Category Archives: Wafer Processing

Micron Technology, Inc. today announced the company has joined CERN openlab, a unique public-private partnership, by signing a three-year agreement. Under the agreement, Micron will provide CERN with advanced next-generation memory solutions to further machine learning capabilities for high-energy physics experiments at the laboratory. Micron’s memory solutions that combine neural network capabilities will be tested in the data-acquisition systems of experiments at CERN.

High-energy physics scientists are looking to deploy leading-edge technologies that can support their experiments’ computing and data processing requirements. Memory plays a vital role in accelerating intelligence by processing vast amounts of data, helping researchers gain valuable insights from data generated by high-energy physics experiments.

As part of the work with CERN, Micron will develop and introduce a specially designed Micron memory solution that will be tested by researchers at CERN for use in rapidly combing through the vast amount of data generated by experiments. The project will feature FPGA-based boards with Micron’s most advanced high-performance memory combined with an advanced neural network technology developed in collaboration between Micron and FWDNXT, a provider of deep learning and AI solutions.

“Micron is committed to pushing the limits of innovation by providing high-performance memory and storage solutions to solve the world’s greatest computing and data processing challenges in data analytics and machine learning,” said Steve Pawlowski, vice president of advanced computing solutions at Micron Technology. “We’re proud to work with CERN to deliver machine learning capabilities that will enable high-energy physics scientists to make advances in their science and research experiments.”

“CERN collaborates openly with both the public and private sector, and working with technology partners like Micron helps ensure that members of the research community have access to the advanced computing technologies needed to carry out our groundbreaking work,” said Maria Girone, CTO at CERN openlab. “It is critical to the success of the Large Hadron Collider that we are able to examine the petabytes of data generated in a fast and intelligent manner that enables us to unlock new scientific discoveries. These latest-generation memory solutions from Micron and machine learning solutions from FWDNXT offer significant potential in terms of enabling us to process more data at higher speeds.”

Micron will demonstrate its high-performance memory solutions running FWDNXT’s Machine Learning SDK at SC18, November 12-15, in Dallas, Texas.

IC Insights’ November Update to the 2018 McClean Report, released later this month, includes a discussion of the forecasted top-25 semiconductor suppliers in 2018 (the top-15 2018 semiconductor suppliers are covered in this research bulletin).  The Update also includes a detailed five-year forecast of the IC market by product type (including dollar volume, unit shipments, and average selling price).

The expected top-15 worldwide semiconductor (IC and O-S-D—optoelectronic, sensor, and discrete) sales ranking for 2018 is shown in Figure 1.  It includes seven suppliers headquartered in the U.S., three in Europe, two each in South Korea and Japan, and one in Taiwan.  After announcing in early April 2018 that it had successfully moved its headquarters location from Singapore to the U.S., IC Insights now classifies Broadcom as a U.S. company.

In 2Q18, Toshiba completed the $18.0 billion sale of its memory IC business to the Bain Capital-led consortium. Toshiba then repurchased a 40.2% share of the business.  The Bain consortium goes by the name of BCPE Pangea and the group owns 49.9% of Toshiba Memory Corporation (TMC).  Hoya Corp. owns the remaining 9.9% of TMC’s shares.  The new owners have plans for an IPO within three years. Bain has said it plans to support the business in pursing M&A targets, including potentially large deals.

As a result of the sale of Toshiba’s memory business, the 2018 sales results shown in Figure 1 include the combined sales of the remaining semiconductor products at Toshiba (e.g., Discrete devices and System LSIs) and NAND flash sales from Toshiba Memory Corporation.

In total, the top-15 semiconductor companies’ sales are forecast to jump by 18% in 2018 compared to 2017, two points higher than the expected total worldwide semiconductor industry 2018/2017 increase of 16%.  The three largest memory suppliers—Samsung, SK Hynix, and Micron—are each forecast to register greater than 25% year-over-year growth in 2018 with SK Hynix expected to log the highest growth among the top 15 companies with a 41% surge in sales this year.  All of the top-15 companies are expected to have sales of at least $8.0 billion in this year, two companies more than in 2017.  Nine of the top-15 companies are forecast to register double-digit year-over-year growth in 2018.  Moreover, five companies are expected to have ≥20% growth, including four of the big memory suppliers (Samsung, SK Hynix, Micron, and Western Digital/SanDisk) as well as Nvidia.

Figure 1

The largest move upward in the ranking is forecast to come from Western Digital/San Disk, which is expected to move up three spots to the 12th position.  In contrast, NXP is expected to fall two places to 13th with a sales increase of only 1% this year.  However, the worst-performing company in the ranking is forecast to be Qualcomm with a semiconductor revenue decline of 3% this year, the only top-15 company expected to register a drop in sales.

Intel was the number one ranked semiconductor supplier in 1Q17 but lost its lead spot to Samsung in 2Q17. It also fell from the top spot in the full-year 2017 ranking, a position it had held since 1993.  With the strong surge in the DRAM and NAND flash markets over the past year, Samsung is forecast to go from having 7% more total semiconductor sales than Intel in 2017 to having 19% more semiconductor sales than Intel in 2018.

Memory devices are forecast to represent 84% of Samsung’s semiconductor sales in 2018, up three points from 81% in 2017 and up 10 points from 71% just two years earlier in 2016.  Moreover, the company’s non-memory sales in 2018 are expected to be only $13.3 billion, up only 6% from 2017’s non-memory sales level of $12.5 billion. In contrast, Samsung’s memory sales are forecast to be up 31% this year and reach $70.0 billion.

The top-15 ranking includes one pure-play foundry (TSMC) and three fabless companies.  If TSMC were excluded from the top-15 ranking, Taiwan-based MediaTek would have been ranked in the 15th position with forecasted 2018 sales of $7.9 billion, up only 1% from 2017.

IC Insights includes foundries in the top-15 semiconductor supplier ranking since it has always viewed the ranking as a top supplier list, not a marketshare ranking, and realizes that in some cases the semiconductor sales are double counted.  With many of our clients being vendors to the semiconductor industry (supplying equipment, chemicals, gases, etc.), excluding large IC manufacturers like the foundries would leave significant “holes” in the list of top semiconductor suppliers.  Foundries and fabless companies are identified in the Figure.  In the April Update to The McClean Report, marketshare rankings of IC suppliers by product type were presented and foundries were excluded from these listings.

Overall, the top-15 list is provided as a guideline to identify which companies are the leading semiconductor suppliers, whether they are IDMs, fabless companies, or foundries.

SEMI, the global industry association serving the electronics manufacturing supply chain, today voiced support and encouragement for trade discussions between U.S. President Donald Trump and People’s Republic of China President Xi Jinping – talks that are planned for Dec. 1 during the G20 Summit in Argentina. Representing the semiconductor industry end-to-end, from chip design through manufacturing, SEMI expressed hope for a deal and offered principles beneficial to the global microelectronics manufacturing supply chain.

“With SEMI members being key enablers of the more than $2 trillion electronics manufacturing supply chain, SEMI has a clear foundational mission based on free and fair trade, open markets, and support for international laws governing IP, cybersecurity and national security,” said Ajit Manocha, SEMI president and CEO. “Adhering to these principles benefits all SEMI member companies and the global ecosystem of industries and applications enabled by semiconductor manufacturing. I commend our global government leaders for returning to the negotiating table.”

Recent tariffs and trade tensions, on top of newly imposed and rumored export controls, have complicated the global electronics manufacturing supply chain, forcing many SEMI member companies to rethink their investment strategies. Over the past six months, SEMI has testified that tariffs threaten to undercut the ability of many SEMI members to sell overseas by increasing costs, stifling innovation, and curbing U.S. technological leadership.

SEMI continues to educate U.S. lawmakers, as well as governments worldwide, about the critical importance of free and fair trade, open markets, and respect and enforcement of IP for all players in the global electronics manufacturing supply chain. As part of this initiative, SEMI is providing the 10 Principles for the Global Semiconductor Supply Chain in Modern Trade Agreements below to government officials and encouraging them to include these guidelines in forward-looking agreements.

These core principles outline the primary considerations for balanced trade rules that benefit SEMI members around the world, strengthen innovation and perpetuate the societal benefits of affordable microelectronics – essential components in all advanced communications, computing, transportation, healthcare and consumer electronics.

10 Principles for the Global Semiconductor Supply Chain in Modern Trade Agreements

1. Affirm principles of non-discrimination.

Non-discriminatory treatment is a central tenet of the global trading system. SEMI strongly believes that any trade deal should provide that all products from a party to the deal cannot be put at a competitive disadvantage in any other party’s market. Related, any agreement must be fully compliant with the World Trade Organization’s rules.

2. Maintain strong respect for intellectual property and trade secrets through robust safeguards and significant penalties for violators.

Protection for intellectual property are essential for the semiconductor industry. These standards enable the ability to innovate and grow. SEMI supports robust copyright standards, strong patent protections, and regulations that safeguard industrial design. SEMI also strongly supports rules that preserve trade secrets protection, including establishing criminal procedures and penalties for theft, including by means of cyber theft.

3. Remove tariffs and end technical barriers on semiconductor products.

Parties should eliminate tariffs and technical barriers on semiconductors and all technology products, that rely on electronic chips. Removing tariffs and technical barriers is crucial for businesses, especially for small and medium-sized enterprises, in penetrating new markets. Related, any trade deal should open markets for services providers, ensuring that all face fair and transparent treatment.

4. Simplify and harmonize the customs and trade facilitation processes.

The trade deals should include strong commitments on customs procedures and trade facilitation to ensure that border processing will be quick, transparent, and predictable. The parties should also work to use electronic customs forms to expedite customs processing.

5. Combat any attempts of forced technology transfer.

All trade deals should have clear and firm rules that prohibit countries from requiring companies to transfer their technology, intellectual property, or other proprietary information to persons in their respective territories.

6. Enable the free flow of cross-border data.

In today’s global economy, all industries, including the semiconductor industry, rely on the free flow of data. Countries should refrain from putting in place unjustifiable regulations that limit the free flow of information, which simply serve to curb innovation and impact growth. SEMI supports provisions that enable the movement of data, subject to reasonable safeguards for privacy and other protections.

7. Eliminate forced data localization measures.

Many countries have created laws that require physical infrastructure and data centers in every country they seek to serve, which adds unnecessary costs and burdens. Forward-looking policies should eliminate the use of forced data localization measures.

8. Harmonize global standards to achieve “one standard, one test, accepted everywhere.”

Businesses should not have to face different standards for each market they serve. Global standards, driven by industry, should be market-oriented, and there should be strong commitments on transparency, stakeholder participation and coordination.

9. Create transparent rules for state-owned and -supported enterprises to ensure fair and non-discriminatory treatment.

SEMI supports a trade deal that contains robust commitments to ensure that state-owned and -supported enterprises compete based on performance, quality and price, as opposed to discriminatory regulation, opaque subsidies, favoritism, or other tools that artificially benefit state-backed businesses.

10. Establish protections for companies and individuals that respect privacy while also balancing security.

Any trade deal should have firm consumer protections, including privacy, that enables ease of use, but also does not forgo security. SEMI support efforts to use encryption products in support of this venture and also believes that parties should work to advance efforts on cybersecurity through self-assessment, declaration of conformity, increased cooperation and information sharing, all of which will help prevent cyber-attacks and stop the diffusion of malware.

Semiconductor Research Corporation (SRC), today announced that SK hynix, a global leader in producing semiconductors including DRAM and NAND Flash memory, has signed an agreement to join SRC’s research consortium. SK hynix will participate in multiple SRC research initiatives including; Global Research Collaboration (GRC) and the New Science Team (NST) project.

GRC, a worldwide research program with 17 industrial sponsors is comprised of nine design and process technology disciplines. SK hynix will participate in SRC’s Nanomanufacturing Materials and Processes and Logic & Memory Devices research programs that focus on new device structures, memory alternatives, materials, and processes.

The NST project, a consortium consisting of 12 industrial sponsors and three government agencies is a 5-year, $300 million SRC initiative launched this January. NST consists of two complementary research programs: JUMP (Joint University Microelectronics Program) and nCORE (nanoelectronics Computing Research), which will advance new technologies focused on high- performance, energy-efficient microelectronics for communications, computing and storage needs for 2025 and beyond.

“The entire SRC team joins me in welcoming SK hynix to our distinguished membership of industry leaders from around the world”, said Ken Hansen, President and CEO of SRC. “SK hynix has an impressive history that showcases how ingenuity and innovative thinking can advance technology at a progressive pace. We look forward to a long, successful relationship with SK hynix as we push the limits of imagination and innovation.”

“SK hynix’s fundamental objective to surpass technological boundaries through propelling innovation has brought us to this association with SRC”, said Jinkook Kim, Head of R&D at SK hynix. “We recognize the significant impact that collaborative research programs such as those underway at SRC have in moving our industry forward. Strategic partnerships in research and development will help drive the Fourth Industrial Revolution with AI and autonomous vehicles leading the way.”

Today’s announcement is significant as the top 5 global semiconductor companies are now members of SRC. SK hynix represents the 8th non-U.S. headquartered company to join SRC as it seeks to expand its global presence. Industry sponsors are invited to explore the possibilities at SRC.

Pfeiffer Vacuum, a provider of high-tech vacuum solutions for the semiconductor, industrial, coating, analytical and R&D markets, opened up a new 27,000 square foot building in Nashua, NH, on October 25. This modern two-story construction will be the home of the North American headquarters for administration, sales, product management, marketing and customer care. In parallel, the former 24,000 square foot administration building has been converted into a Service Center of Excellence, bringing together under one roof all service activities for the major part of the Pfeiffer Vacuum product portfolio. State-of-the-art automated cleaning and test equipment is being utilized resulting in high-quality, fast repairs of the highest standards. Together with the service center in Austin, Texas with its strong presence in the semiconductor industry, Pfeiffer Vacuum has an ideal organization to serve the North American customers.

“With the completion of the two facilities, Pfeiffer Vacuum will be able to better support our valued customers throughout North America, while at the same time providing a modern, best-in-class work environment for our staff,” said Daniel Saelzer, President of Pfeiffer Vacuum Inc.

Worldwide silicon wafer area shipments increased during the third quarter 2018, surpassing record second quarter 2018 area shipments to set another all-time high, according to the SEMI Silicon Manufacturers Group (SMG) in its quarterly analysis of the silicon wafer industry.

Total silicon wafer area shipments reached 3,255 million square inches during the most recent quarter, a 3.0 percent rise from the 3,164 million square inches shipped during the previous quarter. New quarterly total area shipments clocked in 8.6 percent higher than third quarter 2017 shipments.

“Silicon shipment volumes remained at record levels during the third quarter,” said Neil Weaver, chairman SEMI SMG and Director, Product Development and Applications Engineering of Shin Etsu Handotai America. “Silicon shipments are mirroring this year’s strong semiconductor unit growth in support of a growing and diversified electronics market during our stable economy.”

Silicon Area Shipment Trends – Semiconductor Applications Only

Millions of Square Inches
1Q2017
2Q2017
3Q2017
4Q2017
1Q2018
2Q2018
3Q2018
Total
2,858
2,978
2,997
2,977
3,084
3,164
3,255

Source: SEMI, (www.semi.org), November 2018

Silicon wafers are the fundamental building material for semiconductors, which in turn, are vital components of virtually all electronics goods, including computers, telecommunications products, and consumer electronics. The highly engineered thin round disks are produced in various diameters (from one inch to 12 inches) and serve as the substrate material on which most semiconductor devices, or chips, are fabricated.

All data cited in this release is inclusive of polished silicon wafers, including virgin test wafers and epitaxial silicon wafers, as well as non-polished silicon wafers shipped by the wafer manufacturers to the end-users.

The Silicon Manufacturing Group (SMG)  is a sub-committee of the SEMI Electronic Materials Group (EMG) and is open to SEMI members involved in manufacturing polycrystalline silicon, monocrystalline silicon or silicon wafers (e.g., as cut, polished, epi, etc.). The purpose of the group is to facilitate collective efforts on issues related to the silicon industry including the development of market information and statistics about the silicon industry and the semiconductor market.

Praxair, Inc., a wholly-owned subsidiary of Linde plc (NYSE:LIN; FWB:LIN) today announced it has signed a long-term agreement to supply ultra-high purity nitrogen to Samsung’s world-class semiconductor facility in Hwaseong, South Korea. This is the fifth plant Praxair will build at this site to help enable Samsung to meet increased global semiconductor demand.

The plant will supply Samsung’s facility with high purity nitrogen and is expected to start up in late 2019. Additionally, the company will install multiple purifiers and a new pipeline system to support the project.

“Praxair has been a reliable partner to Samsung for over four decades,” said B.S. Sung, president of Praxair Korea. “We are proud to continue to support their growth as global demand for electronics intensifies. This project increases our density in the region and positions us for future expansion.”

Earlier this year, Praxair announced two other long-term agreements with Samsung affiliates in South Korea, one to supply another of Samsung Electronics’ world-scale semiconductor plant in Pyeongtaek and a second to supply Samsung Electro-Mechanics’ facility in Busan.

BISTeL, a provider of adaptive intelligent (AI) applications for smart manufacturing today announced that it has joined the MindSphere Partner Program, Siemens’ partner program for Industrial IoT solution and technology providers. BISTel applications are expected to be available on the MindSphere platform Q1 2019.

BISTel’s advanced data analytics platform, eDatalzyer®, and its real-time, health monitoring and predictive maintenance (HMP) solution will connect with the MindSphere cloud-based, open Industrial IoT platform to deliver significant business value to the manufacturing sector. Opportunities for enhanced business value include access to the latest industrial IoT technology and access to industry leading manufacturing applications that are designed to accelerate the customers’ journey to smart manufacturing, improve engineering productivity, provide greater operational efficiencies, and increase quality and yield. Smart Manufacturing (also referred to as Industry 4.0), is event driven, enabling issues to be addressed before they occur, and machines taken offline only when it is absolutely necessary.

According to W.K. Choi, CEO, BISTel, “We are delighted to work with Siemens and build MindSphere applications to take advantage of Siemens’ leading industrial IoT technology. BISTel’s real-time monitoring, fault detection, data analysis and predictive maintenance applications on the MindSphere platform enable customers to quickly turn manufacturing data into actionable intelligence that improves business performance and creates significant efficiencies across their manufacturing organizations.”

“BISTel is capable of delivering tremendous value in engineering and automation applications for smart manufacturing,” said Paul Kaeley, senior vice president, global partner ecosystem at Siemens PLM Software. “With BISTel as a partner in the MindSphere ecosystem, customers now have more strong options to solve operational challenges with advanced data analytics and predictive maintenance.”

Industry 4.0 enables the digitalization of the manufacturing sector and transforms the way plants operate. Increased automation and the introduction of AI create new ways for engineers and operators to interface with factory equipment and processes and solve every day manufacturing problems in real time. Key to this, is Industrial Internet of Things (IIoT) technology. According to a recent Gartner Group study, the number of IoT connected devices worldwide will grow from 8.4 billion in 2017 to more than 20.4 billion by 2020, creating access to a wealth of new data across the manufacturing ecosystem.  To achieve the vision of Industry 4.0 the manufacturing ecosystem must deliver this data to the right people, at the right place and at the right time. The proliferation of the Cloud, Big Data analytics and the adoption of AI based technologies are critical to achieving this goal.

Adaptive Intelligence for Smart Manufacturing

BISTel is redefining AI as adaptive intelligence for smarter manufacturing.  Several new AI based, real-time monitoring and advanced data analytics tools connect with IIoT platforms. These new solutions enable manufacturers to connect to and gather data from any data source. BISTel’s real-time monitoring applications detect faults before they occur, quickly conduct root cause analysis in hours and minutes versus the weeks and months it takes others.  With its new health monitoring and predictive maintenance (HMP) solution, engineers and operators can now predict outcomes and adapt real-time to changing factory conditions.

SEMI announced today that it has signed a new agreement with the U.S. Air Force Research Laboratory (AFRL) to expand the Nano-Bio Materials Consortium’s (NBMC) work in advancing human monitoring technology innovations for telemedicine and digital health. The program is designed to include $20 million in direct federal funding and $41 million overall in the next six years with additional contributions from state and industry sources. The grant guarantees $7 million of government funds for the first year’s launch of the renewed program.

Drawing on elements of nano-technology and biological research, nano-bio technology is at the core of the expanding field of human performance monitoring and augmentation (HPM/A). Human performance monitoring systems focus on using wearables and table-top devices that monitor blood pressure and glucose, the heart and brain, and other key features of human health to assess physical performance, identify anomalies and help prevent disease.

The expanded NBMC program will focus on research topics such as individual or mission customization, non-intrusive electronics, effects of extreme environments, new material integration (nano-materials, textiles, etc.), and regulatory considerations. Activities will consist of competitively bid research and development (R&D) projects, workshops, conferences, webinars, and extensive gap analysis exercises to determine market needs.

“SEMI is eager to renew NBMC programs and begin working with AFRL, commercial organizations, and universities to identify technology needs, fund research and development, and execute this public/private collaboration,” said Melissa Grupen-Shemansky, Ph.D, NBMC executive director and SEMI CTO. “The NBMC’s continued work will give SEMI members a first-hand understanding of how medical technology innovations will be shaped by advanced electronics and provide the platform for collaboration on R&D projects leading to new products and enabling personalized medicine.”

“Since its inception, NBMC has enabled new industrial and academic communities to engage and team up with AFRL and our mission to deliver new and innovative human monitoring capabilities to the airmen,” said Jeremy W. Ward, Ph.D., NBMC Government Program Manager. “We are eager to continue fostering and growing this community of innovators and to focus R&D on emerging nano-bio materials and technologies for human monitoring to enable solutions for the future monitoring and diagnostic needs of the United States Air Force’s Aeromedical En Route Care mission.”

AFRL awarded the cooperative agreement to SEMI after reviewing competitive responses to a Request for Information followed by a Request for Proposals. Twelve organizations joined SEMI to write the comprehensive proposal: Binghamton University, Brewer Science, Cambridge Display Technology, Dublin City University, GE, Lockheed Martin, Molex, NextFlex, Qualcomm Life Sciences, UCLA Medical School, UES, and the University of Arizona. SEMI and its FlexTech Group have been collaborating with AFRL and its Materials and Manufacturing Directorate to manage NBMC since its launch in 2013.

Micron Technology, Inc., (NASDAQ:MU) today received the announcement from the U.S. Department of Justice that on Nov. 1, 2018, it had issued indictments against United Microelectronics Corporation (UMC), Fujian Jinhua Integrated Circuit (Jinhua) and three former employees of Micron’s Taiwan unit for conspiracy to commit trade secret theft, economic espionage and related crimes.

“We appreciate the U.S. Department of Justice’s decision to prosecute the criminal theft of our intellectual property,” said Joel Poppen, senior vice president, legal affairs, general counsel and corporate secretary at Micron Technology. “Micron has invested billions of dollars over decades to develop its intellectual property. The actions announced today reinforce that criminal misappropriation will be appropriately addressed.”

The three former Micron employees named in the indictment are former Micron Memory Taiwan chairman Stephen Chen and engineers JT Ho and Kenny Wang.

In December 2017, Micron filed suit against UMC and Jinhua in the U.S. District Court for the Northern District of California for the misappropriation of Micron intellectual property and trade secrets.

Background about prior cases

  • In August 2017, Taiwan authorities filed criminal indictments against UMC and three of its employees for the alleged theft and use of trade secrets from Micron, for the purpose of developing DRAM chip manufacturing technologies in cooperation with Jinhua. Two of those charged are former employees of Micron’s Taiwan unit who have now also been indicted for trade secret theft by the U.S. Department of Justice.
  • In December 2017, Micron filed a civil case against UMC and Jinhua in the U.S. District Court for the Northern District of California for the misappropriation of Micron trade secrets.
  • In January 2018, in retaliation for the criminal indictments filed by Taiwan authorities and the civil lawsuit filed by Micron in Federal Court in California, UMC and Jinhua filed patent infringement suits in Fujian Province, China, against Micron’s China subsidiaries. On July 5, 2018, the court in Fujian notified the Micron subsidiaries that it had issued preliminary injunctions against them. Micron has asked the court to reconsider the injunctions, which the court issued without allowing Micron to present a defense. Micron strongly believes that the patents are invalid, that Micron’s products do not infringe the patents and that these suits are without merit.