Category Archives: Science and Research

The first all-optical permanent on-chip memory has been developed by scientists of Karlsruhe Institute of Technology (KIT) and the universities of Münster, Oxford, and Exeter. This is an important step on the way towards optical computers. Phase change materials that change their optical properties depending on the arrangement of the atoms allow for the storage of several bits in a single cell. The researchers present their development in the journal Nature Photonics.

Light determines the future of information and communication technology: With optical elements, computers can work more rapidly and more efficiently. Optical fibers have long since been used for the transmission of data with light. But on a computer, data are still processed and stored electronically. Electronic exchange of data between processors and the memory limits the speed of modern computers. To overcome this so-called von Neumann bottleneck, it is not sufficient to optically connect memory and processor, as the optical signals have to be converted into electric signals again. Scientists, hence, look for methods to carry out calculations and data storage in a purely optical manner.

Scientists of KIT, the University of Münster, Oxford University, and Exeter University have now developed the first all-optical, non-volatile on-chip memory. “Optical bits can be written at frequencies of up to a gigahertz. This allows for extremely quick data storage by our all-photonic memory,” Professor Wolfram Pernice explains. Pernice headed a working group of the KIT Institute of Nanotechnology (INT) and recently moved to the University of Münster. “The memory is compatible not only with conventional optical fiber data transmission, but also with latest processors,” Professor Harish Bhaskaran of Oxford University adds.

The new memory can store data for decades even when the power is removed. Its capacity to store many bits in a single cell of a billionth of a meter in size (multi-level memory) also is highly attractive. Instead of the usual information values of 0 and 1, several states can be stored in an element and even autonomous calculations can be made. This is due to so-called phase change materials, novel materials that change their optical properties depending on the arrangement of the atoms: Within shortest periods of time, they can change between crystalline (regular) and amorphous (irregular) states. For the memory, the scientists used the phase change material Ge2Sb2Te5 (GST). The change from crystalline to amorphous (storing data) and from amorphous to crystalline (erasing data) is initiated by ultrashort light pulses. For reading out the data, weak light pulses are used.

Permanent all-optical on-chip memories might considerably increase future performance of computers and reduce their energy consumption. Together with all-optical connections, they might reduce latencies. Energy-intensive conversion of optical signals into electronic signals and vice versa would no longer be required.

The Semiconductor Industry Association (SIA), in consultation with Semiconductor Research Corporation (SRC), today presented its University Research Award to professors from the University of Texas at Austin (UT Austin) and Carnegie Mellon University (CMU) in recognition of their outstanding contributions to semiconductor research.

Dr. Grant Willson, professor of chemistry and chemical engineering and the Rashid Engineering Regents Chair at UT Austin, received the honor for excellence in technology research, while Dr. Larry Pileggi, Tanoto Professor of Electrical and Computer Engineering at CMU, was recognized for excellence in design research.

“Research is the lifeblood of innovation and the U.S. semiconductor industry,” said John Neuffer, president and CEO of the Semiconductor Industry Association, which represents U.S. leadership in semiconductor manufacturing, design and research. “Dr. Willson and Dr. Pileggi have spearheaded pioneering research that has moved our industry forward and helped keep America at the leading edge of innovation. It is with great pleasure that we recognize Dr. Willson and Dr. Pileggi for their tremendous and important accomplishments.”

“SRC’s mission is to drive focused industry research to both advance state-of-the-art technology and continue to create a pipeline of qualified professionals who will serve as next-generation leaders for the industry,” said Ken Hansen, SRC CEO and President. “Dr. Willson and Dr. Pileggi exemplify that spirit of innovation, and we’re pleased to honor them for their achievements.”

Dr. Willson joined the faculties of the Departments of Chemical Engineering and Chemistry at UT Austin in 1993. He received his BS and Ph.D. in Organic Chemistry from the University of California at Berkeley and an MS degree in Organic Chemistry from San Diego State University. He came to UT Austin from his position as an IBM Fellow and Manager of the Polymer Science and Technology area at the IBM Almaden Research Center in San Jose, Calif. He joined IBM after serving on the faculties of California State University, Long Beach and the University of California, San Diego.

Dr. Pileggi joined the faculty at CMU in 1996. His professional background includes more than 30 years of experience in IC design, Electronic Design Automation and university education and research. Dr. Pileggi co-founded Extreme DA Corporation in 2003 and served as its advisor. He also co-founded and served as Chief Technology Officer of Fabbrix, Inc in 2007. He received his Ph.D. in Electrical and Computer Engineering from CMU in 1989 and was also a faculty member at UT Austin before returning to CMU.

The University Research Award was established in 1995 to recognize lifetime research contributions to the U.S. semiconductor industry by university faculty.

Researchers in the University of Toronto’s Edward S. Rogers Sr. Department of Electrical & Computer Engineering have designed and tested a new class of solar-sensitive nanoparticle that outshines the current state of the art employing this new class of technology.

This new form of solid, stable light-sensitive nanoparticles, called colloidal quantum dots, could lead to cheaper and more flexible solar cells, as well as better gas sensors, infrared lasers, infrared light emitting diodes and more.

Collecting sunlight using these tiny colloidal quantum dots depends on two types of semiconductors: n-type, which are rich in electrons; and p-type, which are poor in electrons. The problem? When exposed to the air, n-type materials bind to oxygen atoms, give up their electrons, and turn into p-type. Ning and colleagues modelled and demonstrated a new colloidal quantum dot n-type material that does not bind oxygen when exposed to air.

Maintaining stable n- and p-type layers simultaneously not only boosts the efficiency of light absorption, it opens up a world of new optoelectronic devices that capitalize on the best properties of both light and electricity. For the average person, this means more sophisticated weather satellites, remote controllers, satellite communication, or pollution detectors.

“This is a material innovation, that’s the first part, and with this new material we can build new device structures,” said Ning. “Iodide is almost a perfect ligand for these quantum solar cells with both high efficiency and air stability—no one has shown that before.”

Ning’s new hybrid n- and p-type material achieved solar power conversion efficiency up to eight per cent—among the best results reported to date.

But improved performance is just a start for this new quantum-dot-based solar cell architecture. The powerful little dots could be mixed into inks and painted or printed onto thin, flexible surfaces, such as roofing shingles, dramatically lowering the cost and accessibility of solar power for millions of people.

“The field of colloidal quantum dot photovoltaics requires continued improvement in absolute performance, or power conversion efficiency,” said Sargent. “The field has moved fast, and keeps moving fast, but we need to work toward bringing performance to commercially compelling levels.”

This research was conducted in collaboration with Dalhousie University, King Abdullah University of Science and Technology and Huazhong University of Science and Technology.

CEA-Leti, Fraunhofer IPMS-CNT and three European companies — IPDiA, Picosun and SENTECH Instruments — have launched a project to industrialize 3D integrated capacitors with world-record density.

The two-year, EC-funded PICS project is designed to develop a disruptive technology through the development of innovative ALD materials and tools that results in a new world record for integrated capacitor densities (over 500nF/mm2) combined with higher breakdown voltages. It will strengthen the SME partners’ position in several markets, such as automotive, medical and lighting, by offering an even higher integration level and more miniaturization.

The fast development of applications based on smart and miniaturized sensors in aerospace, medical, lighting and automotive domains has increasingly linked requirements of electronic modules to higher integration levels and miniaturization (to increase the functionality combination and complexity within a single package). At the same time, reliability and robustness are required to ensure long operation and placement of the sensors as close as possible to the “hottest” areas for efficient monitoring.

For these applications, passive components are no longer commodities. Capacitors are indeed key components in electronic modules, and high-capacitance density is required to optimize – among other performance requirements – power-supply and high decoupling capabilities. Dramatically improved capacitance density also is required because of the smaller size of the package.

IPDiA has for many years developed an integrated capacitors technology that out performs current technologies (e.g. tantalum capacitors) in terms of stability in temperature, voltage, aging and reliability. Now, a technological solution is needed to achieve higher capacitance densities, reduce power consumption and improve reliability. The key enabling technology chosen to bridge this technological gap is atomic layer deposition (ALD) that allows an impressive quality of dielectric.

The PICS project consortium will address all related technological challenges and set up a cost-effective industrial solution. Picosun will develop ALD tools adapted to IPDiA’s 3D trench capacitors. SENTECH Instruments will provide a new solution to more accurately etch high-K dielectric materials. CEA-Leti and Fraunhofer IPMS-CNT will help the SMEs create innovative technological solutions to improve their competitiveness and gain market share. Finally, IPDiA will manage the industrialization of these processes.

About PICS The PICS project has received funding from the European Union’s Seventh Framework Program managed by REA-Research Executive Agency (FP7/2007-2013) under grant agreement n° FP7-SME-2013-2-606149.

The PICS Project will last for two years and the consortium consists of three SMEs: IPDiA (France, coordinator), Picosun (Finland) and Sentech Instruments (Germany), and two leading research organizations: Fraunhofer IPMS-CNT (Germany) and CEA-Leti (France). Project objectives are to bring to mass production high density and high voltage capacitors based on ALD and etching development. Further information is available at


About IPDiA IPDiA is a preferred supplier of high performance, high stability and high reliability silicon passive components to customers in the medical, automotive, communication, computer, industrial, and defense/aerospace markets. The company portfolio includes standard component devices such as silicon capacitors, RF filters, RF baluns, ESD protection devices as well as customized devices. IPDiA headquarters are located in Caen, France. The company operates design centers, sales and marketing offices and a manufacturing facility certified ISO 9001 / 14001 / 18001 / 13485 as well as ISO TS 16949 for the Automotive market. For further information, please visit

About Picosun Picosun is the world leading provider of ALD solutions for global industries. Picosun’s pioneering, unmatched expertise in ALD equipment design and manufacturing reaches back to the invention of the technology itself. Today, PICOSUN™ ALD systems are in daily production use in numerous prominent industries around the globe. Picosun is based in Finland, it has its subsidiaries in USA and Singapore, and world-wide sales and support network. For more information, visit


About SENTECH Instruments SENTECH Instruments GmbH develops, manufactures, and sells worldwide advanced quality instrumentation for Plasma Process Technology, Thin Film Measurement, and Photovoltaics. The medium-sized company founded in 1990 has grown fast over the last decades and has today 60 employees. SENTECH is located in Berlin, capital of Germany, and has moved to its own company building in 2010 in order to expand its production facilities.

SENTECH plasma etchers and deposition systems including ALD support leading-edge applications. They feature high flexibility, reliability, and low cost of ownership. SENTECH’s plasma products are developed and manufactured in-house and thus allow for customer-specific adaptations. More than 300 units have been sold to research facilities and industry for applications in nanotechnology, micro-optics, and optoelectronics. More information:

About Fraunhofer IPMS-CNT Fraunhofer IPMS-CNT is a German research institute that develops advanced 300 mm semiconductor process solutions for Front-End and Back-End-of Line applications on state-of-the-art process- and analytical equipment. Research is focused on process development enabling 300 mm production, innovative materials and its integration into Systems (SoC/SiP) as well as nanopatterning through electron beam lithography. Fraunhofer is largest application-oriented research organization in Europe with 66 institutes and 22,000 employees. More information:

About CEA-Leti By creating innovation and transferring it to industry, Leti is the bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. Backed by its portfolio of 2,200 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched more than 50 startups. Its 8,000m² of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. Leti’s staff of more than 1,700 includes 200 assignees from partner companies. Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo. Visit for more information.  

A new Department of Energy grant will fund research to advance an additive manufacturing technique for fabricating three-dimensional (3D) nanoscale structures from a variety of materials. Using high-speed, thermally-energized jets to deliver both precursor materials and inert gas, the research will focus on dramatically accelerating growth, improving the purity and increasing the aspect ratio of the 3D structures.

Known as focused electron beam induced deposition (FEBID), the technique delivers a tightly-focused beam of high energy electrons and an energetic jet of thermally excited precursor gases – both confined to the same spot on a substrate. Secondary electrons generated when the electron beam strikes the substrate cause decomposition of the precursor molecules, forming nanoscale 3D structures whose size, shape and location can be precisely controlled. This gas-jet assisted FEBID technique allows fabrication of high-purity nanoscale structures using a wide range of materials and combination of materials.


By allowing the rapid atom-by-atom “direct writing” of materials with controlled shape and topology, the work could lead to a nanoscale version of the 3D printing processes now revolutionizing fabrication of structures at the macro scale. The technique could be used to produce nano-electromechanical sensors and actuators, to modify the morphology and composition of nanostructured optical and magnetic materials to yield unique properties, and to engineer high performance interconnect interfaces for graphene and carbon nanotube-based electronic devices.

“This unique nanofabrication approach opens up new opportunities for on-demand growth of structures with high aspect ratios made from high-purity materials,” said Andrei Fedorov, the project’s leader and a professor in the Woodruff School of Mechanical Engineering at the Georgia Institute of Technology. “By providing truly nanoscale control of geometries, it will impact a broad range of applications in nanoelectronics and biosensing.”


Researchers have demonstrated the feasibility of the technique, and expect the three-year $660,000 grant to help them develop a fundamental understanding of how the process works, accelerate the rate of materials growth and provide improved control over the process. The research will include both theoretical modeling and experimental evaluation. Proof of principle for using thermally-energized gas jets as part of the FEBID technique was reported by Fedorov’s group in the journal Applied Physics Letters in 2011.

“Wherever electrons strike the surface, you can grow the deposit,” explained Fedorov. “That provides a tool for growing complex three-dimensional structures from a variety of materials with resolution at the tens of nanometers. Electron beam induced deposition is much like inkjet printing, except that it uses electrons and precursor molecules in a vacuum chamber.”

Two major challenges lie ahead for using the technique to manufacture 3D nanostructures: increasing the rate of deposition and eliminating the unwanted deposits of carbon that are formed as part of the process. To address these challenges, Fedorov and his team are using energetic jets of inert argon gas to clean substrate surfaces and carefully tune the energy of the desired molecules delivered in another jet to enhance the rate at which the precursor sticks to the substrate.

“If the energy of the jet is sufficiently high, the inert gas molecules striking the surface can knock away the adsorbed hydrocarbon contamination so that there is no parasitic carbon co-deposition,” he said. “We can also tune the properties of the precursor molecules so they stick more effectively to the surface. We have shown that we can increase the rate of growth by an order of magnitude or more while maintaining a high aspect ratio of deposited nanostructures.”

Overall, about two dozen materials have been successfully deposited using FEBID on different substrates, including semiconductors, dielectrics, metals and even plastics. The researchers also plan to create nanostructures containing more than one material, allowing them to create unique properties not available in each individual material. Examples might include new types of ferromagnetic materials and photonic bandgap structures with unique properties.

Fedorov’s group has used FEBID to fabricate low-resistance contacts to carbon nanotubes and graphene, a unique carbon-based material with attractive electronic properties.

Major technical challenges for the project include making tightly focused jets of thermally-energized precursor molecules to provide precise control of the fabrication. In operation, precursor molecules enter the reaction chamber from the micron-scale nozzle at sonic speeds, and accelerate in the vacuum environment to even greater speed, forming a molecular beam that impinges on the substrate. To make structures of the desired morphology, researchers will have to control the spreading of the generated molecular beam and its energy state at the point of contract with the substrate.

“We will be growing structures ranging in size from tens to hundreds of nanometers,” Fedorov noted. “This means we will not only have to confine electrons to very small regions, but we will also need to confine the precursor molecules to these same domains.”

The FEBID technique will likely not be used for high-volume fabrication because the process is difficult to scale up, Fedorov said. Accelerating the deposition rate will allow more rapid fabrication, but the 3D structures will still need to be produced one at a time. A partial solution to the scale-up challenge lies in the use of multiple electron beams and precursor jets operating in parallel.

The new technique will allow researchers to take better advantage of the unique properties of materials at the nanometer scale. Researchers will also have to account for those differences in developing the new manufacturing technique, as the interactions between electrons, precursor materials in the jet and substrate continually change with growth of the deposit.

“This research will open up the potential for some new discoveries in areas we may not be able to predict now,” said Fedorov. “We need to understand the basic physics of what is happening. That basic understanding could lead us to some truly unique applied capabilities, and the possibilities are almost limitless.”

Abingdon, EnglandOxford Instruments (OXIG:LSE) has acquired Asylum Research (Santa Barbara, CA), a maker of scanning probe microscopes (SPM) with subsidiaries in the UK, Germany, and Taiwan. Its products are used by academic and industrial customers across the world for a wide range of materials and bioscience applications.

Asylum Research is being acquired from its management for an initial debt free, cash free consideration of $32 million with a deferred element of up to $48 million payable over three years depending on performance. Asylum Research generated Earnings Before Interest and Taxation (EBIT) of $1.1 million in 2011 from revenue of $19.6 million, and had gross assets of $6.2 million. The acquisition will be funded from existing facilities and is expected to be completed before the end of December 2012.

The acquisition of Asylum Research is in line with Oxford Instruments’ 14 Cubed objectives, to achieve a 14% average compound annual growth rate in revenues and a 14% return on sales by the year ending March 2014.  This acquisition contributes to the planned acquisition element of the revenue growth objective. While Asylum Research is expected to deliver less than the 14% targeted margin in this and the next financial year, following the acquisition the 14 Cubed margin target for the Group remains unchanged.

Approximately 60% of Asylum Research turnover comes from customers working in the materials science area where the customer base and routes to market are shared with Oxford Instruments. This opens opportunities for market synergies and the development of new integrated products. The remainder of Asylum Research’s turnover is in the bio-nano area where SPM instruments are used for research into soft materials such as DNA. This market provides a new growth opportunity for Oxford Instruments.

Jonathan Flint, Chief Executive of Oxford Instruments, noted, "The acquisition of Asylum Research significantly increases our footprint in the nanotechnology space and complements our strong position in electron microscopes with a presence in another fundamental nanotechnology measurement technique. The acquisition also gives us access to the rapidly growing bio-nano market as it allows customers to perform analysis of organic samples in their natural liquid environments, something which cannot readily be done using electron microscopes.