Category Archives: Touch Technologies

NXP Semiconductors N.V. (NASDAQ:NXPI) today debuted two significant technology breakthroughs at the largest fintech innovation event, Money 20/20, October 22-25, 2017, in Las Vegas. The company will showcase its new contactless fingerprint-on-card solution while also demonstrating a new world benchmark for payment card transactions speeds.

Fingerprint sensors on payment cards

The fingerprint-on-card solution gives payment network operators and banks a secure, convenient and fast payment card option to consumers. Coupling dual interface cards with an integrated fingerprint sensor enables faster transactions without the need for end-users to enter a PIN number.

“The result provides a secure and dramatically more convenient way for consumers to make payments. The convenience provided by mobile payment in today’s NFC-based mobile wallets can now be replicated with cards. It is also ideal for use in other form factors and applications such as electronic passports,” said Rafael Sotomayor, senior vice president and general manager of secure transactions and identification business. “The breakthrough reinforces NXP’s commitment to the payment and secure identification space by helping our customers deliver next-generation applications and solutions to the market.”

To ensure a lower barrier of entry for card makers, the company’s secure fingerprint authentication solution on cards does not require a battery and easily fits into standard card maker equipment as part of the broader payment ecosystem. Cards with fingerprint authentication are fully compliant with existing EMVCo point-of-sales (POS) systems.

New Benchmark for Blazing Transaction Speeds

Demonstrating seamless, fast, and smart card transaction experiences, the NXP high-performance platform makes it possible to achieve M/Chip transactions speeds of <200 ms, surpassing the industry requirement of 300 ms.

“This increased level of performance offers flexibility to add new features or higher crypto countermeasures and still meet current industry transaction requirement,” said Sotomayor. “The requirement for faster payment transaction will continue, and NXP is committed to providing the performance to meet these needs and make contactless transactions faster and flawless.”

NXP Demonstrations at Money 20/20 Las Vegas 2017

NXP will demonstrate these technology breakthroughs at its exclusive reception on October 24, 2017, in The Venetian.

As organic light-emitting diode (OLED) displays are used in more smartphones and high-end flat panel TVs, panel makers have boosted their investments in new OLED display fab construction. As a result, the global production capacity of AMOLED panels — including both red-green-blue (RGB) OLED and white OLED (WOLED) — is forecast to surge 320 percent from 11.9 million square meters in 2017 to 50.1 million square meters in 2022, according to new analysis from IHS Markit (Nasdaq: INFO).

The production capacity of RGB OLED panels for mobile applications will increase from 8.9 million square meters in 2017 to 31.9 million square meters in 2022, while the OLED capacity for TVs, mainly WOLED but including printing OLED, is set to grow from 3.0 million square meters in 2017 to 18.2 million square meters in 2022, says the latest Display Supply Demand & Equipment Tracker by IHS Markit.

The two market leaders — Samsung Display and LG Display — have taken different paths: Samsung is focusing on RGB OLED panels for mobile devices, and LG on WOLED displays for TVs. To cope with the trend of RGB OLED replacing the liquid crystal display (LCD) in smartphones and other mobile devices, especially for the full-screen and flexible feature of OLED panels, LG Display has started to manufacture RGB OLED panels in 2017. Meanwhile, Chinese panel makers, including BOE, ChinaStar, Tianma, Visionox, EverDisplay, Truly and Royole, are all expanding the production capacity of RGB OLED panels, targeting the mobile market.

OLED_panel_production_capacity_outlook

“It takes more than $11.5 billion to build a Gen 6 flexible OLED factory with a capacity of 90,000 substrate sheets per month, and this is a much larger investment required than building a Gen 10.5 TFT LCD fab with the same capacity,” said David Hsieh, senior director at IHS Markit. “The learning curve costs for the mass production of flexible OLED panels are also high. The financial and technological risks associated with the AMOLED panels have hampered Japanese and Taiwanese makers from entering the market aggressively,” Hsieh said. “In other words, the capacity expansion of AMOLED display, whether it is RGB OLED or WOLED, is only apparent in China and South Korea.”

Samsung Display will remain the dominant supplier of the RGB OLED panels for smartphones. Its RGB OLED panel capacity will grow from 7.7 million square meters in 2017 to 16.6 million square meters in 2022, IHS Markit says. Even though many Chinese panel makers are building RGB OLED fabs, each of their production capacity is much smaller than that of Samsung Display. Due to the gap in their production capacities, they will target different customers: Samsung Display will mainly focus on two major customers — Samsung Electronics (the Galaxy) and Apple (the iPhone), while Chinese makers will be targeting at Chinese smartphone makers at a smaller scale. These include Huawei, Xiaomi, Vivo, Oppo, Meizu, Lenovo and ZTE, and white box makers.

South Korea’s panel makers are estimated to account for 93 percent of the global AMOLED production capacity in 2017, and their share is expected to drop to 71 percent in 2022. Chinese players (BOE, ChinaStar, Tianma, Visionox, EverDisplay and Royole) will account for 26 percent in 2022 from 5 percent in 2017.

“Many interpret the strong expansion of RGB OLED capacity in China as a threat to South Korean makers. It is indeed a threat. However, while South Korean companies have high capacity fabs with high efficiencies, China’s OLED fabs are relatively small and dispersed across multiple regions and companies,” Hsieh said. “Also, while the Chinese makers could expand fabs with government subsidies, the operating performance will completely depend on the panel makers themselves. How long it will take until they could sustain the business, getting over the challenges with learning curve costs, initial low yield rates and capacity utilization, is still an open question.”

 

NVIDIA today announced that it is collaborating with Taiwan’s Ministry of Science and Technology (MOST) to accelerate the development of artificial intelligence across Taiwan’s commercial sector in support of its recently announced AI Grand Plan to help foster domestic AI-related industries.

The collaboration — kicked off with a jointly hosted AI Symposium during NVIDIA’s GPU Technology Conference in Taiwan, which is being attended by more than 1,400 scientists, developers and entrepreneurs — calls for NVIDIA to help MOST promote AI across Taiwan through five initiatives.

“Taiwan has been the epicenter of the PC revolution, and it will serve as a key center for the next industry revolution focused on AI,” said NVIDIA founder and CEO Jensen Huang. “We are delighted to be working closely with MOST to ensure that Taiwan fully harnesses the power of this technological wave.”

“AI is the key to igniting Taiwan’s next industrial revolution, building on the long-established strength of our IT manufacturing capabilities,” said Dr. Liang-Gee Chen, Minister of Science and Technology. “Our focus is on drawing academics, industry and young talent into our AI Grand Plan to create an ecosystem based on AI innovation.”

Under the agreement, the National Center for High-Performance Computing will build Taiwan’s first AI-focused supercomputer powered by NVIDIA® DGX™ AI computing platforms and Volta architecture-based GPUs. Its target is to create a platform for accelerating advanced research and industry applications that next year reaches 4 petaflops of performance – placing it in the top 25 fastest supercomputers in the Top500 list – and 10 petaflops within four years.

In other steps:

  • MOST and NVIDIA’s Deep Learning Institute will train 3,000 developers over the next four years on the use of deep learning in smart manufacturing, the Internet of Things, smart cities and healthcare. Launched last year, the Deep Learning Institute provides hands-on training for developers, data scientists and researchers through self-paced online labs and instructor-led workshops that use open-source frameworks, as well as NVIDIA’s GPU-accelerated deep learning platforms.
  • NVIDIA is rolling out domestically its Inception program to help MOST establish its “Youth Technology Innovation and Entrepreneurship Base” for local AI startups. NVIDIA’s Inception program is a virtual incubator for startups focused on AI and deep learning, providing young companies with hardware grants, marketing support and access to NVIDIA’s larger deep-learning ecosystem. Just last week, it added its 2,000th member company.
  • NVIDIA will support MOST’s overseas talent training program for post-doctorates by offering high-level internship programs.
  • NVIDIA will provide NVIDIA Deep Learning Accelerator (NVDLA) technology for IoT and SoC devices, plus technical support, to MOST’s Project Moon Shot, AI Edge – its NT$4 billion, four-year program to use AI to increase the competitiveness of the domestic semiconductor industry by focusing on memory, sensors and edge products.

And in a related effort, MOST will provide domestic robotics experts with access to NVIDIA DGX Station™ AI deskside supercomputers and NVIDIA Jetson™ TX2 AI modules through the Central and Southern Taiwan Science Parks. NVIDIA is making available DGX-1 systems for MOST’s Formosa Speech Grand Challenge, in which 150 teams from local universities and high schools will compete at the end of October on creating networks capable of Chinese speech recognition. Taiwan’s AI Grand Plan, which was announced in August, aims to create a strong environment for fostering AI innovations and connect with industrial leadership from around the world.

Scientists at the University of Sussex may have found a solution to the long-standing problem of brittle smart phone screens.

Professor Alan Dalton and his team have developed a new way to make smart phone touch screens that are cheaper, less brittle, and more environmentally friendly. On top of that, the new approach also promises devices that use less energy, are more responsive, and do not tarnish in the air.

Dr. Matthew Large, University of Sussex, flexes a screen made from acrylic plastic coated in silver nanowires and grapheme to illustrate the kind of touch screens that can potentially be produced using the new approach Credit: Dr. Matthew Large

Dr. Matthew Large, University of Sussex, flexes a screen made from acrylic plastic coated in silver nanowires and grapheme to illustrate the kind of touch screens that can potentially be produced using the new approach Credit: Dr. Matthew Large

The problem has been that indium tin oxide, which is currently used to make smart phone screens, is brittle and expensive. The primary constituent, indium, is also a rare metal and is ecologically damaging to extract. Silver, which has been shown to be the best alternative to indium tin oxide, is also expensive. The breakthrough from physicists at the University of Sussex has been to combine silver nanowires with graphene – a two dimensional carbon material. The new hybrid material matches the performance of the existing technologies at a fraction of the cost.

In particular, the way in which these materials are assembled is new. Graphene is a single layer of atoms, and can float on water. By creating a stamp – a bit like a potato stamp a child might make – the scientists can pick up the layer of atoms and lay it on top of the silver nanowire film in a pattern. The stamp itself is made from poly(dimethyl siloxane); the same kind of silicone rubber used in kitchen utensils and medical implants.

Professor Alan Dalton from the school of Maths and Physical Science at the University of Sussex, says:

“While silver nanowires have been used in touch screens before, no one has tried to combine them with graphene. What’s exciting about what we’re doing is the way we put the graphene layer down. We float the graphene particles on the surface of water, then pick them up with a rubber stamp, a bit like a potato stamp, and lay it on top of the silver nanowire film in whatever pattern we like. “And this breakthrough technique is inherently scalable. It would be relatively simple to combine silver nanowires and graphene in this way on a large scale using spraying machines and patterned rollers. This means that brittle mobile phone screens might soon be a thing of the past.

“The addition of graphene to the silver nanowire network also increases its ability to conduct electricity by around a factor of ten thousand. This means we can use a fraction of the amount of silver to get the same, or better, performance. As a result screens will be more responsive and use less power.”

Dr Matthew Large, lead researcher on the project within the school of Maths and Physical Science at the University of Sussex, says:

“Although silver is also a rare metal, like indium, the amount we need to coat a given area is very small when combined with graphene. Since graphene is produced from natural graphite – which is relatively abundant – the cost for making a touch sensor drops dramatically.

“One of the issues with using silver is that it tarnishes in air. What we’ve found is that the graphene layer prevents this from happening by stopping contaminants in the air from attacking the silver. “What we’ve also seen is that when we bend the hybrid films repeatedly the electrical properties don’t change, whereas you see a drift in the films without graphene that people have developed previously. This paves the way towards one day developing completely flexible devices.”

Sun Chemical has entered into a license agreement to introduce a new family of molecular inks for the printed electronics market with Groupe Graham International (GGI), a world leader in user interface technologies in touch applications, and the National Research Council of Canada (NRC).

The new molecular ink technology developed by GGI and the NRC will be produced by Sun Chemical and promoted collaboratively by all three organizations. Based on ionic molecules processed through a reduction process, the new IPS family of products will offer a viable alternative to conventional polymer thick film conductive inks and serve as a low-cost alternative to nano materials.

The robust IPS family of products include silver and copper metallization options that can be applied by screen, inkjet or other high speed printing methods. The molecular inks feature sub-micron trace thickness that will enable the production of narrow traces in thin dielectric layers on a variety of applications, including: in-mold electronics (IME), printed antenna, displays, EMI/RFI and sensors.

“The IPS platform has been a multi-year development effort with the NRC and we are pleased to have its value validated by a global market leader,” said Eric Saint-Jacques, Chief Executive Officer at GGI. “We feel privileged to be working with Sun Chemical and look forward to supporting their global go-to-market initiatives with our solution design and manufacturing services.”

“We’re excited to help bring this innovative product line to the market,” said Roy Bjorlin, Global Commercial and Strategic Initiatives Director, Sun Chemical Advanced Materials. “Customers will be pleased to have an option in the marketplace that features fine lines for printed electronics. We look forward to collaborating with GGI and the NRC on this project.”

“We’re excited to enter the next phase of development,” said Thomas Ducellier, Executive Director, Printable Electronics Program, National Research Council of Canada.  “We look forward to seeing the unique attributes of the molecular ink platform address emerging market needs.”

GGI specializes in the design, engineering and manufacturing of customized electro-mechanical assemblies to deliver the optimal user interface for each specific context and environment.

Leti today announced that the European R&D project known as PiezoMAT has developed a pressure-based fingerprint sensor that enables resolution more than twice as high as currently required by the U.S. Federal Bureau of Investigation (FBI).

The project’s proof of concept demonstrates that a matrix of interconnected piezoelectric zinc-oxide (ZnO) nanowires grown on silicon can reconstruct the smallest features of human fingerprints at 1,000 dots per inch (DPI).

“The pressure-based fingerprint sensor derived from the integration of piezo-electric ZnO nanowires grown on silicon opens the path to ultra-high resolution fingerprint sensors, which will be able to reach resolution much higher than 1,000 DPI,” said Antoine Viana, Leti’s project manager. “This technology holds promise for significant improvement in both security and identification applications.”

The eight-member project team of European companies, universities and research institutes fabricated a demonstrator embedding a silicon chip with 250 pixels, and its associated electronics for signal collection and post-processing. The chip was designed to demonstrate the concept and the major technological achievements, not the maximum potential nanowire integration density. Long-term development will pursue full electronics integration for optimal sensor resolution.

 

The project also provided valuable experience and know-how in several key areas, such as optimization of seed-layer processing, localized growth of well-oriented ZnO nanowires on silicon substrates, mathematical modeling of complex charge generation, and synthesis of new polymers for encapsulation. The research and deliverables of the project have been presented in scientific journals and at conferences, including Eurosensors 2016 in Budapest.

The 44-month, €2.9 million PiezoMAT (PIEZOelectric nanowire MATrices) research project was funded by the European Commission in the Seventh Framework Program. Its partners include:

  • Leti (Grenoble, France): A leading European center in the field of microelectronics, microtechnology and nanotechnology R&D, Leti is one of the three institutes of the Technological Research Division at CEA, the French Alternative Energies and Atomic Energy Commission. Leti’s activities span basic and applied research up to pilot industrial lines. www.leti-cea.com/cea-tech/leti/english 
  • Fraunhofer IAF (Freiburg, Germany): Fraunhofer IAF, one of the leading research facilities worldwide in the field of III-V semiconductors, develops electronic and optical devices based on modern micro- and nanostructures. Fraunhofer IAF’s technologies find applications in areas such as security, energy, communication, health, and mobility. www.iaf.fraunhofer.de/en
  • Centre for Energy Research, Hungarian Academy of Sciences (Budapest, Hungary):  The Institute for Technical Physics and Materials Science, one of the institutes of the Research Centre, conducts interdisciplinary research on complex functional materials and nanometer-scale structures, exploration of physical, chemical, and biological principles, and their exploitation in integrated micro- and nanosystems www.mems.hu, www.energia.mta.hu/en
  • Universität Leipzig (Leipzig, Germany): Germany’s second-oldest university with continuous teaching, established in 1409, hosts about 30,000 students in liberal arts, medicine and natural sciences. One of its scientific profiles is “Complex Matter”, and contributions to PIEZOMAT are in the field of nanostructures and wide gap materials. www.zv.uni-leipzig.de/en/
  • Kaunas University of Technology (Kaunas, Lithuania): One of the largest technical universities in the Baltic States, focusing its R&D activities on novel materials, smart devices, advanced measurement techniques and micro/nano-technologies. The Institute of Mechatronics specializes on multi-physics simulation and dynamic characterization of macro/micro-scale transducers with well-established expertise in the field of piezoelectric devices. http://en.ktu.lt/ 
  • SPECIFIC POLYMERS (Castries, France): SME with twelve employees and an annual turnover of about 1M€, SPECIFIC POLYMERS acts as an R&D service provider and scale-up producer in the field of functional polymers with high specificity (>1000 polymers in catalogue; >500 customers; >50 countries). www.specificpolymers.fr/
  • Tyndall National Institute (Cork, Ireland): Tyndall National Institute is one of Europe’s leading research centres in Information and Communications Technology (ICT) research and development and the largest facility of its type in Ireland. The Institute employs over 460 researchers, engineers and support staff, with a full-time graduate cohort of 135 students. With a network of 200 industry partners and customers worldwide, Tyndall generates around €30M income each year, 85% from competitively won contracts nationally and internationally. Tyndall is a globally leading Institute in its four core research areas of Photonics, Microsystems, Micro/Nanoelectronics and Theory, Modeling and Design. www.tyndall.ie/
  • OT-Morpho (Paris, France): OT-Morpho is a world leader in digital security & identification technologies with the ambition to empower citizens and consumers alike to interact, pay, connect, commute, travel and even vote in ways that are now possible in a connected world. As our physical and digital, civil and commercial lifestyles converge, OT-Morpho stands precisely at that crossroads to leverage the best in security and identity technologies and offer customized solutions to a wide range of international clients from key industries, including Financial services, Telecom, Identity, Security and IoT. With close to €3bn in revenues and more than 14,000 employees, OT-Morpho is the result of the merger between OT (Oberthur Technologies) and Safran Identity & Security (Morpho) completed in 31 May 2017. Temporarily designated by the name “OT-Morpho”, the new company will unveil its new name in September 2017. For more information, visit www.morpho.com and www.oberthur.com

The overall utilization rate of display panel fabrication (fab) plants is expected to remain high in the third quarter of 2017, recording similar levels for the fifth consecutive quarter, according to IHS Markit (Nasdaq: INFO).

Figure 1

Figure 1

According to the latest Display Production & Inventory Tracker by IHS Markit, the overall fab utilization rate is expected to reach 91 percent in the third quarter, up 1.8 percentage points from the previous quarter and up 1.1 percentage points from the same period last year.

Figure 2

Figure 2

“One of the main contributing factors for higher utilization rates in the past few quarters is that display panel makers are making sure their inventories are optimized at healthy levels,” said Alex Kang, senior analyst at IHS Markit.

Production of large LCD panels, which take the majority of overall display production in terms of area, is expected to be 2.2 percent higher than actual shipments in the third quarter. This is a result of display makers wanting to build contingency, or wriggle room, in their utilization plans as part of their strategy to offset any unexpected lower utilization rates, which could trigger off higher costs.

“As a result, panel makers’ inventory will increase, but it will still remain within healthy ranges,” Kang said.

According to IHS Markit, panel makers are expected to keep high utilization rate throughout the second half of 2017. As production capacity increase has slowed down and panel makers are expected to keep managing inventory levels within healthy limits, they will still have some room to stock up from production surplus volumes.

As active-matrix organic light-emitting diode (AMOLED) displays quickly displace liquid crystal displays (LCDs) in smartphones, panel makers are rapidly adding new production capacity, accelerating the demand for the fine metal mask (FMM), a critical production component used to manufacture red-green-blue (RGB) AMOLEDs. The FMM market is forecast to grow at a compound annual growth rate (CAGR) of 38 percent from $234 million in 2017 to $1.2 billion in 2022, according to IHS Markit (Nasdaq: INFO).

 

AMOLED_FMM_revenue_forecast

In the AMOLED manufacturing process, FMM is a production component used to pattern individual red, green and blue subpixels. A heating source evaporates organic light-emitting materials, but vapor deposition can only be controlled precisely with the use of a physical mask. FMM — a metal sheet, only tens of microns thick, with millions of very small holes per panel — is the only production-proven method of accurately depositing RGB color components in high-resolution displays.

“FMM has become a bottleneck in the supply of AMOLED panels due to the manufacturing technology challenges posed by increasing resolutions and a limited supply base. As pixels per inch (PPI) increase, thinner FMMs with finer dimensions are required, which reduce mask production yield and useable lifetime,” said Jerry Kang, senior principal analyst of display research at IHS Markit.

Dai Nippon Printing (DNP) is the dominant FMM supplier, owing to its proprietary etching technology for very thin metal foils and mass production experience. Currently, DNP’s FMMs are used to fabricate the vast majority of AMOLED smartphone panels, and exclusively for high-end quad high definition (QHD) resolutions. “Most panel makers are now trying to procure DNP’s FMM in hopes of being able to quickly ramp new fabs to high yields,” Kang said.

The critical nature of FMM and rapid demand growth are encouraging a number of companies to develop alternative FMM technologies and enter the market. Panel makers are also encouraging new players as a second source to mitigate supply chain risk and create price competition. As the supply of FMM is a determinant factor in the AMOLED display market to meet its projected growth rates, and with the FMM market forecast to grow five times its current size by 2022, FMM is garnering intense interest from both set and panel makers alike and creating new opportunities for suppliers.

The AMOLED Shadow Mask Technology & Market – 2017 report from IHS Markit provides a comprehensive analysis of the latest technology and market trends for FMMs and open masks, as well as mask and panel supplier status updates, including forecasts of revenues, units, area and prices from 2014 to 2022.

 

MagnaChip Semiconductor Corporation (NYSE: MX), a Korea-based designer and manufacturer of analog and mixed-signal semiconductor platform solutions for communications, IoT, consumer, industrial and automotive applications, announced today it was selected as a foundry partner by ELAN Microelectronics to manufacture the world’s first fingerprint sensor IC-based smartcard. The smartcard uses biometrics technology that provides secure identification to prevent credit card fraud, a severe and growing problem globally. The sensor-IC based smartcard will be manufactured utilizing MagnaChip’s 0.35 micron Mixed Signal Thick IMD manufacturing process technology.

The requirement for more precise, efficient and low-power ICs has increased dramatically, coinciding with the rise in importance of biometrics technology for a range of applications.  Industry analyst Frost & Sullivan forecasts that the biometrics industry will grow at a CAGR of 17.4% from 2014 to 2019 and that fingerprint-based sensor ICs will comprise 66% of the market.

MagnaChip was selected as ELAN’s foundry partner primarily because of the company’s recognized specialized foundry capability, proven and reliable manufacturing processes with robust analog  performance. MagnaChip’s current technologies for fingerprint sensor ICs include 0.35 micron, 0.18 micron 1.8V/3.3V and single 3.3V Mixed Signal technology processes. MagnaChip plans to expand its portfolio of manufacturing processes to include more advanced technologies such as its highly competitive 0.18 micron Slim Mixed Signal manufacturing process, which requires fewer mask layers than usual. MagnaChip’s manufacturing processes are well-suited for applications in fast-growing markets that require fingerprint identification, such as in the payment, medical, transportation and automobile industries.

“We hope that the collaboration between MagnaChip and ELAN will continue to produce innovative and high quality products for our customers,” said I. H. Yeh, ELAN’s Chief Executive Officer. “ELAN sees its continued strategic partnership with MagnaChip as a long-term benefit to ELAN and MagnaChip.”

YJ Kim, Chief Executive Officer of MagnaChip, commented, “We are very pleased to announce MagnaChip’s continued partnership with ELAN and the volume ramp of fingerprint sensor IC-based products utilizing our 0.35 micron Mixed Signal Thick IMD based process technology. This process is well-suited for smartcards, which require low power consumption. We will continue to develop high-performance and cost-effective fingerprint sensor IC technology solutions that meet the growing needs of our foundry customers.”

With consumers already accustomed with using smartphones and tablet PCs in their everyday lives, touch screens are now increasingly making their way into their vehicles, too. Automotive touch panel shipments are expected to top 50 million units in 2017, up 11 percent from 45 million units in 2016, according to IHS Markit (Nasdaq: INFO). More importantly, capacitive-touch screen shipments are forecast to surpass that of traditionally-dominated resistive-touch screens in vehicles in 2017.

“Projected capacitive-touch technology is commonly found in consumer smartphones and tablet PCs, which consumers have grown very comfortable using,” said Shoko Oi, senior display analyst at IHS Markit. “Although there are safety concerns about operating touch screens while driving, automotive touch panels are becoming a standard feature in new vehicles entering the market.”

Automotive screens now display content from a variety of sources coming from both inside and outside the car. However, many newer applications now require touch screen panels, which shifts the role of in-car displays from simply revealing information visually to becoming an actual human-machine interface. This shift, along with the increased volume of displayed data, is driving a growing need for easy-to-see designs of displays that incorporate larger sizes, non-rectangular or curved shapes, as well as higher resolutions.

170530_automotive_touch_panel

According to the IHS Markit Automotive Touch Panel Market Report, as vehicle models are updated, projected capacitive-touch technology is replacing resistive-touch technology as the mainstream touch solution for automotive displays despite the higher module costs.

“The latest trends towards connected cars and telematics are prompting more car manufacturers to consider the adoption of projected capacitive-touch screens that can provide a similar user experience found in touch displays of smartphones and tablet-PCs,” Oi said.