Category Archives: Packaging

Silicon solar cells dominate the global photovoltaic market today with a share of 90 percent. With ever new technological developments, research and industry are nearing the theoretical efficiency limit for semiconductor silicon. At the same time, they are forging new paths to develop a new generation of even more efficient solar cells.

The Fraunhofer researchers achieved the high conversion efficiency of the silicon-based multi-junction solar cell with extremely thin 0.002 mm semiconductor layers of III-V compound semiconductors, bonding them to a silicon solar cell. To compare, the thickness of these layers is less than one twentieth the thickness of a human hair. The visible sunlight is absorbed in a gallium-indium-phosphide (GaInP) top cell, the near infrared light in gallium-arsenide (GaAs) and the longer wavelengths in the silicon subcell. In this way, the efficiency of silicon solar cells can be significantly increased.

Silicon-based multi-junction solar cell consisting of III-V semiconductors and silicon. The record cell converts 33.3 percent of the incident sunlight into electricity.  © Fraunhofer ISE/Photo: Dirk Mahler

Silicon-based multi-junction solar cell consisting of III-V semiconductors and silicon. The record cell converts 33.3 percent of the incident sunlight into electricity.
© Fraunhofer ISE/Photo: Dirk Mahler

“Photovoltaics is a key pillar for the energy transformation,” says Dr. Andreas Bett, Institute Director of Fraunhofer ISE. “Meanwhile, the costs have decreased to such an extent that photovoltaics has become an economically viable competitor to conventional energy sources. This development, however, is not over yet. The new result shows how material consumption can be reduced through higher efficiencies, so that not only the costs of photovoltaics can be further optimized but also its manufacture can be carried out in a resource-friendly manner.

Already in November 2016, the solar researchers in Freiburg together with their industry partner EVG demonstrated an efficiency of 30.2 percent, increasing it to 31.3 percent in March 2017. Now they have succeeded once again in greatly improving the light absorption and the charge separation in silicon, thus achieving a new record of 33.3 percent efficiency. The technology also convinced the jury of the GreenTec Awards 2018 and has been nominated among the top three in the category “Energy.”

The Technology

For this achievement, the researchers used a well-known process from the microelectronics industry called “direct wafer bonding” to transfer III-V semiconductor layers, of only 1.9 micrometers thick, to silicon. The surfaces were deoxidized in a EVG580® ComBond® chamber under high vacuum with a ion beam and subsequently bonded together under pressure. The atoms on the surface of the III-V subcell form bonds with the silicon atoms, creating a monolithic device. The complexity of its inner structure is not evident from its outer appearance: the cell has a simple front and rear contact just as a conventional silicon solar cell and therefore can be integrated into photovoltaic modules in the same manner.

EVG ComBond automated high-vacuum wafer bonding platform  (Photo courtesy of EV Group).

EVG ComBond automated high-vacuum wafer bonding platform
(Photo courtesy of EV Group).

The III-V / Si multi-junction solar cell consists of a sequence of subcells stacked on top of each other. So-called “tunnel diodes” internally connect the three subcells made of gallium-indium-phosphide (GaInP), gallium-arsenide (GaAs) and silicon (Si), which span the absorption range of the sun’s spectrum. The GaInP top cell absorbs radiation between 300 and 670 nm. The middle GaAs subcell absorbs radiation between 500 and 890 nm and the bottom Si subcell between 650 and 1180 nm, respectively. The III-V layers are first epitaxially deposited on a GaAs substrate and then bonded to a silicon solar cell structure. Here a tunnel oxide passivated contact (TOPCon) is applied to the front and back surfaces of the silicon. Subsequently the GaAs substrate is removed, a nanostructured backside contact is implemented to prolong the path length of light. A front side contact grid and antireflection coating are also applied.

On the way to the industrial manufacturing of III-V / Si multi-junction solar cells, the costs of the III-V epitaxy and the connecting technology with silicon must be reduced. There are still great challenges to overcome in this area, which the Fraunhofer ISE researchers intend to solve through future investigations. Fraunhofer ISE’s new Center for High Efficiency Solar Cells, presently being constructed in Freiburg, will provide them with the perfect setting for developing next-generation III-V and silicon solar cell technologies. The ultimate objective is to make high efficiency solar PV modules with efficiencies of over 30 percent possible in the future.

Project Financing

Dr. Roman Cariou, the young scientist and first author, was supported through the European Union with a Marie Curie Stipendium (HISTORIC, 655272). The work was also supported by the European Union within the NanoTandem project (641023) as well as by the German Federal Ministry for Economic Affairs and Energy BMWi in the PoTaSi project (FKZ 0324247).

Correction: A previous version of this article incorrectly state “imec” in the headline, instead of Fraunhofer ISE. Solid State Technology regrets the error.

Nobuaki Kurumatani today took office as the first Chairman and CEO of Toshiba Corporation (TOKYO:6502) to be appointed from outside the company in over 50 years.

Commenting on his appointment as Representative Executive Officer and Chairman and CEO, Mr. Kurumatani said, “I am honored to be appointed CEO, and very much aware of the responsibilities I take on. Toshiba is not just any company. Its corporate DNA has realized countless Japan- and world-first technologies and products, made Toshiba a source of pride in Japan for nearly 145 years, and also made us a global leader.

“I believe that helping Toshiba back on its feet is my true calling. I am here at Toshiba to support change and transformation, and I see my role as to build on the company’s resilience and to lead its recovery. To secure growth, we must radically improve our earning power and reinforce our finances. We must move out of our comfort zone and promote fundamental reforms.”

Mr. Kurumatani most recently served as President of CVC Asia Pacific Japan (CVC). Before joining CVC in May 2017, he was Deputy President and a Director of Sumitomo Mitsui Financial Group, one of the largest financial institutions in Japan, where his career was devoted to corporate planning, public relations and internal auditing. He is a graduate of the University of Tokyo, where he studied Economics.

Satoshi Tsunakawa has taken on a new role in Toshiba as Representative Executive Officer and President, and Chief Operations Officer (COO). From today on, Mr. Kurumatani and Mr. Tsunakawa will together execute the management of Toshiba Group.

Fueled by heavy government investment, IC packaging and testing in China generated $29 billion in revenue in 2017, making China the world’s largest consumer of packaging equipment and materials, according to SEMI’s recent China Semiconductor Packaging Industry Outlook report. The report, based on research conducted between July 2017 through the end of January 2018, also revealed that China’s IC packaging and testing industry is more mature than its IC manufacturing and design sectors, though IC packaging and testing revenue growth has slowed in recent years.

SEMI surveyed 87 semiconductor packaging- and assembly-related companies for the research report, including key semiconductor packaging manufacturers in China. More than 100 companies compete in China’s packaging and assembly market, including leading multinational companies and emerging domestic players. More than half of China’s packaging companies are located in the Yangzi delta region, while midwestern China has emerged as a hotbed for packaging plants.

Additional report highlights:

  • Compared to other world regions, China’s investments in IC packaging and testing saw the fastest growth over the past decade, with domestic manufacturers securing strong support from both national and local governments to ramp capacity and technical capabilities.
  • The top three domestic packaging companies – JCET, Huatian, and TFME – all entered the top 10 global OSAT rankings following expansions and acquisitions from 2012 to early 2016.
  • Packaging companies such as SPIL, TFME, NCAP continue to build new plants.
  • As a major manufacturing region for LED products, China has become more prominent within the semiconductor packaging industry. China’s LED product sector grew to $13.4 billion (half of IC packaging) in 2017.
  • In 2017, China accounted for about 26 percent of the global packaging materials market, with China’s packaging materials revenue forecast to exceed $5.2 billion in 2018.
  • In 2017, the China assembly equipment market reached $1.4 billion in revenue, remaining the world’s largest with 37 percent share.
  • In 2017, assembly equipment manufactured in China (including assembly equipment made by foreign-owned companies and JVs) accounted for 17 percent of China’s assembly equipment market.
  • With the fast growth in the semiconductor packaging market, domestic packaging materials suppliers are expanding with the industry and now starting to serve leading international packaging houses.

The SEMI report also elucidates the importance of both central and local government support, guidelines and policies on China’s semiconductor industry. The National Fund and local IC funds, created in 2014, and the Made in China 2025 policy provided a second boost to China’s IC industry growth. For packaging and testing enterprises, maintaining strong communications and relations with relevant government bodies and industry associations is essential to securing both political and financial support, in part because China’s semiconductor manufacturers and IC assembly and packaging companies are expected to purchase equipment and materials made in China.

 

Combined sales for optoelectronics, sensors and actuators, and discrete semiconductors (known collectively as O-S-D) increased 11% in 2017—more than 1.5 times the average annual growth rate in the past 20 years—to reach an eighth consecutive record-high level of $75.3 billion, according to IC Insights’ new 2018 O-S-D Report—A Market Analysis and Forecast for Optoelectronics, Sensors/Actuators, and Discretes. Total O-S-D sales growth is expected to ease back in 2018 but still rise by an above average rate of 8% in 2018 to $81.1 billion, based on the five-year forecast of the new 375-page annual report, which became available this week.

In 2017, optoelectronics sales recovered from a rare decline of 4% in 2016, rising 9% to $36.9 billion, while the sensors/actuators market segment registered its second year in a row of 16% growth with revenues climbing to $13.8 billion, and discretes strengthened significantly, increasing 12% to $24.6 billion.  The new O-S-D Report forecast shows optoelectronics sales growing 8% in 2018, sensors/actuators rising 10%, and discretes growing 5% this year (Figure 1).

Figure 1

Figure 1

Between 2017 and 2022, sales in optoelectronics are projected to increase by a compound annual growth rate (CAGR) of 7.3% to $52.4 billion, while sensors/actuators revenues are expected to expand by a CAGR of 8.9% to $21.2 billion, and the discretes segment is seen as rising by an annual rate of 3.1% to $28.7 billion in the final year of the report’s forecast.  In the five-year forecast period, O-S-D growth will continue to be driven by strong demand for laser transmitters in optical networks and CMOS image sensors in embedded cameras, image recognition, machine vision, and automotive applications as well as the proliferation of other sensors and actuators in intelligent control systems and connections to the Internet of Things (IoT).  Power discretes (transistors and other devices) are expected to get a steady lift from the growth in mobile and battery-operated systems as well as good-to-modest global economic growth in most of the forecast years through 2022, the report says.

Combined sales of O-S-D products accounted for about 17% of the world’s $444.7 billion in total semiconductor sales compared to less than 15% in 2007 and under 13% in 1997.  Since the mid-1990s, total O-S-D sales growth has outpaced the much larger IC market segment because of strong and relatively steady increases in optoelectronics and sensors. However, this trend was reversed recently mostly due to a 77% surge in sales of DRAMs and 54% jump in NAND flash memory in 2017.

The 2017 increase for total O-S-D sales was the highest growth rate in the market group since the 37% surge in the strong 2010 recovery year from the 2009 semiconductor downturn.  In addition, 2017 was the first year since 2011 when all three O-S-D market segments reached individual record-high sales, says IC Insights’ new report.  The 2018 O-S-D Report also shows that sales of sensor and actuator products made with microelectromechanical systems (MEMS) technology grew 18% in 2017 to a record-high $11.5 billion.

BY GUIDO GROESENEKEN, imec fellow

To be able to guarantee the reliability of transistors, we have been conducting research for some years now at imec to see what happens when transistors operate properly and when they fail. We’ve been doing this in terms of circuits, devices and materials – and sometimes right down to the level of atoms. The insights that we gather from this work help us to provide the right feedback to the process technol- ogists, who in turn are able to make the transistors more reliable. It is particularly interesting to note that in recent years the knowledge we have gained about these failure mechanisms can also be applied to other areas. These insights no longer only serve to solve problems, but are the basis for innovative and surprising solutions in very diverse domains.
Last year, imec spent a lot of time working on self- learning chips, data security codes, FinFET biosensors and computer systems that can correct themselves. These are innovations that draw on the knowledge present in imec’s reliability group.

Self-learning chips

For example, take the self-learning or neuromorphic chip that gave imec such extensive coverage in the media in 2017. The development of this chip is based, among other things, on our knowledge of “resistive RAM” or RRAM memories, which use the breakdown of an oxide to switch a memory bit on or off (0 or 1). This oxide breakdown – which was previously (and still is) a reliability problem – occurs because a conductive path is created through the oxide, known as a filament. However, the work conducted by imec’s reliability group has demonstrated that not only can you create a filament or make it disappear, but that there are intermediate levels as well, which means that the strength of the filament can be controlled. And that is precisely what happens in our brains: the connec- tions between neurons can become stronger or weaker according to the occurrence they are processing or the learning process they use, etc. This means that these RRAM filaments can be used in chips that work like our brains. It was this insight that provided us with the foundation for the development of imec’s neuromorphic chip, which – as has been demonstrated – can even compose music.

Data security

Since recently we are also working closely with COSIC, an imec research group at KU Leuven that specializes in computer security and cryptography. Also here we can draw on our knowledge of transistor breakdown mechanisms. These can be used to create and read out a fingerprint that is unique for each chip and that cannot be predicted, hence the name ‘physically unclonable functions’ (or PUFs). This unique fingerprint makes it possible to ascertain the identity of chips in data exchanges and thus to prevent hacking by means of rogue chips.

The phenomenon of ‘Random Telegraph Noise’, which has long been known in the area of transistor reliability, could also be used as a security fingerprint. Random telegraph noise is a name for sudden jumps in voltage or current levels as the result of the random trapping of charges in traps within the gate insulation of a transistor. This phenomenon is unpredictable and random, and hence it could also be perfectly usable as PUF. What was once a problem for us – the breakdown of oxides or the existence of random telegraph noise – is now at the base of major new solutions for computer security.

Biosensors

A third example of discipline-overlapping innovation brings us to the world of life sciences. FinFET transistors are essential for the current and future generations of computer chips. As a result of the research carried out in our group, we have now found out a great deal about the way the work, including their failure mechanisms, etc. So much so that we can now explore the possibility to use them as biosensors. What happens is that biomolecules have a certain charge and when that charge comes into the vicinity of a FinFET, the current in the FinFET will be influ- enced. As a result, there is the potential that the presence of a single biomolecule can be detected by such a FinFET.

Self-healing chips

And, finally, we are also working with system architects to produce reliable chips, even with transistors that are no longer reliable. Extremely small transistors with dimen- sions smaller than 5 nanometers can be very variable and the way they behave is unpredictable. For that reason we are working with system architects on solutions such as self- healing chips, based among other things on the existing models of the failure mechanisms that we provide them with. These self-healing chips will contain monitors that detect local errors. A smart controller then interprets this information and decides how to solve the problem, after which actuators are directed by the controller to carry out the task required.

What about scaling?

Numerous methods are currently being investigated to ensure that transistors can still be miniaturized and improved for as long as possible, as propounded in Moore’s Law. To do so, the classic transistor architecture has already been replaced by a FinFET architecture and in the future this will evolve even to nanosheets or nanowires. Materials other than silicon, with greater mobility, are also being looked at, such as III-V materials (germanium for pMOS and InGaAs for nMOS).

In the choice made for these future architecture, it is extremely important to also look right from the start to the failure mechanisms and reliability of the new solutions.

As an example, last year, our reliability team focused extensively on III-V transistors. Although these transistors score well in terms of mobility, their stability is still one of the main challenges remaining before we are able to take the next step and start manufacturing. The insulation layers in III-V transistors contain a lot of traps that cause this insta- bility in transistor characteristics. Understanding this phenomenon is essential if we are to find a solution for it. So, a breakthrough in this area is needed urgently and our results, which were published in a recent IEDM paper, are certainly a step in the right direction. In the invited paper by Jacopo Franco these instabilities are first analyzed in detail. Then, based on this analysis, practical guidelines are given for the development of III-V gate stacks that offer sufficient reliability.

It’s very difficult to look ahead even further into the future, because as the end of Moore’s Law approaches, increasing numbers of different technologies and concepts are already on the radar (quantum computers, 2D materials, neuro- morphic computers, spinwave logic, etc.). However, none of these concepts has yet made a real breakthrough. But in my view 2017 was the year in which the industry began to take a strong interest in quantum computers, with major investments from important players such as Google and Intel. Imec also plans to play a major role in this field, with the launch of a new program on quantum computing, gathering the extensive expertise available. In the past, quantum computing has been considered more as a purely academic field of research – something of value for physi- cists at universities, but not for engineers and companies. So perhaps the breakthrough of industrial quantum computing will be the next milestone in the history of electronics. Or perhaps this milestone will come from a totally unexpected angle – by combining knowledge and people from entirely different disciplines, creating totally new ideas and concepts. Only the future will tell us!

Research included in the March Update to the 2018 edition of IC Insights’ McClean Report shows that fabless IC suppliers accounted for 27% of the world’s IC sales in 2017—an increase from 18% ten years earlier in 2007.  As the name implies, fabless IC companies do not operate an IC fabrication facility of their own.

Figure 1 shows the 2017 fabless company share of IC sales by company headquarters location.  At 53%, U.S. companies accounted for the greatest share of fabless IC sales last year, although this share was down from 69% in 2010 (due in part to the acquisition of U.S.-based Broadcom by Singapore-based Avago). Broadcom Limited currently describes itself as a “co-headquartered” company with its headquarters in San Jose, California and Singapore, but it is in the process of establishing its headquarters entirely in the U.S. Once this takes place, the U.S. share of the fabless companies IC sales will again be about 69%.

Figure 1

Figure 1

Taiwan captured 16% share of total fabless company IC sales in 2017, about the same percentage that it held in 2010.  MediaTek, Novatek, and Realtek each had more than $1.0 billion in IC sales last year and each was ranked among the top-20 largest fabless IC companies.

China is playing a bigger role in the fabless IC market.  Since 2010, the largest fabless IC marketshare increase has come from the Chinese suppliers, which captured 5% share in 2010 but represented 11% of total fabless IC sales in 2017.  Figure 2 shows that 10 Chinese fabless companies were included in the top-50 fabless IC supplier list in 2017 compared to only one company in 2009. Unigroup was the largest Chinese fabless IC supplier (and ninth-largest global fabless supplier) in 2017 with sales of $2.1 billion. It is worth noting that when excluding the internal transfers of HiSilicon (over 90% of its sales go to its parent company Huawei), ZTE, and Datang, the Chinese share of the fabless market drops to about 6%.

Figure 2

Figure 2

European companies held only 2% of the fabless IC company marketshare in 2017 as compared to 4% in 2010. The loss of share was due to the acquisition of U.K.-based CSR, the second-largest European fabless IC supplier, by U.S.-based Qualcomm in 1Q15 and the purchase of Germany-based Lantiq, the third-largest European fabless IC supplier, by Intel in 2Q15.  These acquisitions left U.K.-based Dialog ($1.4 billion in sales in 2017) and Norway-based Nordic ($236 million in sales in 2017) as the only two European-based fabless IC suppliers to make the list of top-50 fabless IC suppliers last year.

The fabless IC business model is not so prominent in Japan or in South Korea.  Megachips, which saw its 2017 sales jump by 40% to $640 million, was the largest Japan-based fabless IC supplier.  The lone South Korean company among the top-50 largest fabless suppliers was Silicon Works, which had a 15% increase in sales last year to $605 million.

Synopsys, Inc. (Nasdaq: SNPS) today announced it has acquired Silicon and Beyond Private Limited, a provider of high-speed SerDes technology used in data intensive applications such as machine learning, cloud computing, and networking. This acquisition demonstrates Synopsys’ continued focus on next-generation SerDes solutions, addressing the need for greater amounts of reliable data transfer between chips, backplane, and extended range optical interconnects. The acquisition also adds a team of R&D engineers with high-speed SerDes expertise to help designers meet their evolving design requirements.

The terms of the deal, which is not material to Synopsys financials, are not being disclosed.

“Silicon and Beyond’s high-speed SerDes technology enables designers to implement reliable, high-speed connectivity across long-reach channels in high-end computing applications,” said Joachim Kunkel, general manager of the Solutions Group at Synopsys. “This acquisition underscores Synopsys’ commitment to expanding our DesignWare IP portfolio to help designers meet the challenging bandwidth and power requirements of advanced data-intensive SoCs.”

Synopsys is a provider of high-quality, silicon-proven IP solutions for SoC designs. The broad DesignWare IP portfolio includes logic libraries, embedded memories, embedded test, analog IP, wired and wireless interface IP, security IP, embedded processors and subsystems.

 

By Ando Yoichiro, SEMI Japan

In Tokyo, Shanghai, Moscow, London, Paris or New York – wherever you are in the world –Japanese vehicles passing by on the roadways are a common sight. Three big reasons are their high quality, reliability and engineering. But Japan’s automakers are also legendary for their industry breakthroughs. A few highlights:

  • In 1981, Honda introduced the first commercially available map-based car navigation system. The carmaker’s Electro Gyro-Cator used a gyroscope to detect rotation and other movements of the car.
  • In 1990, Mazda equipped its COSMO Eunos with the world’s first built-in GPS-navigation system.
  • In 1997, Toyota launched the world’s first mass-produced hybrid car — Prius.
  • In 1997, Toyota unveiled the world’s first production laser adaptive cruise control on its Celsior.
  • In 2009, Mitsubishi rolled out the world’s first mass-produced electric car – i-MiEV.

Off the roadways and often unheralded, it is supply chain companies including Japanese semiconductor makers that were a key engine of these innovations as they continue their rich history of driving automotive advances. Here’s a closer look at some of the key players and why they matter.

Who Makes Automotive Semiconductors?

Unlike other semiconductors, automotive chips are manufactured not only by integrated device manufacturers (IDMs) but also by captive fabs and automotive components makers such as Toyota and Denso.

Denso, headquartered in Aichi prefecture, started in 1949 as a spin-off of Toyota’s electric components unit. Since 2009, the company has been the world’s largest automotive components supplier. Because Denso’s chips are mostly consumed internally, the company’s manufacturing revenue is not publicly available, but analysts estimate Denso’s chip business exceeds 200 billion JPY or USD $1.9 billion.

Denso fab (source: Denso)

Denso fab (source: Denso)

Denso manufactures semiconductor components at two locations. Its Kota plant in Aichi prefecture manufactures power and logic chips, and the company’s Iwate (Iwate prefecture) facility, acquired from Fujitsu in 2012, produces semiconductor wafers and sensors.

Denso is developing SiC wafers for its power chips and plans to manufacture SiC inverters by 2020. Recently, the company announced joint research on Ga2O3 for power devices with FLOSFIA, a tech startup spun off from Kyoto University. In 2017, Denso established a semiconductor IP design company, NSITEXE, in Tokyo to design semiconductor IP cores – the semiconductor components that are key to autonomous driving.

Toyota has been manufacturing semiconductor chips at its Hirose Plant since 1989. The semiconductor fab design and manufacturing technologies originated at Toshiba and moved to Toyota under a technology transfer agreement signed in 1987. In the power semiconductor arena, Toyota is jointly developing SiC devices with Denso and Toyota Central Research and Development Labs.

Other car and component makers like Honda, Nissan, Hitachi Automotive Systems, Aishin Seiki and Calsonic Kansei are also developing and designing semiconductor chips.

Microcontroller Units                                     

Microcontrollers (MCUs) were first employed in automobiles in the late 1970s to electronically control engines for higher fuel efficiency. Today, up to 80 MCUs are typically used in a car for powertrain controls (engine, fuel management and fuel injection), body controls (seat, door, window, air conditioning and lighting), safety controls (brake, EPS, suspensions, air bags and anti-collision) and infotainment.

In December 2015, the microcontroller unit (MCU) supply chain experienced a major consolidation with the nearly $12 billion acquisition of Freescale Semiconductor by NXP Semiconductors, catapulting NXP to the top of the MCU market. NXP and Freescale were ranked second and third in global market share, after Renesas Electronics, at the time.

Renesas held 40 percent global market share before its Ibaraki fab suffered severe earthquake damage in 2011 and hemorrhaged share after the loss of production capacity.  Renasas continues to recapture market share at a rapid clip, with a growth rate of 5.2 percent and 24.6 percent, respectively, in the first two quarters of 2017, and claims it still leads the global MCU market for automotive applications with 30 percent share (source: Diamond Online, August 2017).

Renesas was established as a joint venture of Hitachi and Mitsubishi and later merged with NEC Electronics. Consequently, Resesas’s MCUs, designed with Hitachi’s SH MCU cores, recently began a gradual shift to Arm cores. Renasas MCUs designed at 40nm or less nodes have been manufactured at TSMC, a Taiwan foundry, since 2012.

Renesas’s microcontrollers in a car (source: EE News Europe Automotive)

Renesas’s microcontrollers in a car
(source: EE News Europe Automotive)

CMOS Image Sensors

CMOS image sensors serve as eyes of cars, performing camera functions on-chip. Today, automobiles typically are fitted with about 10 CMOS image sensors, a number forecast to grow to almost 20 by 2020 (source: Monoist, 2016). The sensor was originally used as a backup monitor but deployments grew with the advent of Advanced Driver-Assistance Systems (ADAS). The CMOS image sensor market is estimated to reach $2.3 billion USD by 2021, according to IC Insights. Sony is the global CMOS image sensor market leader, and ON Semiconductor and OmniVision Technology are big players in this growing segment.

In 2016, Denso started using Sony’s CMOS image sensors to detect pedestrians during night driving. Sony manufactures CMOS sensors at Kumamoto TEC and Nagasaki TEC on Kyusyu Island. In 2017, Sony acquired Toshiba’s Oita plant to increase the capacity to respond to the growing demand for backside illumination CMOS image sensors for higher resolution images at a low-light environments.

Sony’s 7.42 megapixel CMOS image sensor for automotive cameras (source: Sony Corporation)

Sony’s 7.42 megapixel CMOS image sensor for automotive cameras
(source: Sony Corporation)

Power Devices

Power semiconductors provide electrical control functions such as rectification, voltage regulation (boost/step-down), and DA/AD conversion. The automotive industry’s migration from fossil fuel vehicles to hybrid and electric vehicles is driving strong demand for power devices. The leading power device makers are competing to develop higher performance devices on new materials such as SiC and GaN.

For the past five years, the Japan government has funded SiC power device research and development (R&D) projects and, in 2016, the National Institute of Advanced Industrial Science and Technology (AIST) and Sumitomo Electric Industries built a 150mm SiC wafer line at AIST’s Super Clean Room Facility in Tsukuba, Ibaraki. The facility supports volume manufacturing, reliability testing and quality assurance.

Rohm is driving the Japan SiC power device industry. Rohm manufactures SiC power devices on 75mm, 100mm and 150mm wafers. In 2009, Rohm acquired a German SiC wafer maker, SiCrystal, which started supplying 150mm wafers to Rohm in 2013. Rohm also acquired Renesas Electronics’s Shiga plant (200mm line) in 2016 to manufacture SiC power and other discrete devices.

Fuji Electric manufactures various power products including SiC power devices. Fully 30 percent of its products ship to the automotive industry. In 2013, the company built a new SiC line in its Matsumoto plant that includes both wafer process and packaging facilities. Fuji Electric now develops high-performance SiC devices on the latest 150mm SiC wafer technology.

Toyota and Denso round out the Japan SiC power device industry. Denso markets its 150mm SiC technology under the “REVOSIC” brand. In 2013, Toyota built a SiC R&D facility at its Hirose plant for future SiC captive manufacturing.

SiC power semiconductors to improve vehicle’s fuel efficiency by 10 percent (target) (source: Toyota Motor Corp.)

SiC power semiconductors to improve vehicle’s fuel efficiency by 10 percent (target)
(source: Toyota Motor Corp.)

SEMICON will Update You on Automotive Semiconductor Market

Heavy investments in the development of autonomous vehicles and the continuing expansion of the electric car market promise to bolster the automotive semiconductor market in the coming years and beyond. In light of Japan’s leading automotive chip manufacturing industry, SEMICON Japan and all other SEMICON shows in 2018 will spotlight this important segment.

Originally published on the SEMI blog.

By Jay Chittooran, SEMI Public Policy

Following through on his 2016 campaign promise, President Trump is implementing trade policies that buck conventional wisdom in Washington, D.C. and among U.S. businesses. Stiff tariffs and the dismantling of longstanding trade agreements – cornerstones of these new actions – will ripple through the semiconductor industry with particularly damaging effect. China, a chief target of criticism from President Trump, has again found itself in the crosshairs of the administration, with trade tensions rising to a fever pitch.

The Trump Administration has long criticized China for what it considers unfair trade practices, often zeroing in on intellectual property. In August 2017, the Office of the U.S. Trade Representative (USTR), charged with developing and recommending U.S trade policy to the president, launched a Section 301 investigation into whether China’s practice of forced technology transfer has discriminated against U.S. firms. As the probe continues, it is becoming increasingly clear that the United States will impose tariffs on China based on its current findings. Reports suggest that the tariffs could come soon, hitting a range of products from consumer electronics to toys. Other measures could include tightening restrictions on the trade of dual-use goods – those with both commercial and military applications – curbing Chinese investment in the United States, and imposing strict limits on the number of visas issued to Chinese citizens.

With China a major and intensifying force in the semiconductor supply chain, raising tariffs hangs like the Sword of Damocles over the U.S. and global economies. A tariff-ignited trade war with China could stifle innovation, undermine the long-term health of the semiconductor industry, and lead to unintended consequences such as higher consumer prices, lower productivity, job losses and, on a global scale, a brake on economic growth.

Other recently announced U.S. trade actions could also cloud the future for semiconductor companies. The Trump administration, based on two separate Section 232 investigations claiming that overproduction of both steel and aluminum are a threat to U.S. national security, recently levied a series of tariffs and quotas on every country except Canada and Mexico. While these tariffs have yet to take effect, the mere prospect has angered U.S. trading partners – most notably Korea, the European Union and China. Several countries have threatened retaliatory action and others have taken their case to the World Trade Organization.

Trade is oxygen to the semiconductor industry, which grew by nearly 30 percent last year and is expected to be valued at an estimated $1 trillion by 2030. Make no mistake: SEMI fully supports efforts to buttress intellectual property protections. However, the Trump administration’s unfolding trade policy could antagonize U.S. trade partners.

For its part, SEMI is weighing in with USTR on these issues, underscoring the critical importance of trade to the semiconductor industry as we educate policymakers on trade barriers to industry growth and encourage unobstructed cross-border commerce to advance semiconductors and the emerging technologies they enable. On behalf of our members, we continue our work to increase global market access and lessen the regulatory burden on global trade. If you are interested in more information on trade, or how to be involved in SEMI’s public policy program, please contact Jay Chittooran, Public Policy Manager, at [email protected].

Originally published on the SEMI blog.

SEMICON West, the flagship U.S. event for connecting the electronics manufacturing supply chain, has opened registration for the July 10-12, 2018, exposition at the Moscone Center in San Francisco, California. Building on a year of record-breaking industry growth, SEMICON West 2018 will highlight the engines of future industry expansion including smart transportation, smart manufacturing, smart medtech, smart data, big data, artificial intelligence, blockchain and the Internet of Things (IoT). Click here to register.

Themed BEYOND SMART, SEMICON West 2018 sets it sights on the growing impact of cognitive learning technologies and other industry disruptors with programs and new Smart Pavilions including Smart Manufacturing and Smart Transportation to showcase interactive technologies for immersive, virtual experiences. Each Pavilion will feature a Meet the Experts Theater with an intimate setting for attendees to engage informally with industry thought leaders.

Smart Workforce Pavilion: Connecting Next-Generation Talent with the Microelectronics Industry

The SEMI Smart Workforce Pavilion at SEMICON West 2018 leverages the largest microelectronic manufacturing event in North America to draw the next generation of innovators. Reliant on a highly skilled workforce, the industry today is saddled with thousands of job openings and fierce competition for workers, bringing renewed focus to strengthening its talent pipeline. Educational and engaging, the Pavilion connects the microelectronics industry with college students and entry-level professionals interested in career opportunities.

In the Workforce Pavilion “Meet the Experts” Theater, industry engineers will share insights and inspiration about their personal working experiences and career advisors will offer best practices. Recruiters from top companies will be available for on-the-spot interviews, while career coaches offer mentoring, tips on cover letter and resume writing, job-search guidance, and more. Visitors will learn more about the industry’s vital role in technological innovation in today’s connected world.

This year, SEMI will also host High Tech U (HTU) in conjunction with the SEMICON West Smart Workforce Pavilion. The highly-interactive program supported by Advantest, Edwards, KLA-Tencor and TEL exposes high school students to STEM education pathways and stimulates excitement about careers in the industry.

Free registration with three-day access and shuttle service to SEMICON West are available to all college students. Students are encouraged to register for the mentor program, attend keynotes and tour the exposition hall to see everything the industry has to offer.  To learn more, visit Smart Workforce Pavilion and College Track to preview how students can enter to win a $500 hiring bonus!

Three Ways to Experience the Expo

Attendees can tailor their SEMICON West experience to meet their specific interests. The All-In pass covers every program and event, while the Thought-Leadership and Expo-Only packages offer scaled pricing and program options. Attendees can also purchase select events and programs à la carte, including exclusive IEEE-sponsored sessions, the SEMI Market Symposium, and the STEM Rocks After-hours Party, a fundraising event to support the SEMI Foundation.