Category Archives: Wafer Processing

Ultra Clean Holdings, Inc. (Nasdaq: UCTT), a developer and supplier of critical subsystems for the semiconductor and display capital equipment industries, today announced that Ernest Maddock has joined the Board of Directors effective June 1, 2018. Mr. Maddock’s nearly 40 years of experience includes senior leadership roles in finance, operations, and general management. He recently retired as the SVP & CFO of Micron Technology, one of the largest memory chip makers in the world, reporting $20.3 billion in net sales for its fiscal year ended August 31, 2017.

“We are very pleased to announce that Ernie is joining the UCT board of directors. His extensive experience in the semiconductor industry and with UCT makes him a very valuable addition to the board,” said Clarence Granger, Chairman of the Board.

Prior to joining Micron in 2015, Mr. Maddock held leadership positions at multiple global companies including Riverbed Technology, where he served as Executive VP and CFO from April 2013 to April 2015. In that role, he was also responsible for worldwide operations and information technology. Prior to Riverbed, he spent 15 years at Lam Research Corporation rising to EVP & CFO in 2008 and serving in that role until April 2013. His previous roles at Lam included VP, Customer Support Business Group; Group VP and Senior VP of Global Operations.

“We are delighted to have Ernie join our board and benefit from his significant experience and success in business, operations and finance within the Semiconductor industry,” said Jim Scholhamer, President & CEO. “Ernie brings a wealth of knowledge that will be extremely valuable to UCT and its shareholders as we continue to execute on our growth strategy in this exciting market.”

Mr. Maddock has public company board and audit committee experience. He served as a member of the Board of Directors and Audit Committee for Intersil Corporation from July 2015 to February 2017 until Intersil was acquired by Renesas Electronics for $3.2 billion. During his tenure on the Intersil board, Mr. Maddock was appointed as Audit Committee Chair. Mr. Maddock will also serve as Audit Committee Chair of Ultra Clean effective with his appointment to the Board of Directors. He also has private company board experience having served on the Novaled AG board from March 2012 to August 2013; Novaled GmbH now operates as a subsidiary of Samsung SDI Co. Ltd.

Mr. Maddock holds a B.S. in Industrial Management from the Georgia Institute of Technology and an M.B.A. from Georgia State University.

Consumer demand and government mandates for electronic systems that improve vehicle performance, that add comfort and convenience, and that warn, detect, and take corrective measures to keep drivers safe and alert are being added to new cars each year. This system growth, along with rising prices for memory components within them, are expected to raise the automotive IC market 18.5% this year to a new record high of $32.3 billion, surpassing the previous record of $27.2 billion set last year (Figure 1), according to IC Insights’ soon to be released Update to the 2018 IC Market Drivers report.  If the forecast holds, it would mark the third consecutive year of double-digit growth for the automotive IC market.

Figure 1

Over the past several years, the global automotive IC market has experienced some extraordinary swings in growth. After increasing 11.5% in 2014, the automotive IC market declined 2.5% in 2015, but then rebounded with solid 10.6% growth in 2016. It is worth noting that the sales decline experienced in 2015 was primarily the result of falling ASPs across all the key automotive IC product categories—microcontrollers, analog ICs, DRAM, flash, and general- and special-purpose logic ICs, which offset steady unit growth for automotive ICs that year.

IC Insights’ recently updated automotive IC market forecast shows the automotive IC market growing to $43.6 billion in 2021, which represents a compound annual growth rate (CAGR) of 12.5% from 2017 to 2021, highest among the six major end-use applications (Figure 2).

Figure 2

Collectively, automotive ICs are forecast to account for only about 7.5% of the total IC market in 2018, although that share is forecast to increase to 9.3% in 2021.  Analog ICs—both general-purpose analog and application-specific automotive analog—are expected to account for 45% of the 2018 automotive IC market, with MCUs capturing 23% share. There are many suppliers of automotive analog devices but a rash of acquisitions among them in recent years has reduced the number of larger manufacturers. Some of the acquisitions that have impacted the automotive analog market include NXP, which acquired Freescale in 2015 and is now itself in the process of being acquired by Qualcomm; Analog Devices, which acquired Linear Technology in March 2017; and Renesas, which acquired Intersil.

Semiconductor equipment manufacturer ClassOne Technology has announced the sale of its Solstice® Electroplating Systems to the industry’s leading providers of VCSEL (Vertical-Cavity Surface-Emitting Laser) devices in recent months. The announcement was made by ClassOne Group CEO, Byron Exarcos.

“This is an important trend. We’re observing unprecedented demand for VCSEL manufacturing capacity to support 3D sensing, fiber-optic communications, and laser-based materials processing,” said Exarcos. “At the same time, we see that compound semiconductor manufacturers are migrating production from wet-benches to automated single-wafer plating. The strong upturn in our Solstice sales reflects this. Our Solstice platform provides state-of-the-art automation and control, with industry-leading uniformity and throughput. At half the cost of competitive products, Solstice has become the platform of choice for manufacturers who use smaller substrates.”

ClassOne has developed several proprietary high-performance Solstice processing chambers that are of particular interest to VCSEL manufacturers who require high-speed, high-quality cost-cutting plating using materials such as Gold, Nickel or Copper.

“Compound semiconductor makers are looking for maximum flexibility,” explained Exarcos. “They like the fact that Solstice can run multiple wafer sizes simultaneously, and that the platform can be configured for a wide variety of wet processes beyond electroplating. These include Metal Lift Off, Resist Strip, Gold Deplate, UBM Etch, KOH Etch, Anodizing, and more—all from a single automated platform. We call this Plating-Plus™, and it can eliminate the need to purchase additional downstream tools.”

Exarcos emphasized that in addition to system performance, VCSEL manufacturers are attracted to Solstice’s exceptional affordability. The ≤200mm Solstice systems are priced at roughly half the cost of comparable 300mm systems from the large equipment manufacturers.

Solstice is a family of electroplating tools that includes Solstice S8 and S4, which are 8- and 4-chamber systems that can deliver throughputs of up to 75 wph. Multiple wet-process chambers enable the tools to perform multiple processes in-line simultaneously. ClassOne also offers the semi-automated Solstice LT specifically for process development and low-volume applications.

All Solstice customers enjoy access to the services of ClassOne’s world-class applications lab, which offers advanced equipment and expert technical support in developing and optimizing customized wet-process applications.

An international team of researchers, affiliated with UNIST has discovered a novel method for the synthesis of ultrathin semiconductors. This is a unique growth mechanism, which yielded nanoscopic semiconductor ribbons that are only a few atoms thick.

This breakthrough has been jointly conducted by Distinguished Professor Feng Ding and Dr. Wen Zhao from the Center for Multidimensional Carbon Materials (CMCM), within the Institute for Basic Science (IBS) at UNIST, in collaboration with the National University of Singapore (NUS), the National Institute for Materials Science (NIMS), the National Institute of Advanced Industrial Science and Technology (AIST), and Shenzhen University.

In the study, the research team has successfully fabricated MoS2 nanoribbons via vapour-liquid-solid (VLS) growth mechanism, a type of chemical vapour deposition (CVD) process.

“Synthesis of vertically elongated structure via VLS growth mechanism.”

Chemical vapor deposition or CVD is a generic name for a group of processes whereby a solid material is deposited from a vapor by a chemical reaction occurring on or in the vicinity of a normally heated substrate surface. It is the most widely adopted industrial techniques for producing semiconducting thin films and nanostructures.

“The range of structures that can be controllably synthesized by the current methods is still limited in terms of morphology, spatial selectivity, crystal orientation, layer number and chemical composition,” the research team noted. “Therefore, developing versatile growth methods is essential to the realization of highly integrated electronic and photonic devices based on these materials.

“The current CVD-based growth process relies on the inherent dynamics of the precursors to diffuse and self-organize on the substrate surface, which results in crystallites with characteristic triangular or hexagonal shapes,” says Dr. Zhao. “This unique growth mechanism of the nanoscopic semiconductor ribbons that are only a few atoms thick is an exciting discovery.” In the study, she performed density functional theory based molecular dynamic (DFT-MD) simulations of the MoS2 precipitation process.

The proposed mechanism of VLS growth differs from commonly known CVD technique, as it involves the precursors introduced in the vapour phase form a liquid droplet intermediate before condensing into a solid product.

The team noted that the morphology of the growth product was, however, unlike what is normally expected from a VLS growth, which typically yields cylindrical or tubular structures rather than ribbons. Their observation suggests that the liquid droplet migrates on the substrate surface in a rather ordered manner, leaving behind a track of ultrathin crystal.

“Because the liquid droplet migrates on the substrate surface in a rather ordered manner, the morphology of the growth product yielded cylindrical or tubular structures rather than ribbons.” says Dr. Zhao.

This time, however, the horizontal growth of predominantly monolayer MoS2 ribbons was obtained via VLS growth, a unique growth mechanism that has not been reported until now.

Their observation revealed that the VLS growth of monolayer MoS2 is triggered by the reaction between MoO3 and NaCl, which results in the formation of molten Na-Mo-O droplets. These droplets mediate the growth of MoS2 ribbons in the ‘crawling mode’ when saturated with sulfur. The locally well-defined orientations of the ribbons reveal the regular horizontal motion of the droplets during growth.

“Assisting the growth of MoS2 ribbons, like painting with a an ink droplet.”

In order to gain insight into the liquid-solid transformation, Professor Ding’s team performed density functional theory based molecular dynamic (DFT-MD) sumulations of the precipitation process. The simulation showed the attachment of molybdenum (Mo) and sulfur (S) to the previously established MoS2.

“It is worth noting that MoS2 is not oxidized despite the presence of large numbers of oxygen atoms,” says the research team. “We also observe the nucleation of MoS2 clusters in regions that are rich in Mo and S atoms, further supporting the feasibility of liquid-mediated nucleation and growth of MoS2.”

“This study has prompted questions about surface and interface growth of nanomaterials,” says Professor Ding. “By identifying a suitable liquid-phase intermediate compound, we believe that it will be possible to realize the direct 1D growth of a range of van der Waals layered materials.”

The team anticipates that many other materials can be grown using a similar approach. Their short-term goal is to understand the growth mechanism better and to control the morphology of the ribbons.

“Our work identified many interesting questions about surface and interface growth of nanomaterials,” says Professor Goki Eda at the National University of Singapore (NUS), the corresponding author of this study. “We predict that the ability to directly grow complex structures will greatly facilitate the realization of high performance nanoelectronic circuits.”

The team noted that their results provide insight into the distinct VLS growth mode of 2D MoS2 and demonstrate the potential of their implementation in nanoelectronic devices. The findings of this study have been published in the prestigious journal, Nature Materials on April 23, 2018.

A new class of adsorbent materials offer high capacity storage and safe delivery of dopant gases

BY J. ARNÓ, O.K. FARHA, W. MORRIS, P. SIU, G.M. TOM, M.H. WESTON, and P.E. FULLER, NuMat Technologies, Skokie, USA J. MCCABE, M. S. AMEEN, Axcelis Technologies, Beverly, MA

Metal-Organic Framework (MOF) materials are a new class of crystalline adsorbents with broad applicability in electronics materials storage, delivery, purification, and abatement. The adsorbents have unprecedented surface areas and uniform pore sizes that can be precisely customized to the specific properties of electronic gases. ION-X® is a sub-atmospheric dopant gas delivery system designed for ion implantation, and the first commercial product that uses MOFs (ION-X® is commercially available through an agreement between NuMat Technologies and Versum Materials). The performance of ION-X deliv- ering arsine (AsH3), phosphine (PH3), and boron triflu- oride (BF3) was evaluated in high current implanters at the Axcelis Advanced Technology Center and compared to the incumbent delivery systems. In-process and on-wafer results of the MOF-based dopant gases compared positively to conventional source gases. Flow, pressure, and beam stability were undistinguishable from conven- tional gas sources throughout the lifetime of the cylinder. Beam and wafer contamination levels (both surface and energetic) were below specification limits, matching the performance of the reference qualified products.

Dopant gas safety challenges

The storage and delivery of hazardous gases creates signif- icant environmental, health, and safety challenges. Their usage requires implementation of stringent safety control systems to minimize the risks of exposure to humans and the environment. The dangers associated with handling toxic gases are the result of both the inherent chemical hazard of the molecule and the kinetic energy stored in the vessel in the form of compression. In essence, the lethality of a toxic release is magnified exponentially by the energetic force of the high-pressure storage. Historically, one way to mitigate these risks was to dilute the hazardous material with inert gases in an effort to attenuate the toxicity effects. Depending on the concentration, this solution provides a safety factor improvement of 10 or 100 by virtue of reducing the molecular density of the hazardous gas to 10% or 1% mixtures, respectively. This approach is commonly used in the electronics manufacturing industry for gases that are known to have extreme toxicity. Hydride gases (i.e. arsine, phosphine, germane, or diborane) are examples of such highly toxic gases used as source materials in a number of electronic manufacturing processes. While this dilution method is effective at reducing the toxicity levels, these mixtures are typically produced at cylinder pressures significantly higher than the pressures of the pure toxic gases. In a release event, this solution reduces the lethality of the dose at the expense of a higher release rate.

In 1993, ATMI (now an Entegris company) introduced a different approach to reduce the toxic gas storage hazards [1]. The technology involves using nano-porous adsor- bents to condense the gas molecules onto their surfaces. This process effectively reduces the kinetic energy of the gas, thus reducing the pressure in the gas cylinder. The large available surface areas within these materials result in gas storage capacities comparable to the high-pressure cylinders. The intrinsic safety advantages of adsorbed gas cylinders are derived from the reduction in pressure within the cylinder. Typically, these vessels are filled to sub-atmospheric pressures (measured at room temperature) in order to inhibit an outward gas release in the event of a leak.

The first sub-atmospheric dopant gas delivery systems used zeolites (SDS® 1) while the second and third genera- tions (SDS® 2 and SDS® 3) evolved to activated carbon adsorbent materials. These gas cylinders store and deliver dopant precursor gases (primarily arsine, phosphine, and boron trifuoride) predominantly for ion implantation processes. In its third generation, and in order to further improve gas storage capacities, SDS 3 evolved by creating a highly dense monolithic adsorbent that nearly eliminated void volumes in the cylinder.

In this paper, we describe a new sub-atmospheric gas delivery system (ION-X ®) that uses a novel ultra-high surface area class of materials called metal-organic frame- works (MOFs). In addition, the implant process perfor- mance using the new product delivering arsine, phosphine, and boron trifluoride was evaluated in a major ion implant OEM facility will be described.

MOF overview: The next generation in nano- porous adsorbents

MOF are three-dimensional crystalline structures assembled with metal-containing nodes connected by organic links (FIGURE 1). The resulting highly organized molecular structures generate nano-pores with record surface areas [2-4]. In addition, the large number of available metal nodes and organic linkers provide unpar- alleled molecular design flexibility to tailor the chemical and physical properties of the adsorbent material to fit the application. Since their discovery in the early 1990’s, MOFs have evolved from an academic curiosity to a widely recognized new class of materials with practical applications in energy, specialty chemicals, military, medical, pharmaceutical, and electronics industries. MOFs are one of the fastest growing classes of materials, with thousands of experimental structures now being reported.

For gas storage and delivery applications, MOFs’ design flexibility provides advantages over traditional adsorbents (FIGURE 2). Pore size, surface area, and chemical stability can be tailored to the specific properties of the adsorbed gases. Compared to zeolites and activated carbon adsorbents, MOFs have significantly larger surface areas (up to 7,000m2/g has been reported[5]. This property, combined with bulk density, is critical in gas storage applications where capacity is measured in terms of vessel volume rather than adsorbent mass. Pore size tunability is also an important parameter in efforts to match the dimensions of the MOF cavities to the molecular sizes of the target adsorbates. This parameter impacts adsorption capacities (how much gas can be loaded) and desorption characteristics (how much can be delivered as a function of pressure). Unlike the broad pore size distributions found in activated carbon adsorbents, MOFs’ crystallinity results in more “usable” pores. This pore size uniformity also results in higher gas quality, as impurities are selectively size excluded.

Preventing reactions between the adsorbent and the target gas is extremely important in electronics applications. Adsorbent/gas interactions will contribute to gas decomposition, leading to impurities and unwanted dopant gas composition changes that could affect the process. The molecular composition of zeolites and carbon adsor- bents are limited to a few elements (typically carbon, aluminum, and silicon) and their oxides. MOFs, on the other hand, can be synthetized from a large range of organic and inorganic constituents, offering more options for creating stable gas/ adsorbent interactions.

MOF-based gas delivery system for ion implant gases ION-X (FIGURE 3) is a sub-atmospheric dopant gas storage and delivery system designed for ion implantation [6]. ION-X uses individual MOF structures with tailored pore sizes to effectively and reversibly adsorb arsine, phosphine, and boron trifluoride gases. The pressure in filled ION-X cylinders is below one atmosphere, significantly reducing the health and environmental impact of an accidental gas release. Furthermore, MOFs’ ultra-high surface areas and uniform structures provide capacity and deliverable advantages compared to existing carbon adsorbent-based products (FIGURE 4). It is important to note that the first-generation ION-X cylinders utilize granulated MOFs with similar adsorbent bulk density to the first-generation carbon product: for the same mass of adsorbent, MOFs provide 40% to 55% higher gas delivery by virtue of their superior surface area and pose size uniformity. Analogous to the evolution of SDS®2, MOF densification inside the cylinder will further increase the gas capacity in next-generation ION-X products.

Implant performance characterization

The performances of ION-X dopant delivery systems were recently evaluated using a PurionH 300 mm high current ion implanter at Axcelis’ Advanced Technology Center (Beverly, MA, USA). The test plan included flow, mass spectral, and metal contamination analyses (both at the surface and at implanted depth). The experiments were repeated using commercially available and well-estab- lished sub-atmospheric dopant gas sources in order to provide a basis for comparison.

Cylinder installation and setup was seamless, requiring no modifications to the existing gas box hardware or software. Flow rate stability for all three gases (AsH3, PH3, and BF3) was demonstrated in the 3.5 to 8 sccm ranges down to cylinder pressures of 20 torr (spec limit). For arsine, the flow experiment continued through a full cylinder depletion, showing a stable flow rate down to cylinder pressure below 3 torr.

The beam energy, purity, and stability were evaluated by analyzing the mass spectra generated during the implantation processes. In all cases, the target dose was 5 x 1015 at/cm2 with beam energies of 40 keV, 20 keV and 15 keV for As+, P+, and BF¬2+ ion implants respectively. The stability and purity of the target doping ion beams were within specifications and very similar to the ones produced by the reference gas sources. Based on the mass spectra, ION-X did not generate any impurities derived from either gas or MOF decomposition.

Neutral and energetic metal contamination levels were thoroughly investigated in this study. All metal analyses were performed by sampling wafers produced using the recipes described in the previous paragraph. Vapor Phase Decomposition-inductively coupled Plasma-Mass Spectrometry (VPD-ICP-MS) was used to monitor the contamination from key trace metals at the wafer surface. Particular attention was placed on monitoring zinc and iron, metals used in the hydride and BF3 ION-X MOF adsorbents respectively. Results show that all metal levels were within specification limits and compared well to the levels detected in control wafers. In all cases, zinc and iron surface contamination levels were below their corresponding detection limits of 0.03 and 0.05 x 1010 atoms/cm2.

Energetic metal contamination is of special interest in ion implantation as even low levels of impurities could affect the performance of the electronic devices. The depth profile of the metals used in ION-X’s MOFs composition were measured using Secondary Ion Mass Spectrometry (SIMS). Wafers used for SIMs analyses were doped using both ION-X and incumbent gas sources using the same ion implant tool and previously stated recipes. The zinc and iron metal concentration profiles for the hydride and boron implants were well within specifications and show no discernable differences between the incumbent and the MOF-based gas sources (FIGURE 5). These results, combined with the previous surface contamination tests, conclusively establish the gas and ion purity of the dopant species extracted from ION-X adsorbents. Moreover, the results are consistent with extensive gas analyses performed at NuMat after subjecting the MOF adsorbent materials to accelerated aging, vibration, and cycle testing.

Summary

This article provides process and on-wafer performance of ION-X, a new MOF-based dopant gas delivery system. The adsorbents used in these cylinders have surface areas, stability, purity, and pore sizes ideal for the storage and delivery of ion implant dopant gases. In-process and on-wafer performance of boron trifluoride, arsine, and phosphine dopant sources compared positively to conven- tional source gas cylinders. The issue of contamination was investigated in detail, demonstrating that the new adsorbents do not contribute to surface or energetic metal impurities. The results published in this article provide independent evaluation of the new product, supporting the safe use of this product in mainstream ion implant applications. To that end, ION-X is already qualified and being used at an electronics manufacturing site with confirmed high stability and purity performance.

References

  1. Olander, K. and Avila, A., “Subatmospheric Has Storage and Delivery: Past, Present, and Future”, Solid State Technology, Volume 57 (2014), pp 27-302.
  2. Y. Cui, B. Li, H. He, W. Zhou, B. Chen, and G. Qian, “Metal–Organic Frameworks as Platforms for Functional Materials,” Accounts of Chemical Research, vol. 49, pp. 483-493, 2016/03/15 2016.
  3. H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, “The Chemistry and Applications of Metal-Organic Frameworks,” Science, vol. 341, 2013.
  4. P. Silva, S. M. F. Vilela, J. P. C. Tome, and F. A. Almeida Paz, “Multifunc- tional metal-organic frameworks: from academia to industrial applications,” Chemical Society Reviews, vol. 44, pp. 6774-6803, 2015.
  5. Omar K Farha et al., “Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?” J. Am. Chem. Soc. (2012), Vol. 134, pp 15016−15021
  6. G. M. Tom et al., “Utilization of Metal-Organic Frameworks for the Management of Gases Used in Ion Implantation”, 2016 21st International Conference on Ion ImplantationTechnology (IIT),Tainan, 2016, pp. 1-4.

SiFive, a provider of commercial RISC-V processor IP, today welcomed Brite Semiconductor, an ASIC service company invested by SMIC, to the growing DesignShare ecosystem.

The partnership enables Brite Semiconductor to offer DDR IP, which complies with DDR2/3/4 and LPDDR2/3/4, up to 2667MT/s. Brite Semiconductor’s DDR technology will make it easier for SiFive customers to speed data transfer rates on their RISC-V based SoCs within a reduced power envelope. Brite Semiconductor’s proven silicon will not only lower costs to designers, but also enable them to shorten production time.

“Brite is committed to promote innovation in ASIC business through collaboration and ecosystem development,” said Thomas Xu, CEO of Brite Semiconductor. “The demand for open-source hardware is increasing, and DesignShare offered by SiFive is a great platform to provide designers access to what they want.”

The availability of Brite Semiconductor’s DDR IP through the DesignShare program shortens the time to market and removes common barriers to entry that have historically blocked smaller companies from developing custom silicon. Companies like SiFive, Brite Semiconductor and other ecosystem partners provide low- or no-cost IP to emerging companies, reducing the upfront engineering costs required to bring a custom chip design to realization.

“Brite Semiconductor’s DDR IP makes it simpler for engineers to use RISC-V in their future designs.” said Shafy Eltoukhy, vice president of operations and head of DesignShare for SiFive. “We’re excited to see the innovations stemming from our DesignShare ecosystem.”

Since DesignShare launched in 2017, the program has grown to include a wide range of IP solutions, from debug and trace technology to embedded memory and reconfigurable FPGA. For more information on DesignShare and to see the complete list of technologies, visit www.sifive.com/designshare.

North America-based manufacturers of semiconductor equipment posted $2.69 billion in billings worldwide in April 2018 (three-month average basis), according to the April Equipment Market Data Subscription (EMDS) Billings Report published today by SEMI. The billings figure is 10.7 percent higher than the final March 2018 level of $2.43 billion, and is 26.0 percent higher than the April 2017 billings level of $2.13 billion.

“April 2018 monthly billings for North American equipment manufacturers surpassed the October 2000 record high of $2.6 billion,” said Ajit Manocha, president and CEO of SEMI. “Storage, artificial intelligence and big data are driving strong demand for semiconductors, offsetting smartphone sales that have lagged expectations this year.”

The SEMI Billings report uses three-month moving averages of worldwide billings for North American-based semiconductor equipment manufacturers. Billings figures are in millions of U.S. dollars.

Billings
(3-mo. avg)
Year-Over-Year
November 2017
$2,052.3
27.2%
December 2017
$2,398.4
28.3%
January 2018
$2,370.1
27.5%
February 2018
$2,417.8
22.5%
March 2018 (final)
$2,431.8
16.9%
April 2018 (prelim)
$2,691.4
26.0%

Source: SEMI (www.semi.org), May 2018

BY DAVID W. JIMENEZ, CEO, Wright Williams & Kelly, Inc.

For 27 years Wright Williams & Kelly, Inc. (WWK) has developed strategies and operational products and services proven to produce significant results. Over the course of nearly three decades, WWK has saved its clients over $10 billion and led the way in cost modeling, capacity planning, and operational efficiency; however, sometimes a company gets ahead of its markets. It has been 15 years since WWK launched its first online subscription-based product…and 13 years since it stopped offering it. Today, WWK returns to the cloud.

The cloud is an innovation fueled by advanced chip technology, but it has also been a model the industry hesitated to embrace. Much of this had to do with limited data protection schemes. Intellectual property (IP) is at the core of a successful integrated circuit business and letting key information leave the confines of the organization has traditionally been a forbidden proposition.

Fast forward a decade and a half and cloud-based services are now the norm. Fears over IP theft remain, but the protections have greatly improved. Further, the offerings that add value to cloud-based solutions have also greatly expanded. The move to the cloud now has less to do with a reduction in paranoia and more to do with the advantages of cloud computing. IBM breaks down the advantages into three areas; flexibility; efficiency; and strategic value.

Flexibility allows the scaling of computing power to the task at hand regardless of the local machine used to connect. Efficiency is accessing the needed applications from anywhere in the world from any connected device. Strategic value comes from being able to move faster than competitors by not being tied to existing infrastructure and the hesitancy to obsolete major IT investments. Michael Wright and Walter Ferguson in their 2005 treatise “The New Business Normal” predicted strategic advantage would accrue to those who could access, collate, analyze, and act on information faster than the competition, anywhere in the world and at any time.

WWK has leveraged these advantages by moving its complete suite of manufacturing optimization applica- tions to the cloud. In addition to the advantages inherent in cloud computing, this move provides WWK’s clients substantial cost advantages by lowering up front licensing costs and shifting from capital budgeting to more flexible expense accounting.

Cloud-based solutions: Developed with DARPA/SEMATECH, TWO COOL® is a cost of ownership (COO) and overall equipment efficiency (OEE) modeling platform designed to help equipment and process engineers as well as suppliers understand process step level impacts of changes in operating parameters.

Initially developed by Sandia National Laboratories, Factory Commander® is a cost and resource analysis platform. It analyzes overall factory and individual product costs, manufacturing capacity, and return on investment.

Factory Explorer® is an integrated capacity, cost, and discrete-event simulation tool which predicts factory capacity and bottleneck resources, product cost and gross margins, and dynamic measures such as cycle time and work-in-process.

Advantages put into practice: One advantage in moving these applications to the cloud is users benefit from a state-of-the art computing system. Modeling and simulation apps are computing power intensive. Instead of each user requiring a high-end workstation, the cloud allows users to share a virtual machine(s) (VM). When needs increase, upgrading the VM is quick and low-cost. This keeps the total cost of ownership (TCO) for IT infrastructure at a minimum.
Another advantage is updates happen behind the scenes and for all users at the same time. Traditional software maintenance costs disappear. No more scenarios where users are operating on different revision levels nor lose data due to forgotten backups.

Remote computing has always been a better solution, but there were reasons behind the slow acceptance. Even before the term cloud computing came to the fore, WWK understood this. It offered a remote server-based product before anyone knew what the cloud was. WWK was early to market, but the understanding it gained pointed it in the right direction. Like most market windows you can be early but never late. The arrival of the breadth of solutions needed to offer cloud-based applications has enabled WWK to scrap client-side software licensing and provide a robust, low cost manufacturing optimization software suite with all the advantages it envisioned 15 years ago. I guess we are back to the future.

SEMI, the global industry association representing the electronics manufacturing supply chain, today announced that the WT | Wearable Technologies Conference 2018 USA will co-locate July 11-12 with SEMICON West 2018 in San Francisco. The electronics industry’s premier U.S. event, SEMICON West — July 10-12 at Moscone North and South — will highlight engines of industry expansion including smart transportation, smart manufacturing, smart medtech, smart data, big data, artificial intelligence, blockchain and the Internet of Things (IoT). Click here to register.

“We are excited that the WT | Wearables Technologies Conference has joined SEMICON West to co-locate in 2018,” said David Anderson, president of SEMI Americas. “Our strategic partnership brings new content and more value to our extended supply chain. Every day the semiconductor industry makes chips smaller and faster with ever-higher performance. These innovations enable new wearable applications for smart living, smart medtech and healthcare that are continuously improving our lives. The WT | Wearable Technologies Conference speakers at SEMICON West 2018 will demonstrate just how they use semiconductor technology to deliver leading-edge wearables.”

“It is a great pleasure to collaborate with the leading global electronics manufacturing association and its successful SEMICON West event,” said Christian Stammel, CEO of WT | Wearables Technologies. “Since the beginning of our platform in 2006, the semiconductor industry has been a major driver of wearables and IoT innovation. All major developments in the WT application markets like healthcare (smart patches), safety and security (tracking solutions), lifestyle and sport (smartwatches and wristbands) and in the industrial field (AR / VR) were driven by semiconductor and MEMS innovations. Our program of expert speakers at SEMICON West will share the latest insights in the wearables market as the SEMI and WT ecosystems explore collaboration and innovation opportunities.”

IC Insights recently released its May Update to the 2018 McClean Report.  This Update included a look at the top-25 1Q18 semiconductor suppliers, a discussion of the 1Q18 IC industry market results, and an update of the 2018 capital spending forecast by company.

Overall, the capital spending story for 2018 is becoming much more positive as compared with the forecast presented in IC Insights’ March Update to The McClean Report 2018 (MR18).  In the March Update, IC Insights forecast an 8% increase in semiconductor industry capital spending for this year. However, as shown in Figure 1, IC Insights has raised its expectations for 2018 capital spending by six percentage points to a 14% increase.  If this increase occurs, it would be the first time that semiconductor industry capital outlays exceeded $100 billion.  The worldwide 2018 capital spending forecast figure is 53% higher than the spending just two years earlier in 2016.

Although Samsung says it still does not have a full-year capital spending forecast for this year it did say it will spend “less” in semiconductor capital outlays in 2018 as compared to 2017, when it spent $24.2 billion.  However, as of 1Q18, with regard to its capex, its “foot is still on the gas!”  Samsung spent $6.72 billion in capex for its semiconductor division in 1Q18, slightly higher than the average of the previous three quarters.  This figure is almost 4x the amount the company spent just two years earlier in 1Q16!  Over the past four quarters, Samsung has spent an incredible $26.6 billion in capital outlays for its semiconductor group. Wow!

IC Insights has estimated Samsung’s semiconductor group capital spending will be $20.0 billion this year, $4.2 billion less than it spent in 2017.  However, given the strong start to its spending this year, it appears there is currently more upside than downside potential to this forecast.

With the DRAM and NAND flash memory markets still very strong, SK Hynix is expected to ramp up its capital spending this year to $11.5 billion, 42% greater than the $8.1 billion it spent in 2017. The increased spending by SK Hynix this year will primarily focus on bringing on-line two large memory fabs—M15, a 3D NAND flash fab in Cheongju, South Korea and its expansion of its huge DRAM fab in Wuxi, China.  The Cheongju fab is being pushed to open before the end of this year.  The Wuxi fab is also targeted to open by the end of this year, a few months earlier than its original planned start date of early 2019.

Figure 1