the complexities associated with the move to 5G and the higher number of bands it brings, there is an increasing demand for RF filters in 4G/5G, making RF MEMS (mainly BAW filters) the largest-growing MEMS segment.

Amongst the numerous existing MEMS devices, inkjet heads will grow, with the consumer market representing more than 70% of printhead market demand. This market recorded its first signs of recovery in the first half of 2017, a trend confirmed in the second half of the year. This recovery was noticed both in disposable and fixed printheads. Most consumer players show discernable growth: for example, HP has recorded a 2% growth in consumer printer revenue since 2016, and Canon has confirmed a progression in sales for inkjet printers, with strong demand in Asia.

Numerous pressure sensor applications also contribute to market expansion. Indeed, it is interesting to see that, although it is one of the oldest MEMS technologies, pressure sensor keeps growing. In automotive, pressure sensors have the highest number of applications, with many advantages such resistance to toxic exhaust gas and harsh environments, higher accuracy, and the development of intelligent tires that deliver more information on tire status (especially for future autonomous cars). For consumer, mobiles and smartphones still account for 90% of pressure sensor sales, and cost reduction is the priority vs. size reduction because size is already very small. Although there are no big “killer” applications expected in the future, new applications are emerging: smart homes, electronic cigarette, drones, and wearables, to name several. (1)

Then after, are coming the MEMS microphones. Such MEMS components have been in the spotlight for a long time and have expressed one of the highest CAGRs of any MEMS technology over the last five years. “In the range of US$105 million in 2008, the MEMS microphone market was worth US$402 million in 2012 and reached the US$1 billion milestone in 2016”, asserts Guillaume Girardin, Director of the Photonics, Sensing and Display division at Yole. “Currently, almost 4.5 billion units are shipped annually. The main application is mobile phones, which comprise 85% of shipment volumes, in a consumer market that makes up 98% of the total shipment volume. Tablets and PCs/laptops take second and third place, with 5% and 3.2% of total shipment volumes, respectively.” (2)

Step by step, the uncooled IR imager market keeps growing. This is due to a continuous price decrease over the last few years stemming from new technologies such as WLP and silicon lenses, as well as increasing acceptance from customers. As prices continue falling, we believe the market for uncooled IR imaging technology will continue finding new applications in the coming years. More results will be detailed during the 3rd Executive Infrared Imaging Forum, powered by Yole and taking place on September 7 in Shenzhen, China: Full program

All MEMS market segments including inertial, optical MEMS, microfluidics, new micro components and more … are deeply analyzed in Yole’s annual MEMS report, Status of the MEMS Industry. A full description of this technology & market analysis is available in the MEMS & Sensor reports section, on i-micronews.com.

In this new edition, Yole’s team is also analyzing the market positioning of the MEMS device manufacturers and their annual revenue. What is the status of the 2017 Top MEMS manufacturers? 
• In 2017, the biggest surprise was Broadcom becoming the #1 MEMS player. As growth continues for RF, driven by an increasing number of filters/phones and by the front-end module’s increasing value, it is likely that RF players will still dominate the top 2018 rankings. 
• In parallel, most MEMS players showed positive growth in 2016 – 2017. Established players, Robert Bosch, STMicroelectronics and HP were “shaken” by Broadcom’s growth but still performed well. For example, the German leader, Robert Bosch enjoyed growth of approximately US$100 million. Inkjet heads players also had a good overall performance compared to previous years. In addition, the company, SiTime displayed the most impressive growth, exceeding 100%. Other MEMS players posting significant growth are: FormFactor, benefiting from the semiconductor business’s excellent health; and ULIS, with uncooled IR imaging still growing annually into multiple applications including consumer – thermography, firefighting, night vision, smartphones, drones, and military.

In 2016, the top 30 MEMS players totaled more than US$9,238 million. In 2017, that number increased to US$9,881 million.

 

Leti, a technology research institute of CEA Tech, today announced its annual flagship event, Leti Innovation Days, July 4-5 in Grenoble.

This year, the institute will address how microelectronics, Leti’s core activities, are empowering new technological revolutions within industry, changing our daily lives in ways that will shape tomorrow’s global, post-modern society – in other words, how humans interact, commute, consume and much more. This two-day event gathers each year hundreds of top executives for presentations and discussions of the latest tech trends and the outlook for the future. 

Program 2018

From microelectronics to markets and end-users

–        Quantum computing: from lab to fab

–        New advances in materials

–        The virtues of photons

–        Bio-inspired circuits

–        5G: Towards less redundant processing

Sessions during the two-day event also will present novel use cases in personalized healthcare and other fields in a hyper-connected world, as well as live tech demonstrations from Renault, Rossignol and other global industrials.

On the evening of July 4, Arianespace CEO Stéphane Israël will headline a special Leti Innovation Days event about trends and visions for the space industry.

Technical Workshops

In addition, there will be seven satellite workshops on design for 3D, lithography, quantum engineering, silicon photonics, memory, 5G, and MEMS on July 2, 3 and 6.

The full program can be found here.

For free registration, please contact [email protected]

SiTime Corporation announced it has expanded its global footprint to support its rapid growth with the opening of a new Center of Excellence in Michigan.

“SiTime’s mission is to solve the most difficult timing challenges for our customers,” said Rajesh Vashist, CEO of SiTime. “To fulfil our mission, SiTime’s strategy is to deliver leading-edge solutions by employing the best talent in communities that offer the highest quality of life. Our Michigan Center is near many world-class universities. The rich talent pool in the region, especially in engineering, will help us accelerate our product development. Additionally, Michigan is at the forefront of connected and autonomous vehicle innovation, which is of strategic importance to SiTime. Our proximity and collaborative cooperation with the industry will extend our leadership in automotive timing solutions. We look forward to SiTime Michigan becoming a key contributor to our success.”

By combining unique MEMS and analog technology with a fabless semiconductor model and significant knowhow, SiTime has transformed the timing industry over the past decade. Today, SiTime sets the benchmark in performance, reliability, size, and flexibility, and is the preferred timing supplier for high-performance electronics. SiTime has cumulatively shipped 1 billion units since 2005 and has 90% share of the MEMS timing market. To support this rapid global growth and fuel innovation, SiTime has a significant presence worldwide, including China, Japan, the Netherlands, Russia, Taiwan, and Ukraine.

In Michigan, to assist with office space location, new talent acquisition, and business support services, SiTime collaborated with Ann Arbor SPARK, a non-profit economic development organization.

“The Ann Arbor region is a unique place where business intersects with advanced research, out-of-the-box thinkers, abundant financial resources, vibrant economic development and an immense talent pool,” said Paul Krutko, president/CEO, Ann Arbor SPARK. “We are thrilled to work with SiTime to help them get settled and to find the talent that will fuel their continued growth, while further energizing our technology sector.”

Cohu, Inc. (NASDAQ:COHU) and Xcerra Corporation (NASDAQ:XCRA) today announced they have entered into a definitive merger agreement pursuant to which Cohu will acquire Xcerra for a combination of cash and stock. The acquisition is expected to make Cohu a global leader in semiconductor test, with combined sales for Cohu and Xcerra in excess of $800 million for the last twelve months.

Upon the closing of the transaction, Xcerra shareholders will be entitled to receive $9.00 in cash and 0.2109 of a share of Cohu common stock, subject to the terms of the definitive agreement. Based on the closing price of Cohu common stock as of May 7, 2018, the transaction values Xcerra at $13.92 per share, or approximately $796 million in equity value, with a total enterprise value of approximately $627 million, after excluding Xcerra’s cash and marketable securities net of the debt on its balance sheet as of January 31, 2018. The transaction value represents a premium of 8.4% to Xcerra’s closing price on May 7, 2018, and a premium of 15.4% to Xcerra’s 30-day average closing price.

“This proposed acquisition is a powerful combination of two complementary companies that will accelerate our strategy to diversify our product offerings and strengthen Cohu’s position as a global leader in back-end semiconductor equipment. The depth and breadth of the combined product portfolios, engineering and product development resources, as well as the global customer support platforms will enable us to deliver comprehensive semiconductor back-end solutions that better meet the future needs of our customers,” commented Luis Müller, Cohu’s President and CEO.

Mr. Müller continued, “The acquisition of Xcerra increases our addressable market to approximately $5 billion across handlers, contactors, test and inspection, further strengthening our ability to fully capitalize on the secular growth opportunities in the automotive, IoT, industrial and mobility markets. We are excited to welcome the Xcerra team to Cohu and look forward to an efficient completion of the transaction, with a focus on delivering long-term value to our customers, employees and shareholders.”

Commenting on the proposed acquisition, David Tacelli, Xcerra’s President and CEO, stated, “We are very pleased to be joining forces with Cohu to create a global leader in back-end semiconductor test. Together, we will be an even stronger and more competitive company with far reaching long-term benefits to our customers and employees. I am extremely proud of what the Xcerra team has accomplished over the past several years and look forward to the exciting possibilities we can achieve together with Cohu.”

The transaction is expected to be immediately accretive to non-GAAP earnings per share and generate over $20 million of annual run-rate cost synergies within 2 years of closing, excluding stock-based compensation and other charges.

 

By Heidi Hoffman, Sr. Director of FHE, MEMS and Sensors Marketing, SEMI

Peel-and-stick simplicity isn’t just for adhesive bandages any more. IoT and flexible hybrid electronics (FHE) are bound to change hardware business models. And flexible displays will breathe life into any surface.

These were among the insights foreshadowing the future of the FHE, electronic textiles, IoT, MEMS and sensors industries at the FLEX Japan and MEMS & Sensors Forum Japan 2018. At the April event, organized by SEMI-FlexTech-MSIG, nearly 200 attendees shared their observations and lessons learned in the development of processes, products and applications. Presentations and discussions revealed these five takeaways.

1. Expect the unexpected with FHE development

Flexible Hybrid Electronics (FHE) continues to shrink the size and weight of products, enabling new markets and concepts. “FHE takes printed electronics and adds ICs for getting performance out of the PE structure,” said Wilfried Bair of NextFlex, adding that “peel- and-stick electronic products are one example of unexpected new markets enabled by FHE capabilities.” One potential application is large peel-and-stick safety sensors adhered to buildings to warn of structural dangers.

2018FLEX Japan

 

Another surprising turn: With new insights into OLED technology originally developed for flexible displays, Cambridge Display Technology (CDT) has devised an innovative medical diagnostic tool for markets such as biomedical and agricultural monitoring. The tool features an atmosphere-processable OLED component with a simplified OLED structure encapsulated in aluminum foil.

2. IoT and FHE devices should change hardware business models

This is the standard business model for many new FHE products: develop a product, manufacture it, find customers and sell. FHE and IOT device developers were encouraged by Jam Kahn of Gemalto to consider flipping the script: During FHE product development, explore building an after-market revenue stream by controlling and mining the data for trends it reveals. Because of its data harvesting potential, IoT is an excellent emerging technology for this strategy.

The “Experience Economy” could create 200 connectable items per person, generating strong revenue streams from the collection and analysis of massive amounts of sensor-generated data. The key is for the data to be actionable. That means hardware suppliers must extend their focus to software development. “A recent study of California investors found that by 2025, 60 percent of global business profits will be from data,“ noted Harri Koopla of VTT, who advised hardware producers to examine business models that produce continuous value by leveraging software. “With FHE, we are creating the path to digitization for non-digital industries, and these industries need complete solutions,” he said.

Xenoma smartshirt features

 

Hardware provider Xenoma, for example, sells an electronic shirt with sensors for measuring muscle movements, heart rate and other health-related data. Xenoma’s Ichiro Amimori said the company offers its open-source software development kit for free under one condition: The developer must share the collection data with Xenoma. The idea is that the more data collected, the greater Xenoma’s ability to improve human health over the long term and achieve its long-term vision of alleviating disease.

3. Roll-to-roll and sheet-to-sheet manufacturing will meet in the middle

One of the big advantages of flexible and printed electronics was its promise to enable the manufacturing of electronics on a roll-to-roll (R2R) process in atmospheric (or close) conditions, like newspaper, rather than one sheet at a time, as with displays or wafers. But as development of inks and interconnects progressed, along with the placement of discrete and thinned-die components and basic flexible substrates on a moving web, most research and development (R&D) and limited-production runs moved to sheet-fed systems to control material costs for experiments and low-volume production. R&D on printing electronics processes split into two camps: the simple printed components camp on R2R, and the camp backing more flexible hybrid electronics development on a sheet-by-sheet basis. But progress didn’t stop.

R2R functional testing

 

Harri Koopla of VTT highlighted new R2R inspection and test capabilities in the VTT pilot line in Finland. R2R processing advances incorporate ideas from biology, chemistry, optics, optoelectronics, advanced inspection and test capability, illustrating the multidisciplinary nature of FHE. While accurate, high-speed, pick and place of thinned, bare die remains the domain of sheet-to-sheet manufacturing, look for more improvements in accuracy and speed.

Another new manufacturing concept that turns business models on their heads – “minimal fabs” – focuses on creating limited-run equipment and processes that use 3D printing and do not require cleanrooms. With a relatively low cost of entry, the approach enables electronics to be produced affordably anywhere.

4. Powering the IoT is a grand challenge

The requirement for edge devices to function without intervention for long periods raises hard questions about how to power the devices. Using organic photovoltaics (OPV) in textiles to harvest energy from light could be one solution, according to Kasimaesttro Sugino of the Suminoe Textile Technical Center.  

ULVAC’s answer to the IoT power issue are requirements for edge device micro-batteries to be environmentally benign, safe, flexible and compatible with semiconductor processing less than .1 mm in height. The micro-batteries must also feature a long life and support continuous power output, high power density, low self-discharge (over 10 years) and mass production, said Shunsuke Sasaki of ULVAC. The batteries are being built on silicon, glass and stainless steel with dry, thin-film vacuum processing.

5. Flexible displays bring any surface to life

With their durability, flexibility, low-cost processing and programmability, flexible displays can transform any surface into a content-rich display with messages that make lives healthier, simpler and safer.

FlexEnable

 

One example is FlexEnable’s organic thin-film transistor (OTFT), a device made possible not only by recent advances such as the ability to build organic material transistors on plastic and the increasing clarity of new film materials but by continuous manufacturing process improvements. These advances are improving switching times and the color and video capabilities of thin-film transistors while retaining their flexibility, low power consumption and communication capabilities. Simon Jone of FlexEnable gave the examples of wrapping a display around the blind spots of automobiles or replacing side-view mirrors with interior monitors showing feeds from an external camera, approaches that would improve safety while reducing wind drag and increasing fuel efficiency.

E Ink’s reflective technology and flexible products are coming to market with a wider color spectrum. The company’s Michael McCreary said its designers are specifying the panels for innovative projects such as the exterior walls of the San Diego International Airport parking garage. Used to communicate with airport visitors, the installation is weather-proof, programmable and self-powered.

Originally published on the SEMI blog.

Amkor Technology, Inc. (Nasdaq: AMKR), a provider of semiconductor packaging and test services, today announced that multiple factories have passed certification audits for IATF 16949:2016, a key certification required for manufacturers who supply products to the automotive market. IATF 16949:2016 replaces and supersedes the older ISO/TS 16949 standard.

Included in the list of factories that achieved certification is Amkor’s newest, K5 ― a facility with 2.3 million square feet of floor space located in Incheon, South Korea. K5 combines automation, world class particle control and automotive processes to meet stringent quality and reliability requirements.

“This certification is a testament to Amkor’s significant automotive experience, as well as our exacting quality standards,” said YongChul Park, Amkor’s executive vice president, Worldwide Manufacturing. “Semiconductors are the foundation for automotive electronic systems that help keep passengers connected and safe. Certifying our factories for automotive applications offers significant growth opportunities for Amkor and enables us to deliver the leading-edge solutions our customers and automotive OEMs require.”

Automotive ICs must perform reliably under harsh conditions for extended periods of time. To deliver the durability and accuracy expected by automakers, IC suppliers are required to use specialized packaging techniques with additional process steps and controls. Amkor has factories in several countries that have achieved IATF 16949:2016 certification, including ATK, ATP, ATM, ATT, and ATC; IATF 16949:2016 certifications for J-Devices and Amkor Technology Portugal are in process. For more information, visit https://amkor.com/quality-management/.

Global MEMS market for mobile devices to grow at a CAGR of 10.55% during the period 2017-2021.

The report has been prepared based on an in-depth market analysis with inputs from industry experts. The report covers the market landscape and its growth prospects over the coming years. The report also includes a discussion of the key vendors operating in this market.

One trend in the market is advances in the manufacturing technology of MEMS pressure sensors. The OEMs in the global MEMS pressure sensors market are continually adding new features to their products, resulting in the launch of innovative products in the market on a regular basis. The accuracy of MEMS pressure sensors is increasing with these advances.

According to the report, one driver in the market is MEMS becoming an integral part of consumer electronic devices. MEMS devices are increasingly being used in consumer electronics and mobile devices such as smartphones, tablets, and gaming consoles. The mobile devices integrated with MEMS devices can be scrolled, tilted, rotated, and switched from horizontal and vertical displays. Applications such as GPS and gaming, which employ motion sensors, are popular among smartphone and tablet users. For instance, MEMS sensors, when used in GPS applications, help consumers get directions and estimate the distance even in remote locations.

Further, the report states that one challenge in the market is design-related challenges faced by optical MEMS manufacturers. MEMS manufacturers face a lot of difficulties while designing optical MEMS. The optimization of the switching speed of optical MEMS devices needs a clear understanding of the mode shapes and frequencies of oscillations. Optical MEMS devices need to be checked for parameters such as shock dynamics, temperature drift, contact dynamics, and power. Furthermore, the manufacturing of integrated MEMS wafers is very challenging for the manufacturers as the components are manufactured individually and are then assembled on a single chip. This increases the time to market and creates the need for the testing of components at the individual and assembled levels.

Key Vendors

  • Analog Devices
  • Robert Bosch
  • STMicroelectronics

Other Prominent Vendors

  • AAC Technologies
  • Goertek
  • Maxim Integrated
  • Murata Manufacturing
  • Sensata Technologies
  • Silicon Laboratories