Category Archives: Packaging and Testing

COMET Group, a global provider of high-quality systems, components and services such as x-ray, ebeam and radio frequency technologies, today announced the opening of Lab One, its customer-centric technology and application center in San Jose, CA.

Scheduled to open October 4th, Lab One will bring Comet Group’s three core technologies under one roof for the first time:

  • RF power – Comet Plasma Control Technologies (PCT) designs and manufactures the technology used to make semiconductors and is used by leading chip manufacturers that power the industry’s most popular mobile devices (e.g. Apple, Samsung) and electronics (e.g. flat panel displays)
  • X-ray – Yxlon’s industrial X-ray and computed tomography – systems and services enable customers to improve the quality of their products and processes by non-destructive testing, measuring and decision support in industries such as electronics, automotive, aerospace, medtech, science and new technologies. They are based on highly compact Comet x-ray components and sources
  • ebeam – ebeam technology inactivates harmful pathogens that can cause food borne illnesses and provides safe, environmentally friendly packaging materials that reduce waste and improve food security

The working Lab and testing environment will act as an extension to many leading Silicon Valley businesses – providing access to a variety of testing and inspection services, as well as opportunities to collaborate with Comet Group’s industry experts, who will be available for consultation, brainstorming and problem solving.

“Our new Lab One facility can save local businesses time by providing local inspection services, save them money by finding costly flaws, and solve their logistic inspection services headaches with quick answers to their non-destructive test needs,” said Paul Smith, Sr. Vice President at Comet Technologies USA. “It’s a place where ideas are jointly transformed into solutions and solutions into business success.” 

With pioneering solutions for a wide range of industries, Comet Group will support its clients by bringing greater safety and security, mobility, sustainability and efficiency to numerous areas of life.

By Yoichiro Ando, SEMI Japan

Shinzo Abe, the prime minister of Japan, plans to stage a Robot Olympics in 2020 alongside the summer Olympic Games to be hosted in Tokyo. Abe said he wants to showcase the latest global robotics technology, an industry in which Japan has long been a pioneer. Japan’s Robot Strategy developed by the Robot Revolution Initiative Council plans to increase Japanese industrial robot sales to 1.2 trillion JPY by 2020. This article discusses how the robotics industry is not just a key pillar of Japan’s growing strategy but also a key application segment that may lead Japan’s semiconductor industry growth.

Japan leads robotics industry

According to International Federation of Robotics (IFR), the 2015 industrial robot sales increased by 15 percent to 253,748 units compared to the 2014 sales. Among the 2015 record sales, Japanese companies shipped 138,274 units that represent 54 percent of the total sales according to Japan Robot Association (JARA). The robotics companies in Japan include Yaskawa Electric, Fanuc, Kawasaki Heavy Industries, Fujikoshi and Epson.

Source: International Federation of Robotics (global sales) and Japan Robot Association (Japan shipment)

Source: International Federation of Robotics (global sales) and Japan Robot Association (Japan shipment)

The automotive industry was the most important customer of industrial robots in 2015 that purchased 97,500 units or 38 percent of the total units sold worldwide. The second largest customer was the electrical/electronics industry (including computers and equipment, radio, TV and communication devices, medical equipment, precision and optical instruments) that showed significant growth of 41 percent to 64,600 units.

Semiconductors devices used in robotics industry

Robotics needs semiconductor devices to improve both performance and functionality. As the number of chips used in a robot increases and more advanced chips are required, the growing robotics market is expected to generate significant semiconductor chip demands.

FEA-RO-IA-R2000-SpotWeld-3

Semiconductor devices in robots are used for collecting information; information processing and controlling motors and actuators; and networking with other systems.

  • Sensing Devices: Sensors are used to collect information including external information such as image sensors, sound sensors, ultrasonic sensors, infrared ray sensors, temperature sensors, moisture sensors and pressure sensors; and movement and posture of the robot itself such as acceleration sensors and gyro sensors.

    Enhancing these sensors’ sensitivity would improve the robot performance. However, for robot applications, smaller form factors, lighter weight, lower power consumption, and real-time sensing are also important. Defining all those sensor requirements for a specific robot application is necessary to find an optimal and cost-effective sensor solution.

    In addition, noise immunity is getting more important in selecting sensors as robot applications expand in various environments that include noises. Another new trend is active sensing technology that enhances sensors’ performance by actively changing the position and posture of the sensors in various environments.

  • Data Processing and Motor Control Devices: The information collected by the sensors is then processed by microprocessors (MPUs) or digital signal processors (DSPs) to generate control signals to the motors and actuators in the robot. Those processors must be capable of operating real-time to quickly control the robot movement based on processed and analyzed information. To further improve robot performance, new processors that incorporate artificial intelligence (AI) and ability to interact with the big data cloud database are needed.
  • As robotics is adapted to various industry areas as well as other services and consumer areas, the robotics industry will need to respond to multiple demands. It is expected that more field programmable gate arrays (FPGAs) will be used in the industry to manufacture robots to those demands.

    In the control of motors and actuators, power devices play important roles. For precise and lower-power operation of the robot, high performance power devices using high band gap materials such as Silicon Carbide and Gallium Nitride will likely used in the industrial applications.

  • Networking Devices: Multiple industrial robots used in a production line are connected with a network. Each robot has its internal network to connect its components. Thus every robot is equipped with networking capability as a dedicated IC, FPGA or a function incorporated in microcontrollers.

Ando--industrial-automation

Smart Manufacturing or Industry 4.0 requires all equipment in a factory to be connected to a network that enables the machine-to-machine (M2M) communication as well as connection to the external information (such as ordering information and logistics) to maximize factory productivity. To be a part of such Smart Factories, industrial robots must be equipped with high-performance and high-reliability network capability.

Opportunities for semiconductor industry in Japan

Japanese semiconductor companies are well-positioned in the key semiconductor product segments for robotics such as sensors, microcontrollers and power devices. These products do not require the latest process technology to manufacture and can be fabricated on 200mm or smaller wafers at a reasonable cost. Japan is the region that holds the largest 200mm and smaller wafer fab capacity in the world and the lines are quite versatile in these product categories.

The robotics market will likely be a large-variety and small-volume market. Japanese semiconductor companies will have an advantage over companies in other regions because they can collaborate with leading robotics companies in Japan from early stages of development. Also, Japan may lead the robotics International Standards development which would be another advantage to Japanese semiconductor companies.

For more information about the robotics and semiconductor, attend SEMICON Japan on December 13 to 15 in Tokyo. Event and program information will be available at www.semiconjapan.org soon.

TowerJazz, the global specialty foundry, and Crocus, a developer of TMR magnetic sensor technology and embedded MRAM, today announce volume manufacturing of Crocus TMR (Tunnel MagnetoResistance) sensors, using TowerJazz’s 0.13um CMOS process with a dedicated magnetic module in the Cu BEOL. With Crocus’ magnetic process, know-how and IP, and TowerJazz’s process technology and integration expertise, Crocus has successfully licensed the TMR technology to an automotive Tier 1 customer, bringing increased business to both companies.

According to a 2016 MarketsandMarkets report, the overall magnetic field sensors market was valued at USD $2.25 billion in 2015 and is expected to reach S4.16 billion by 2022, at a CAGR of 8.87% between 2016 and 2022. The growth of this market is driven by the rising demand for MEMS-based sensors across industry verticals, surge in the automotive industry, increasing demand for high-quality sensing devices, and continuous growth in consumer electronics applications.

Magnetic transducers which sense magnetic field strength are widely used in modern industry and electronics to measure current, position, motion, direction, and other physical parameters. Crocus’ TMR technology is a CMOS-based, robust technology capable of offering important advantages in sensitivity, performance, power consumption, size and full integration with CMOS to create monolithic single die ICs. Benefits to customers come in the form of low power, a robust design and high temperature performance. Crocus TMR solutions are ideally suited for many applications ranging from IoT to consumer, medical, automotive and industrial equipment.

“We selected TowerJazz because of their high flexibility and capabilities to adapt their TS13 platform to incorporate our TMR technology which includes magnetic materials that are typically not used in CMOS. TowerJazz’s vast manufacturing expertise is enabling us to successfully fulfill the needs of several market sectors combined with increased performance required in next-generation sensors. TowerJazz has been our development partner for many years and together we have achieved technology maturity leading to expanded business and successful licensing of Crocus IP,” said Michel Desbard, Crocus CEO.

“As the demand for IoT applications in our daily life is ever-increasing, there is an even greater need for intelligent sensing, low power and improved performance. Crocus’ successful licensing of their IP, along with TowerJazz’s manufacturing capability and know-how, enables us to deliver highly-advanced and competitive embedded-solutions to multiple customers in various markets. Through our partnership with Crocus, we are broadening our presence in the sensors’ market, complementing our MEMS and image sensing programs,” said Zmira Shternfeld-Lavie, VP of TOPS BU and R&D Process Engineering.”

Crocus’s TMR magnetic sensor is expected to displace existing sensor technologies in many applications. Crocus’ TMR magnetic sensor product family includes multiple architectures which are based on its Magnetic Logic Unit, a disruptive CMOS-based rugged magnetic technology.

IDTechEx predict that 2017 will be the first billion dollar year for wearable sensors. These critical components are central to the core value proposition in many wearable devices. The “Wearable Sensors 2018-2028: Technologies, Markets & Players” report includes IDTechEx’slatest research and forecasts on this topic, collating over 3 years of work to provide a thorough characterisation and outlook for each type of sensor used in wearable products today.

Despite sales volumes from wearable products continuing to grow, creeping commoditisation squeezes margins, with hardware sales being particularly vulnerable. This has led to some consolidation in the industry, with several prominent failures and exits, and challenging time even amongst market leaders in each sector. As hardware margins are squeezed, business models are changing to increasingly focus on the valuable data generated once a device is worn. Sensors are responsible for the collection and quality of that data, so understanding the capabilities and limitations of different sensor platforms is critical to understanding the progress of the industry as a whole.

In the report, IDTechEx address 21 different types of wearable sensor across 9 different categories as follows: Inertial Measurement Units (IMUs), optical sensors, electrodes, force/pressure/stretch sensors, temperature sensors, microphones, GPS, chemical & gas sensors & others. Hundreds of examples from throughout the report cover a breadth of technology readiness, ranging from long-established industries to early proof-of-concepts. The report contains information about the activities of over 115 different companies, with primary content (including interviews, exhibition or site visits by the authors) to more than 80 different companies, large and small.

IDTechEx describe wearable sensors in three waves. The first wave includes sensors that have been incorporated in wearable for many years, often being originally developed for wearable products decades ago, and existing as mature industries today. A second wave of wearable sensors came following huge technology investment in smartphones. Many of the sensors from smartphones could be easily adapted for use in wearable products; they could be made-wearable. Finally, as wearable technology hype and investment peaked, many organisations identified many sensor types that could be developed specifically with wearable products in mind. These made-for-wearablesensors often remain in the commercial evaluation or relatively early commercial sales today, but some examples are already becoming significant success stories.

WearableSensors_Large

Click to enlarge.

Billions of wearable electronic products are already sold each year today. Many have already experienced significant hardware commoditisation, with tough competition driving prices down. Even as wearable devices become more advanced, introducing more sensors and better components to enhance value propositions, lessons of history tell us that hardware will always be prone to commoditisation. As this happens the role of sensors only becomes more important; with hardware prices being constantly squeezed, increasing proportions of the value that companies can capture from products will be from the data that the products can generate.

The key hardware component for capturing this data is the sensors, so understanding the development and prospects of sensors today is critical to predicting the potential for this entire industry in the future. “Wearable Sensors 2018-2028: Technologies, Markets & Players” is written to address the needs of any company or individual looking to gain a clearer, independent perspective on the outlook for various types of wearable sensor. The report answers detailed questions about technology, markets and industry trends, and supported by years of primary research investment collated and distilled within.

North America-based manufacturers of semiconductor equipment posted $2.18 billion in billings worldwide in August 2017 (three-month average basis), according to the August Equipment Market Data Subscription (EMDS) Billings Report published today by SEMI.

SEMI reports that the three-month average of worldwide billings of North American equipment manufacturers in August 2017 was $2.18 billion.The billings figure is 3.9 percent lower than the final July 2017 level of $2.27 billion, and is 27.7 percent higher than the August 2016 billings level of $1.71 billion.

“Equipment billings in August declined relative to July, signaling a pause in this year’s extraordinary growth,” said Ajit Manocha, president and CEO of SEMI. “Nonetheless monthly billings remain well above last year’s monthly levels.”

The SEMI Billings report uses three-month moving averages of worldwide billings for North American-based semiconductor equipment manufacturers. Billings figures are in millions of U.S. dollars.

Billings
(3-mo. avg)
Year-Over-Year
March 2017
$2,079.7
73.7%
April 2017
$2,136.4
46.3%
May 2017
$2,270.5
41.8%
June 2017
$2,300.3
34.1%
July 2017 (final)
$2,269.7
32.9%
August 2017 (prelim)
$2,181.8
27.7%

Source: SEMI (www.semi.org), September 2017

Leti, a technology research institute of CEA Tech, announced today it has developed a methodology for testing high-speed wireless communications on airplanes that allows different system deployments in cabins, and assesses wireless devices before they are installed.

In a joint research project with Dassault Aviation, Leti demonstrated a channel-measurement campaign over Wi-Fi frequency in several airplanes, including Dassault’s Falcon business jet. Using a channel sounder and a spatial scanner, Leti teams determined a statistic model of the in-cabin radio channel, constructed from the antenna position and the configuration of the aircraft.

A radio-frequency channel emulator and the in-cabin channel model were used to test Wi-Fi designed for passenger communication and entertainment before installation in the aircraft. In that test, two different wireless access points and different antenna configurations for Wi-Fi networks deployed in an aircraft cabin were evaluated. Based on an extensive test campaign, mean values of performance parameters, together with the operating margin, were provided according to the device configuration, kind of traffic and channel conditions.

In addition, the technology gives aircraft designers key tools to define wireless communication systems that enhance passenger experience, without aircraft immobilization.

“This research collaboration with Dassault is a critical first step toward validating wireless connectivity systems before they are installed in aircraft,” said Lionel Rudant, Leti strategic marketing manager. “Wireless systems have multiple benefits, ranging from more efficient monitoring of aircraft comfort and safety to reducing the weight of planes.”

Leti’s roadmap also addresses goals for wireless sensor networks, which are part of an industry effort to replace the hundreds of miles of wiring required to connect thousands of sensors and other detectors located throughout aircraft to monitor safety and comfort factors. The factors range from ice detection, tire pressure and engine sensors to cabin pressure, smoke detection and temperature monitoring.

Rudant will present details of Leti’s proof of concept at the AeroTech Conference and Exhibition, Sept. 26-28 in Fort Worth, Texas. His talk, “Test of in-flight wireless connectivity with radio channel emulator”, will be on Sept. 27 at 8 a.m. in room 201B.

Lama Nachman will share Intel‘s story of using contextually aware computing to improve assistive technology for Stephen Hawking during her keynote at the 13th annual MEMS & Sensors Executive Congress(November 1-2, 2017 in Napa Valley, Calif.). Hosted by MEMS & Sensors Industry Group®(MSIG), the event also features NXP‘s Lars Reger exploring the critical role of MEMS and non-MEMS sensors in the complex automotive ecosystems of today and tomorrow. Other speakers will address diverse topics spanning ingestible sensors that leverage integrated circuits (ICs), MEMS spectral sensors that improve crop yields, low-power acoustic sensing platforms for always-on voice-activated products, and thin-film pressure-sensitive tiles used for gait and performance analysis.

“Understanding the essential role of MEMS and sensors in integrated systems, such as smart home, smart automotive, smart biomedical/wellness and smart industrial, is critical to extracting maximum value from these devices, which market research firm Yole Développement expects to grow from $38 billion in 2016 to $66 billion in 2021,” said Karen Lightman, vice president, MSIG, a SEMI Strategic Association Partner. “From our keynote speakers to our featured presenters and panelists, MEMS & Sensors Executive Congress speakers will delve into some of the most exciting ways that MEMS and sensors add intelligence and insight to integrated systems.”

Other Highlights

  • Emerging MEMS & Sensors: Technologies to Watch ─ Alissa Fitzgerald, A.M. Fitzgerald & Associates
  • MEMS & Sensors: Outtakes of 2017 and Outlook for 2018 ─ Jérémie Bouchaud, IHS Markit
  • BioMEMS: The Next Big Thing for MEMS Players? ─ Sébastien Clerc, Yole Développement
  • Fireside Chat with Industry VCs ─ Wen Hsieh of Kleiner Perkins Caufield & Byersand Rudy Burger of Woodside Capital Partners
  • Featured “Tech Talks” on “Creating Six Senses” ─ styled in the manner of TED Talks™, these short talks feature Marcellino Gemelli of Bosch Sensortec and Peter Hartwell of InvenSense/TDK

For conference registration, please visit: www.semi.org/en/mems-sensors-executive-congress-agenda-register. Register by September 26 for a discount.

 

SEMI, with its Strategic Association partner MEMS & Sensors Industry Group (MSIG), today announced its shortlist of competitors for the Technology Showcase, which will take place on September 21 at the SEMI European MEMS & Sensors Summit 2017 in Grenoble. Selected by a committee of industry experts, five finalist companies will demonstrate advancements in MEMS and sensors for markets that span Internet of Things (IoT), consumer electronics, robotics and biomedical. The audience will vote for a winner, which will be announced at the Summit’s conclusion.

“We congratulate the finalists of the Technology Showcase, an event where attendees experience some of the newest and most fascinating MEMS and sensors technology in an interactive setting,” said Laith Altimime, president, SEMI Europe. “While this is SEMI’s first Technology Showcase at our European MEMS & Sensors Summit, this excellent group of contenders should make it an audience favorite.”

Technology Showcase finalists include:

Bosch Sensortec GmbH: BML050 — a high-precision MEMS scanner for interactive laser projection applications, which offers a virtual user interface solution for IoT applications such as home appliances, tablets and social robots.

Fraunhofer Institute for Photonic Microsystems: Integrated Capacitive Micromachined Ultrasonic Transducers (CMUTs) — provides miniaturized, highly sensitive, low-power, and customer-specific sensors and sensor nodes for applications in liquid and gases. Applications include human-machine interaction, robotics, biomedical, and smart consumer systems.

Hap2U: Ultrasonic Piezoelectric Actuators for Smart Touchscreen Applications — gives users the sensation of feeling sliders, knobs and buttons while touching their display. Hap2U’s new approach to haptic feedback drastically reduces applied power and power consumption.

Philips Innovation Services: CMUTs for Ultrasound and Non-Ultrasound Devices — complements conventional technology with advantages such as large bandwidth, easy fabrication of large arrays, and monolithic integration of ASIC functionality. Through Philips MEMS Foundry, CMUTs are available for medium- and high-volume manufacturing.

Si-Ware Systems: NeoSpectra MEMS Spectral Sensors —features an FT-IR spectrometer on MEMS die. NeoSpectra MEMS Spectral Sensors enable tiny low-cost spectral sensors that are highly integrated, scalable and reliable, making them ideal for in-field and inline applications in various industries, including consumer electronics.

The Technology Showcase at SEMI European MEMS & Sensors Summit (September 20-22, 2017) will take place from 11:00 am-12:00 pm on September 21 at the MINATEC innovation campus at 3 parvis Louis Néel, Grenoble, France.

Despite its age and maturity, the automotive market has witnessed many unexpected developments over the past two years. And as has always been the case, safety drives the market. Automotive OEMs and suppliers are now investing in technologies to develop autonomous and electric vehicles. Automation will spur the development of imaging and detection sensors like cameras, LiDAR, and radar, while electrification will boost the design of current and thermal sensors for battery management. And because sensors are becoming a must-have, other markets are dynamic and growing too.

Yole Développement (Yole), part of Yole Group of Companies, presents an overview of the different sensors involved in autonomous systems with its new report MEMS & Sensors for Automotive. It also describes the applications, technologies and players associated with the automotive sensors market’s impending changes. This analysis includes detailed roadmaps and market forecasts until 2022.

How will sensor technology shape the tomorrow’s automotive industry? Yole’s analysts propose you today a deep understanding of the reborn automotive sensor market.

In a global automotive market worth than US$2.3 trillion, the little world of automotive sensors has recently been shaken up by the emergence of electric and autonomous cars.

Despite just 3% growth in the volume of cars sold expected through to 2022, Yole expects an average growth rate in sensors sales volumes above 8% over the next five years, and above 14% growth in sales value. This is thanks to the expanding integration of high value sensing modules like RADAR, imaging and LiDAR. The current automotive sensing market groups MEMS and classic active sensors such as pressure, TPMS , chemical, inertial, magnetic, ultrasonic, imaging, RADAR and LiDAR. “This market is worth US$11 billion in 2016 and is expected to reach US$23 billion by 2022,” announced Guillaume Girardin, Technology & Market Analyst at Yole. “This is mainly due to the boom in imaging, RADAR and LiDAR sensors, which will respectively be worth US$7.7 billion, US$6.2 billion and US$1.4 billion by 2022,” he adds.

Among classical sensors like pressure, chemical and magnetic sensors, the impact of electric vehicles will remain small in the short term. However, the advent of electrical vehicles will greatly change the amount and the distribution of pressure and magnetic sensors within the car in the longer term. More electric cars will mean fewer pressure sensors and a surge in magnetic sensors for battery monitoring and various positioning and detection of moving pieces. Finally, the automotive world is experiencing one of the fastest-changing eras in its evolution ever. Sensor suppliers are now engaged in a race where they need to be prepared for the golden age of the automotive world.

Among all sensing technologies located in the car, three main sensors will drastically change the landscape: imaging, RADAR and LiDAR sensors.

Imaging sensors were initially mounted for ADAS purposes in high-end vehicles, with deep learning image analysis techniques promoting early adoption. It is now a well-established fact that vision-based AEB is possible and saves lives. Adoption of forward ADAS cameras will therefore accelerate.
Growth of imaging for automotive is also being fueled by the park assist application, and 360° surround view camera volumes are skyrocketing. While it is becoming mandatory in the US to have a rear view camera, that uptake is dwarfed by 360° surround view cameras, which enable a “bird’s eye view” perspective. This trend is most beneficial to companies like Omnivision at sensor level and Panasonic and Valeo, which have become the main manufacturers of automotive cameras.
RADAR sensors, which are often wrongly seen as competitors of imaging and LiDAR sensors, are increasingly adopted in high-end vehicles. They are also diffusing into mid-price cars for blind spot detection and adaptive cruise control, pushing Level 2/3 features as a common experience.

Lastly, LiDAR remains the “Holy Grail” for most automotive players, allowing 3D sensing of the environment. In this report Yole’ analysts highlight the different potential usages of this technology, which will transform the transportation industry completely.

“We expect tremendous growth of the LiDAR market within the next five years, from being worth US$300 million in 2017 to US$4.4 billion by 2022,” detailed Guillaume Girardin from Yole. LiDAR is expected to be a key technology, but sensing redundancy will still be the backbone of the automotive world where security remains the golden rule.

The MEMS & Sensors for automotive report represents the best of Yole’s automotive sensor industry and imaging sector knowledge. Yole regularly participates in industry conferences and tradeshows worldwide, and maintains close relations with market leaders.

The global semiconductor advanced packaging market is expected to grow at a CAGR of 8.45% during the period 2017-2021, according to the “Global Semiconductor Advanced Packaging Market 2017-2021” report by Research and Markets.

The latest trend gaining momentum in the market is changes in wafer size. The semiconductor industry has seen a drastic transition in wafer size over the last five decades (1910-2016). The industry is focusing on producing larger diameter wafers, which is expected to cut down the manufacturing cost by 20%-25%.

According to the report, one of the other major drivers for this market is complex semiconductor IC designs. The number of features and functionalities offered by consumer electronic devices is on the rise as electronic device manufacturers look to differentiate their offerings from those of competitors.

Further, the report states that one of the major factors hindering the growth of this market is rapid technological changes. The rapid technological advancements in wafer processing have always been a major challenge faced by vendors in the semiconductor advanced packaging market. The semiconductor industry is continuously seeing transitions, such as the miniaturization of nodes and the increase in wafer sizes with respect to ultra-large-scale integration (ULSI) fabrication technology.