Category Archives: Semiconductors

North America-based manufacturers of semiconductor equipment posted $2.42 billion in billings worldwide in March 2018 (three-month average basis), according to the March Equipment Market Data Subscription (EMDS) Billings Report published today by SEMI. The billings figure is 0.4 percent higher than the final February 2018 level of $2.41 billion, and is 16.7 percent higher than the March 2017 billings level of $2.08 billion.

“March 2018 monthly billings for North American equipment manufacturers remain at robust levels,” said Ajit Manocha, president and CEO of SEMI. “We are seeing sustained strength in the global semiconductor equipment market, aligning with our expectation for a fourth consecutive year of spending growth.”

The SEMI Billings report uses three-month moving averages of worldwide billings for North American-based semiconductor equipment manufacturers. Billings figures are in millions of U.S. dollars.

Billings
(3-mo. avg)
Year-Over-Year
October 2017
$2,019.3
23.9%
November 2017
$2,052.3
27.2%
December 2017
$2,398.4
28.3%
January 2018
$2,370.1
27.5%
February 2018 (final)
$2,417.8
22.5%
March 2018 (prelim)
$2,426.9
16.7%

Source: SEMI (www.semi.org), April 2018
SEMI publishes a monthly North American Billings report and issues the Worldwide Semiconductor Equipment Market Statistics (WWSEMS) report in collaboration with the Semiconductor Equipment Association of Japan (SEAJ).

By Walt Custer, Custer Consulting Group

Global Manufacturing Growth has Slowed, but is Still Positive (Chart 1)

Most key countries/regions saw a slowdown in growth in March based on their respective Purchasing Managers Indices. And in one case – South Korea – manufacturing moved into contraction.

February 2018 March 2018
Japan 54.1 53.1
South Korea 50.3 49.1
Taiwan 56.0 55.3
China 51.6 51.0
Europe 58.6 56.6
USA 60.8 59.3

custer-1-424

PMI Points to More Modest Expansion (Chart 2)

The global Purchasing Managers Index is a timely and readily available leading indicator for both world semiconductor and semiconductor capital equipment shipments. PMI values greater than 50 indicate expanding manufacturing activity.  See www.markiteconomics.com for PMI values for all major countries.

 

Recent semiconductor equipment, semiconductor and PMI 3-month (3/12) world growth rates were:

SEMI Equipment +29% February
Semiconductors                +21% February
PMI (squared) +4% March

The PMI leading indicator now points to more modest but still positive growth ahead.

custer-2-424

Semiconductor Industry Still has Legs (Chart 3)

Another useful and timely leading indicator is a composite of monthly Taiwan Chip Foundry sales.  Taiwan-listed companies publish their revenues about 10 days after the month closes. Chart 3 compares the composite monthly revenues of 14 Taiwan listed foundries vs. global semiconductor sales. Due to Lunar New year shutdowns, February 2018 was weak but foundry sales rebounded in March. Chip demand appears to be holding!

custer-3-424

Originally published on the SEMI blog.

Driven by strong growth in the memory market, worldwide semiconductor revenue totaled $420.4 billion in 2017, a 21.6 percent increase from 2016 revenue of $345.9 billion, according to final results by Gartner, Inc.

“2017 saw two semiconductor industry milestones — revenue surpassed $400 billion, and Intel, the No. 1 vendor for the last 25 years, was pushed into second place by Samsung Electronics,” said George Brocklehurst, research director at Gartner. “Both milestones happened due to rapid growth in the memory market as undersupply drove pricing for DRAM and NAND flash higher.”

The memory market surged nearly $50 billion to reach $130 billion in 2017, a 61.8 percent increase from 2016. Samsung’s memory revenue alone increased nearly $20 billion in 2017, moving the company into the top spot in 2017 (see Table 1). However, Gartner predicts that the company’s lead will be short-lived and will disappear when the memory market goes into its bust cycle, most likely in late 2019.

Table 1. Top 10 Semiconductor Vendors by Revenue, Worldwide, 2017 (Millions of U.S. Dollars)

2017 Rank

2016 Rank

Vendor

2017 Revenue

2017 Market

Share (%)

2016 Revenue

2016-2017 Growth (%)

1

2

Samsung Electronics

59,875

14.2

40,104

49.3

2

1

Intel

58,725

14.0

54,091

8.6

3

4

SK hynix

26,370

6.3

14,681

79.6

4

5

Micron Technology

22,895

5.4

13,381

71.1

5

3

Qualcomm

16,099

3.8

15,415

4.4

6

6

Broadcom

15,405

3.7

13,223

16.4

7

7

Texas Instruments

13,506

3.2

11,899

13.5

8

8

Toshiba

12,408

3.0

9,918

25.1

9

17

Western Digital

9,159

2.2

4,170

119.6

10

9

NXP

8,750

2.1

9,314

-6.1

Others

177,201

42.2

159,655

11.0

Total Market

420,393

100.0

345,851

21.6

Source: Gartner (April 2018) 

The booming memory segment overshadowed strong growth in other categories in 2017. Nonmemory semiconductors grew $24.8 billion to reach $290 billion, representing a growth rate of 9.3 percent. Many of the broadline suppliers in the top 25 semiconductor vendors, including Texas Instruments, STMicroelectronics and Infineon, experience high growth as two key markets, industrial and automotive, continued double-digit growth, buoyed by broad-based growth across most other end markets.

The combined revenue of the top 10 semiconductor vendors increased by 30.6 percent during 2017 and accounted for 58 percent of the total market, outperforming the rest of the market, which saw a milder 11.0 percent revenue increase.

M&As are taking longer

2017 was a slower year for closing mergers and acquisitions (M&As), with roughly half the deal value and number of deals compared with 2016. However, the semiconductor industry continues to see escalating deal sizes with greater complexity, which are becoming more challenging to close. Avago set a record in its acquisition of Broadcom for $37 billion in 2016, and this record should soon be broken by Qualcomm’s acquisition of NXP Semiconductors for $44 billion.

The IoT is starting to pay vendor dividends

Growth in the Internet of Things (IoT) is having a significant impact on the semiconductor market, with application-specific standard products (ASSPs) for consumer applications up by 14.3 percent and industrial ASSPs rising by 19.1 percent in 2017. Semiconductors for wireless connectivity showed the highest growth with 19.3 percent in 2017, and topping $10 billion for the first time, despite reduced component prices and the static smartphone industry.

More detailed analysis is available to Gartner clients in the report “Market Share Analysis: Semiconductors, Worldwide, 2017.”

The next generation of energy-efficient power electronics, high-frequency communication systems, and solid-state lighting rely on materials known as wide bandgap semiconductors. Circuits based on these materials can operate at much higher power densities and with lower power losses than silicon-based circuits. These materials have enabled a revolution in LED lighting, which led to the 2014 Nobel Prize in physics.

In new experiments reported in Applied Physics Letters, from AIP Publishing, researchers have shown that a wide-bandgap semiconductor called gallium oxide (Ga2O3) can be engineered into nanometer-scale structures that allow electrons to move much faster within the crystal structure. With electrons that move with such ease, Ga2O3 could be a promising material for applications such as high-frequency communication systems and energy-efficient power electronics.

Schematic stack and the scanning electron microscopic image of the β-(AlxGa1-x)2O3/Ga2O3 modulation-doped field effect transistor. Credit: Choong Hee Lee and Yuewei Zhang

Schematic stack and the scanning electron microscopic image of the β-(AlxGa1-x)2O3/Ga2O3 modulation-doped field effect transistor. Credit: Choong Hee Lee and Yuewei Zhang

“Gallium oxide has the potential to enable transistors that would surpass current technology,” said Siddharth Rajan of Ohio State University, who led the research.

Because Ga2O3 has one of the largest bandgaps (the energy needed to excite an electron so that it’s conductive) of the wide bandgap materials being developed as alternatives to silicon, it’s especially useful for high-power and high-frequency devices. It’s also unique among wide bandgap semiconductors in that it can be produced directly from its molten form, which enables large-scale manufacturing of high-quality crystals.

For use in electronic devices, the electrons in the material must be able to move easily under an electric field, a property called high electron mobility. “That’s a key parameter for any device,” Rajan said. Normally, to populate a semiconductor with electrons, the material is doped with other elements. The problem, however, is that the dopants also scatter electrons, limiting the electron mobility of the material.

To solve this problem, the researchers used a technique known as modulation doping. The approach was first developed in 1979 by Takashi Mimura to create a gallium arsenide high-electron mobility transistor, which won the Kyoto Prize in 2017. While it is now a commonly used technique to achieve high mobility, its application to Ga2O3 is something new.

In their work, the researchers created a so-called semiconductor heterostructure, creating an atomically perfect interface between Ga2O3 and its alloy with aluminum, aluminum gallium oxide — two semiconductors with the same crystal structure but different energy gaps. A few nanometers away from the interface, embedded inside the aluminum gallium oxide, is a sheet of electron-donating impurities only a few atoms thick. The donated electrons transfer into the Ga2O3, forming a 2-D electron gas. But because the electrons are now also separated from the dopants (hence the term modulation doping) in the aluminum gallium oxide by a few nanometers, they scatter much less and remain highly mobile.

Using this technique, the researchers reached record mobilities. The researchers were also able to observe Shubnikov-de Haas oscillations, a quantum phenomenon in which increasing the strength of an external magnetic field causes the resistance of the material to oscillate. These oscillations confirm formation of the high mobility 2-D electron gas and allow the researchers to measure critical material properties.

Rajan explained that such modulation-doped structures could lead to a new class of quantum structures and electronics that harnesses the potential of Ga2O3.

SEMI, the global industry association representing the electronics manufacturing supply chain, today announced that in 2017 the global semiconductor materials market grew 9.6 percent while worldwide semiconductor revenues increased 21.6 percent from the prior year.

According to the SEMI Materials Market Data Subscription, total wafer fabrication materials and packaging materials totaled $27.8 billion and $19.1* billion, respectively, in 2017. In 2016, the wafer fabrication materials and packaging materials markets logged revenues of $24.7 billion and $18.2 billion, respectively, for 12.7 percent and 5.4 percent year-over-year increases.

For the eighth consecutive year, Taiwan, at $10.3 billion, was the largest consumer of semiconductor materials due to its large foundry and advanced packaging base. China solidified its hold on the second spot, followed by South Korea and Japan. The Taiwan, China, Europe and South Korea markets saw the strongest revenue growth, while the North America, Rest of World (ROW) and Japan materials markets experienced moderate single-digit growth. (The ROW region is defined as Singapore, Malaysia, Philippines, other areas of Southeast Asia and smaller global markets.)

2016 and 2017 Regional Semiconductor Materials Markets (US$ Billions)

Region
2016**
2017
% Change
Taiwan
9.20
10.29
12%
China
6.80
7.62
12%
South Korea
6.77
7.51
11%
Japan
6.76
7.05
4%
Rest of World
5.39
5.81
8%
North America
4.87
5.29
9%
Europe
3.03
3.36
11%
Total
42.82
46.93
10%

Source: SEMI, April 2018

Note: Summed subtotals may not equal the total due to rounding.

* Includes ceramic packages and flexible substrates

** 2016 data have been updated based on SEMI’s data collection programs

The Materials Market Data Subscription (MMDS) from SEMI provides current revenue data along with seven years of historical data and a two-year forecast. The annual subscription includes four quarterly updates for the materials segment reports revenue for seven market regions (North America, Europe, ROW, Japan, Taiwan, South Korea, and China).

SPTS Technologies, an Orbotech company and a supplier of advanced wafer processing solutions for the global semiconductor and related industries, announced today that it has been awarded the coveted Queen’s Award for Enterprise in Innovation 2018. The award recognizes SPTS’s development of novel physical vapor deposition (PVD) process solutions for Fan-Out Wafer Level Packaging (FOWLP) of semiconductor devices. Some of the advanced features and functionality developed for SPTS’s 300mm Sigma®fxP PVD system was made possible with funding assistance from a Welsh Government R&D grant. In addition to assessing the degree of innovation, the judging panel also evaluated SPTS on its corporate responsibility, which included employee affairs, customer and supplier relationships, and its impact on the environment and contribution to society.

“We are extremely proud to be recognized with the Queen’s Award for Enterprise in Innovation,” stated Kevin Crofton, Corporate Executive Vice President at Orbotech and President of SPTS Technologies. “We provide advanced wafer processing equipment to the world’s leading semiconductor and microelectronics manufacturers, and an ongoing program of research and development coupled with our ability to commercialize our innovation has been key to building and sustaining a profitable business. This award belongs to our entire global organization – from those directly involved in the development of our advanced PVD solutions for the fast growing FOWLP application sector, to those who sold, manufactured, installed and supported the many 300mm Sigma systems that we’ve shipped into our customer base.”

Mr Crofton added, “The success of our wafer processing solutions for advanced packaging is a testament to the quality and competitiveness of UK developed technologies and products in the global markets. We are also very pleased to share credit for this award with the Welsh Government who demonstrated their commitment with the R&D grant that helped fund this and other advanced packaging development programs here at SPTS.”

Economy Secretary, Ken Skates said: “Huge congratulations to SPTS on winning another Queens Award for Enterprise and Innovation. SPTS is a prominent global business in South East Wales and an increasingly successful exporter, and this prestigious award is a well-deserved recognition of the company’s hard work and innovation.”

“The Welsh Government is proud to work with dynamic and forward thinking companies such as SPTS and we are pleased to have supported the company’s project to design and develop advanced packaging processes for semiconductors. There is no doubt that companies like SPTS are increasingly vital to our economy which is why my Economic Action Plan, which was published in December, seeks to support businesses to innovate, introduce new products and services and rise to the challenges of the future.”

The Queen’s Awards for Enterprise are the UK’s most prestigious business awards, given only to companies or individuals who are outstanding in their field. Previously known as the Queen’s Awards to Industry, the Queen’s Awards for Enterprise were introduced in 1966 to acknowledge businesses with outstanding performance in three categories – International Trade, Innovation and Sustainable Development.  The awards are open to any company operating in the UK and are announced annually on 21 April, The Queen’s birthday.

Intel’s huge water recycling plant, now under construction in Hillsboro, Oregon, is a key step toward meeting the company’s long-term water reduction and recycling goals.

Intel is reducing the water it uses in computer chip manufacturing. It also has set a 2025 worldwide goal to return 100 percent of its water to communities and watersheds for local use. Over the past 20 years, Intel has conserved about 60 billion gallons of water.

When the three-year Hillsboro project is complete, the facility will be able to recycle about 1 billion gallons of water every year – the equivalent of 90,000 Olympic-size swimming pools. The plant will be Intel’s biggest water recycling facility in the world.

From inside his cab 150 feet above the Hillsboro, Oregon, job site, crane operator Darren Starks looks down on Intel’s under-construction water recycling plant. Starks can hoist skyward up to 40 tons at a time, and on a busy day is responsible for about 80 lifts of construction equipment, piping and other gear. When the recycling plant is completed, it will help Intel cut its manufacturing water use. Intel has set a goal to return 100 percent of its water to communities and watersheds for local use by 2025. (Credit: Walden Kirsch/Intel Corporation)

From inside his cab 150 feet above the Hillsboro, Oregon, job site, crane operator Darren Starks looks down on Intel’s under-construction water recycling plant. Starks can hoist skyward up to 40 tons at a time, and on a busy day is responsible for about 80 lifts of construction equipment, piping and other gear. When the recycling plant is completed, it will help Intel cut its manufacturing water use. Intel has set a goal to return 100 percent of its water to communities and watersheds for local use by 2025. (Credit: Walden Kirsch/Intel Corporation)

In a recent study published in Science, researchers at ICFO – The Institute of Photonic Sciences in Barcelona, Spain, along with other members of the Graphene Flagship, reached the ultimate level of light confinement. They have been able to confine light down to a space one atom, the smallest possible. This will pave the way to ultra-small optical switches, detectors and sensors.

Light can function as an ultra-fast communication channel, for example between different sections of a computer chip, but it can also be used for ultra-sensitive sensors or on-chip nanoscale lasers. There is currently much research into how to further shrink devices that control and guide light.

New techniques searching for ways to confine light into extremely tiny spaces, much smaller than current ones, have been on the rise. Researchers had previously found that metals can compress light below the wavelength-scale (diffraction limit), but more confinement would always come at the cost of more energy loss. This fundamental issue has now been overcome.

“Graphene keeps surprising us: nobody thought that confining light to the one-atom limit would be possible. It will open a completely new set of applications, such as optical communications and sensing at a scale below one nanometer,” said ICREA Professor Frank Koppens at ICFO – The Institute of Photonic Sciences in Barcelona, Spain, who led the research.

This team of researchers including those from ICFO (Spain), University of Minho (Portugal) and MIT (USA) used stacks of two-dimensional materials, called heterostructures, to build up a new nano-optical device. They took a graphene monolayer (which acts as a semi-metal), and stacked onto it a hexagonal boron nitride (hBN) monolayer (an insulator), and on top of this deposited an array of metallic rods. They used graphene because it can guide light in the form of plasmons, which are oscillations of the electrons, interacting strongly with light.

“At first we were looking for a new way to excite graphene plasmons. On the way, we found that the confinement was stronger than before and the additional losses minimal. So we decided to go to the one atom limit with surprising results,” said David Alcaraz Iranzo, the lead author from ICFO.

By sending infra-red light through their devices, the researchers observed how the plasmons propagated in between the metal and the graphene. To reach the smallest space conceivable, they decided to reduce the gap between the metal and graphene as much as possible to see if the confinement of light remained efficient, i.e. without additional energy losses. Strikingly, they saw that even when a monolayer of hBN was used as a spacer, the plasmons were still excited, and could propagate freely while being confined to a channel of just one atom thick. They managed to switch this plasmon propagation on and off, simply by applying an electrical voltage, demonstrating the control of light guided in channels smaller than one nanometer.

This enables new opto-electronic devices that are just one nanometer thick, such as ultra-small optical switches, detectors and sensors. Due to the paradigm shift in optical field confinement, extreme light-matter interactions can now be explored that were not accessible before. The atom-scale toolbox of two-dimensional materials has now also proven applicable for many types of new devices where both light and electrons can be controlled even down to the scale of a nanometer.

Professor Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship, and Chair of its Management Panel, added “While the flagship is driving the development of novel applications, in particular in the field of photonics and optoelectronics, we do not lose sight of fundamental research. The impressive results reported in this paper are a testimony to the relevance for cutting edge science of the Flagship work. Having reached the ultimate limit of light confinement could lead to new devices with unprecedented small dimensions.”

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, this week presented its Congressional Leadership Awards to Senator Mike Crapo (R-Idaho) and Congressman Peter Roskam (R-Ill.) for their leadership in enacting tax reform legislation, the Tax Cuts and Jobs Act of 2017. The Semiconductor Industry Association believes the corporate provisions included in the new law will strengthen the U.S. semiconductor industry by making it easier for semiconductor companies to continue to grow and innovate in the United States.

“We applaud Senator Crapo and Congressman Roskam for their steadfast support of policies that strengthen the semiconductor industry, the tech sector, and the U.S. economy,” said John Neuffer, SIA President & CEO. “We especially appreciate the award winners’ resolute leadership in advancing critical corporate tax reform legislation that will help sustain U.S. leadership in semiconductor research, design, and manufacturing. The new law has helped modernize the corporate tax code and improve the competitiveness of the U.S. semiconductor industry.”

“Semiconductors are foundational to America’s economic strength, national security, and technology leadership,” Neuffer said. “Corporate tax reform was urgently needed to help the industry take the next innovative steps forward and promote America’s global competitiveness. We salute Senator Crapo and Congressman Roskam for their instrumental work in helping to push the final bill across the goal line.”

SIA presented the Congressional Leadership Award in recognition of efforts to support policies that are vital to sustaining a strong and vibrant U.S. semiconductor industry.

Versum Materials, Inc. (NYSE: VSM), a materials supplier to the semiconductor industry, announced today the grand opening of its new research and development (R&D) facility at its semiconductor materials manufacturing site in Hometown, Pennsylvania. The ribbon-cutting ceremony took place April 10, 2018. Versum employees, members of the community, local government, customers and strategic partners attended the event.

The R&D laboratory is dedicated to new materials used in the manufacture of semiconductors. Scientists in the facility will synthesize and purify new molecules down to parts per billion impurity levels and below using the latest technologies available in the industry. The researchers can assess the applications for these new molecules and scale up the molecules to larger quantities for customer evaluation. These new organometallic compounds will be deposited on semiconductor wafers through cutting-edge technologies to test their performance for semiconductor applications. Additionally, the facility is capable of small-volume manufacturing and advanced analytical and quality assessment.

State Senator Dave Argall commended Versum for being the region’s third largest employer and for the company’s investments in the local community. Approximately 30 employees, half of which hold advanced degrees in chemistry or chemical engineering, are based in the new facility. The company’s Hometown campus now totals 250 highly-skilled employees.

The latest expansion is part of a $60MM multi-year investment in the Hometown campus. Last year the company announced it had increased production capacity and modified equipment configuration to reduce manufacturing bottlenecking. Versum’s Hometown manufacturing facility produces a variety of high purity specialty gases and chemicals for semiconductor manufacturers around the world, including Tungsten Hexafluoride, WF6 and Nitrogen Trifluoride, NF3. WF6 is used as a metallization source for the formation of tungsten interconnects between multiple layers in semiconductor devices. It is an important material in the production of both logic and memory (DRAM and NAND) devices. NF3 is primarily used for chamber cleaning of chemical vapor deposition reactors.

Versum’s Senior Vice President of Materials, Ed Shober addressed the attendees stating, “We enable the largest tech companies around the world to stretch the boundaries of science and technology, whether it be supporting computing power, mobility, connectivity, artificial intelligence, virtual/augmented reality, the Internet of Things, Big Data and machine learning. Versum Materials is at the core of enabling all these technologies. Our Versum Materials team delivers valued products and solutions that bring this cutting-edge innovation to the market safer, faster, easier and more reliably than ever before.”