Category Archives: Wafer Processing

There are many different situations in which special attention to color choices provide the potential to improve the manufacturing results of multi-patterned masks.

BY DAVID ABERCROMBIE and ALEX PEARSON, Mentor Graphics, Wilsonville, OR

Multi-patterning design rules don’t care about color (mask assignments). As long as all the spacing and alternation constraints are met, any coloring arrangement is legal. In the beginning of multi-patterning, all possible color combinations that passed the design rule checks (DRC) were considered and treated as equal. As the technology moves into more advanced nodes, however, that is no longer the case.

As it turns out, one legal coloring choice can, in fact, be significantly better than another when it comes to manufacturing success and chip performance. Designers working on multi-patterned layouts need to understand the issues and conditions that affect their color choices, so they can determine the optimal coloring scheme for their designs.

Color density

In multi-patterned designs, each color assignment represents a different manufacturing mask. Each mask is processed through a lithography operation, and the pattern is etched onto the wafer. Once all the masks are processed, the goal is to have all the shapes created from all the masks act as if they were all generated from one mask, with very similar process biases and variations.
To ensure that type of consistency, all the masks need to resemble each other in terms of the total area and distribution of shapes. Clumping shapes in one area of one mask, while distributing shapes evenly across another, is going to result in very different process bias behavior and results. Balancing the color density across each mask provides the best manufacturing result.

To explain why, let’s look at a standard cell library design. Because power rails are typically much wider than the routing tracks inside the cells, they constitute a large portion of the polygon area inside the standard cell design block. The number of tracks in the library force the power rails into certain color pairings (FIGURE 1). In the first case, the power rails are forced to opposite colors, while in the second, they are forced to the same color.

Screen Shot 2018-03-28 at 7.41.28 AM

The color ratio distribution charts tell the story of the two designs. When the power rails alternate color, the distribution of the color density ratio is well-centered around the 50% point. However, forcing the power rails to be a single color can dramatically shift the color ratio towards that single color. This distribution is more problematic to manufacture.

But uniform color density isn’t just a chip-wide, global issue—even local differences can have negative impacts, because local areas with excessive or insufficient color density can impact the biases of nearby shapes during processing. In FIGURE 2, both coloring options are legal, but the polygons within each connected component are not equal in area, so the choice of G-B-G-B vs. B-G-B-G affects how much area of each color ultimately exists within this local region. The second coloring choice results in a more uniform area density of each color.

Screen Shot 2018-03-28 at 7.41.35 AM

However, some layouts contain polygon configurations that inherently make it almost impossible to balance colors simply by changing color choices. For example, sometimes you have a very large area polygon in the midst of your layout (FIGURE 3). No matter what color you assign to the large polygon, it will dominate the color density in this region. Changing color selections in the nearby polygons doesn’t help, because they can’t all be assigned to the other color.

Screen Shot 2018-03-28 at 7.41.42 AM

In this case, a new (and perhaps unexpected) solution is needed. Placing evenly distributed polygons of the opposite color in a grid on top of the large area polygon (known as reverse tone overlay fill) adds shapes to the opposite color mask in a region that would otherwise have been empty (FIGURE 4). The smaller polygons on top don’t create openings (they merely “double” block the etch), so they have no real purpose in terms of the final wafer shape. In that regard, they are similar to dummy fill. This technique ensures the two masks have more similar color densities in this region.

Screen Shot 2018-03-28 at 7.41.49 AM

Color regularity

Specific configurations, such as those found in memory applications, may also need strongly controlled, repetitive coloring patterns to help the optical proximity correction (OPC) process generate more consistent results. FIGURE 5 shows three vertical instantiations of a repetitive pattern with horizontal color alternation constraints. On the left, a density-balanced legal coloring assignment is shown. However, by adding a few extra coloring constraints, you can also achieve a regular repetitive coloring pattern, as shown on the right. By introducing this color regularity, you can increase the chances of consistency in the post-OPC results.

Screen Shot 2018-03-28 at 7.41.58 AM

Layout symmetry is another aspect of design that benefits from color regularity. When there is a significant amount of symmetry around a central point, such as a sensitive analog circuit, the most desirable coloring solution maintains x and y axis symmetry around the central point. In FIGURE 6, the constrained coloring solution on the right adds constraints for x and y axis symmetry to generate a mirrored coloring pattern.

Screen Shot 2018-03-28 at 7.42.12 AM

DFM-aware coloring

In design for manufacturing (DFM) optimization, weak lithographic configurations are often captured as process hotspot patterns, which can be used with DFM and/or resolution enhancement technology (RET) processes to minimize the chance of a hotspot forming during manufacturing. As it turns out, the coloring of these patterns in multi-patterned designs can influence whether or not a pattern becomes a hotspot, or actually change the hotspot severity or impact of a particular pattern. If a hotspot pattern is consistently colored in all its instantiations, it may prevent that hotspot from forming, or allow a carefully tuned OPC recipe to be applied.

In FIGURE 7, a different, but still legal, coloring is applied to a rotated/reflected pattern. Because the OPC process will now affect each instance differently, the rotated pattern may become a lithographic hotspot, while the original pattern does not.

Screen Shot 2018-03-28 at 7.42.04 AM

FIGURE 8 shows the same legal coloring applied to both pattern instances, which allows the same OPC to be applied to the layout in both locations, because the coloring is the same, and the polygons that end up on each mask are consistent.

Screen Shot 2018-03-28 at 7.42.21 AM

Sometimes there are cases where information from other layers indicate a color preference for certain shapes. These preferences are typically the result of analysis on another layer, or from information the designer provides, such as for critical or high voltage nets. While these preferences may sometimes conflict with each other for neighboring shapes in the same component, applying these preferences whenever possible helps drive an optimal coloring solution. In FIGURE 9, the red markers indicate a preference for placing those shapes on the green mask. In this case, there is one component that cannot comply, but placing three of the four tagged polygons on the preferred mask maximizes the preferred placements, making this optimal coloring solution.

Screen Shot 2018-03-28 at 7.42.26 AM

Conclusion

In advanced process nodes, achieving the best performance and yield requires moving beyond the minimum requirements of the design rules to optimizing the layout. This optimization is a fundamental principle of all design for manufacturing (DFM) activities, including multi-patterning decomposition. There are many different situations in which special attention to color choices provide the potential to improve the manufacturing results of multi-patterned masks. Designers involved with generating the decomposed mask data before tapeout can expect to see more emphasis on color optimizations as the industry continues to refine and enhance multi-patterning processes.

Single crystal tin selenide (SnSe) is a semiconductor and an ideal thermoelectric material; it can directly convert waste heat to electrical energy or be used for cooling. When a group of researchers from Case Western Reserve University in Cleveland, Ohio, saw the graphene-like layered crystal structure of SnSe, they had one of those magical “aha!” moments.

Electric charges in a nanostructured tin selenide (SnSe) thin film flow from the hot end to the cold end of the material and generate a voltage. Credit: Xuan Gao

Electric charges in a nanostructured tin selenide (SnSe) thin film flow from the hot end to the cold end of the material and generate a voltage. Credit: Xuan Gao

The group reports in the Journal of Applied Physics, from AIP Publishing, that they immediately recognized this material’s potential to be fabricated in nanostructure forms. “Our lab has been working on two-dimensional semiconductors with layered structures similar to graphene,” said Xuan Gao, an associate professor at Case Western.

Nanomaterials with nanometer-scale dimensions — such as thickness and grain size — have favorable thermoelectric properties. This inspired the researchers to grow nanometer-thick nanoflakes and thin films of SnSe to further study its thermoelectric properties.

The group’s work centers on the thermoelectric effect. They study how the temperature difference in a material can cause charge carriers — electrons or holes — to redistribute and generate a voltage across the material, converting thermal energy into electricity.

“Applying a voltage on a thermoelectric material can also lead to a temperature gradient, which means you can use thermoelectric materials for cooling,” said Gao. “Generally, materials with a high figure of merit have high electrical conductivity, a high Seebeck coefficient — generated voltage per Kelvin of temperature difference within a material — and low thermal conductivity,” he said.

A thermoelectric figure of merit, ZT, indicates how efficiently a material converts thermal energy to electrical energy. The group’s work focuses on the power factor, which is proportional to ZT and indicates a material’s ability to convert energy, so they measured the power factor of the materials they made.

To grow SnSe nanostructures, they used a chemical vapor deposition (CVD) process. They thermally evaporated a tin selenide powder source inside an evacuated quartz tube. Tin and selenium atoms react on a silicon or mica growth wafer placed at the low-temperature zone of the quartz tube. This causes SnSe nanoflakes to form on the surface of the wafer. Adding a dopant element like silver to SnSe thin films during material synthesis can further optimize its thermoelectric properties.

At the start, “the nanostructure SnSe thin films we fabricated had a power factor of only ~5 percent of that of single crystal SnSe at room temperature,” said Shuhao Liu, an author on the paper. But, after trying a variety of dopants to improve the material’s power factor, they determined that “silver was the most effective — resulting in a 300 percent power factor improvement compared to undoped samples,” Liu said. “The silver-doped SnSe nanostructured thin film holds promise for a high figure of merit.”

In the future, the researcher hope that SnSe nanostructures and thin films may be useful for miniaturized, environmentally friendly, low-cost thermoelectric and cooling devices.

Veeco Instruments Inc. (NASDAQ: VECO) today announced it has completed installation of its 100th automated Molecular Beam Epitaxy (MBE) system. The installation of Veeco’s GEN10™ MBE System last month at Silanna Semiconductor PTY Ltd. in Australia marks this significant company milestone. The company also operates a Veeco Dual GEN200® MBE System for production of advanced nitride compound semiconductor devices including ultraviolet light emitting diodes (UV-LEDs).

“Veeco has earned a reputation for consistently developing innovative and reliable MBE technology from research scale to production,” said Petar Atanackovic, Ph.D., chief scientist of Silanna Semiconductor PTY Ltd. “The flexibility and deposition capability of the GEN10 system will enable us to develop new materials at the atomic level allowing us to exploit new quantum properties. Veeco’s technology portfolio and leadership in MBE systems provides us with a clear path to easily scale to volume production in the future.”

Silanna is using the GEN10 system for advanced oxide research and development (R&D) for optoelectronic devices. The GEN10 is built upon almost 20 years of cumulative automation knowledge and derived from the company’s proven production MBE systems. Adopted by numerous leading corporations, institutions and universities for all major MBE applications, many customers choose the GEN10 because of its flexibility, which allows them to configure the system based on their application. This gives customers optimal performance with any material set, including those related to III-V group elements, oxides and nitrides.

“Silanna has achieved remarkable results on its previous MBE systems and Veeco is honored to celebrate this momentous accomplishment in our company history in partnership with Dr. Atanackovic and the Silanna team,” said Gerry Blumenstock, vice president and general manager, Veeco MBE Products. “As our customers explore novel materials and new applications, they can rely on Veeco to deliver innovative MBE systems, sources and components for use in complex R&D, as well as high-volume production environments.”

MBE is a highly precise thin-film deposition method for creating crystals by building up orderly layers of molecules on top of a substrate. MBE is used in industrial production processes as well as nanotechnology research in high-growth advanced computing, optics and photonics applications, to name a few. With over 600 systems shipped worldwide, Veeco provides the industry’s broadest portfolio of proven, reliable MBE systems, sources and components to serve a wide variety of markets and applications.

The Semiconductor Industry Association (SIA) today released the following statement from President & CEO John Neuffer in response to the Section 301 action taken by the Trump Administration to address China’s trade practices.

“The U.S. semiconductor industry shares the Trump Administration’s concerns regarding unfair and discriminatory trade practices that put at risk American intellectual property in China.

“We are reviewing the Administration’s Section 301 findings and proposed actions, and encourage an outcome that protects U.S. intellectual property in a manner that avoids a costly trade conflict. We welcome the opportunity to provide input on proposed tariffs, and hope to work with the Administration to avoid tariffs that would harm competitive U.S. industries and their consumers.

“Intellectual property is the lifeblood of the semiconductor industry. Semiconductors are America’s fourth-largest export and are fundamental to the strength of our economy. U.S. semiconductor companies invest nearly one-fifth of their revenue in research and development to stay at the forefront of innovation. They should be able to compete in foreign markets without putting their critical IP at risk.

“At the same time, we welcome China’s participation in the global semiconductor value chain as long as it conforms with its international obligations and is consistent with market-based principles. In the end, strong protections for intellectual property serve the long-term interests of both the United States and China.”

North America-based manufacturers of semiconductor equipment posted $2.41 billion in billings worldwide in February 2018 (three-month average basis), according to the February Equipment Market Data Subscription (EMDS) Billings Report published today by SEMI.  The billings figure is 1.7 percent higher than the final January 2018 level of $2.37 billion, and is 22.2 percent higher than the February 2017 billings level of $1.97 billion.

“February billings remain at a level indicating another positive year for semiconductor equipment spending,” said Ajit Manocha, president and CEO of SEMI. “We expect 2018 to mark the fourth consecutive year of spending growth, which last occurred in the 1990s.”

The SEMI Billings report uses three-month moving averages of worldwide billings for North American-based semiconductor equipment manufacturers. Billings figures are in millions of U.S. dollars.

Billings
(3-mo. avg)
Year-Over-Year
September 2017
$2,054.8
37.6%
October 2017
$2,019.3
23.9%
November 2017
$2,052.3
27.2%
December 2017
$2,398.4
28.3%
January 2018 (final)
$2,370.1
27.5%
February 2018 (prelim)
$2,411.4
22.2%

Source: SEMI (www.semi.org), March 2018

Research included in the March Update to the 2018 edition of IC Insights’ McClean Report shows that fabless IC suppliers accounted for 27% of the world’s IC sales in 2017—an increase from 18% ten years earlier in 2007.  As the name implies, fabless IC companies do not operate an IC fabrication facility of their own.

Figure 1 shows the 2017 fabless company share of IC sales by company headquarters location.  At 53%, U.S. companies accounted for the greatest share of fabless IC sales last year, although this share was down from 69% in 2010 (due in part to the acquisition of U.S.-based Broadcom by Singapore-based Avago). Broadcom Limited currently describes itself as a “co-headquartered” company with its headquarters in San Jose, California and Singapore, but it is in the process of establishing its headquarters entirely in the U.S. Once this takes place, the U.S. share of the fabless companies IC sales will again be about 69%.

Figure 1

Figure 1

Taiwan captured 16% share of total fabless company IC sales in 2017, about the same percentage that it held in 2010.  MediaTek, Novatek, and Realtek each had more than $1.0 billion in IC sales last year and each was ranked among the top-20 largest fabless IC companies.

China is playing a bigger role in the fabless IC market.  Since 2010, the largest fabless IC marketshare increase has come from the Chinese suppliers, which captured 5% share in 2010 but represented 11% of total fabless IC sales in 2017.  Figure 2 shows that 10 Chinese fabless companies were included in the top-50 fabless IC supplier list in 2017 compared to only one company in 2009. Unigroup was the largest Chinese fabless IC supplier (and ninth-largest global fabless supplier) in 2017 with sales of $2.1 billion. It is worth noting that when excluding the internal transfers of HiSilicon (over 90% of its sales go to its parent company Huawei), ZTE, and Datang, the Chinese share of the fabless market drops to about 6%.

Figure 2

Figure 2

European companies held only 2% of the fabless IC company marketshare in 2017 as compared to 4% in 2010. The loss of share was due to the acquisition of U.K.-based CSR, the second-largest European fabless IC supplier, by U.S.-based Qualcomm in 1Q15 and the purchase of Germany-based Lantiq, the third-largest European fabless IC supplier, by Intel in 2Q15.  These acquisitions left U.K.-based Dialog ($1.4 billion in sales in 2017) and Norway-based Nordic ($236 million in sales in 2017) as the only two European-based fabless IC suppliers to make the list of top-50 fabless IC suppliers last year.

The fabless IC business model is not so prominent in Japan or in South Korea.  Megachips, which saw its 2017 sales jump by 40% to $640 million, was the largest Japan-based fabless IC supplier.  The lone South Korean company among the top-50 largest fabless suppliers was Silicon Works, which had a 15% increase in sales last year to $605 million.

This work explores the effect of underlying metallic alloys and the influence of Cu loss under via bottom after dry etching and wet cleaning processes. To Improve the Cu loss under via bottom, effective approaches are proposed. The modified actions for via bottom improve not only wafer yield but also reliability of the device.

By CHENG-HAN LEE and REN-KAE SHIUE, Department of Materials Science and Engineering, National Taiwan University, Taiwan, ROC

With metal line dimensional shrinkage in advanced packaging, Cu voids in metal lines cause the failure of via-induced metal-island corrosion. It impacts not only yield loss but also device reliability, specifically electron migration (EM) and stress migration (SM). One of the Cu voids is located under via bottom which is more unpredictable than others. The Cu void under via bottom is caused by integrated processes such as via etch and Cu electro-chemical plating (ECP). It is not similar to the Cu void caused by barrier Cu-seed and ECP Cu. The mechanism of Cu voids under via bottom formation from dry etching and wet cleaning are related to Cu dual-damascene interconnection. Both plasma damage and chemical reaction are proposed to explain its failure mechanism. In the integrated process of Cu interconnects, we can design not only the safety dimension of Cu line via depth but also process criteria with less damage and oxidation in dry etching and wet clean based on Cu loss amount (Cu recess) in TEM inspection. The modified actions for via bottom improve not only wafer yield but also reliability of device.

Introduction

For deep sub-micrometer CMOS integrated circuit, copper (Cu) metallization has been applied in semi- conductor metallization processes of ULSI beyond 0.13 μm technology because of its lower resistivity and better reliability, especially better electron migration resistance than that of aluminum (Al) [1–4]. Under 10 nm technology, front end-of-line (FEOL) device process had already transferred from planar to fin-fet MOS, but the Cu formation process only have slight change in backend-of-line (BEOL) metallization. There are two kinds of schemes, single- and dual- damascene processes. In fact, the main body of Cu interconnection in dual- damascene process includes metal trench and via etching, post etching, wet clean, deposition of barrier films and Cu-seed layer, Cu ECP and Cu chemical mechanical polishing (CMP). They are all similar technologies.

Even though many well-known modifications were implemented in both mature and advanced processes, a few lethal defects which significantly damage wafer yield and device reliability, such as Cu voids and scratches, always exist after Cu-CMP process due to the Cu metal corrosion. Most previous studies in Cu voids, such as Lu et al. [5], Song et al. [6], Wrschka et al. [7] and T.C. Wang et al. [8], were focused on Cu voids on metal line due to wafer yield concern. It meant that Cu voids on metal line could be detected by on-line electron-beam inspection as demonstrated by Guldi et al. [9].

Although Reid et al. [10] have described that the formation of Cu voids could be resulted from step coverage of Cu-seed, waveform function and additives (Accelerator, Suppressor and Leveler), chemical formulation of ECP. However, the mechanism of Cu voids during the via-formation process is still unclear. Coverage or quality of seed layers being poor, thin and/or discontinuous will induce via bottom void which results in deteriorating the plating process. A systematic study of Cu void effects has not been reported. For the mature technology to reduce via resistance, a Cu surface cleaning (pre-cleaning) process prior to deposit the diffusion barrier metal to remove the CuOx on via bottom in order to improve yield was mentioned by Wang et al. [8]. However, it caused a significant Cu loss under via bottom as well as deteriorating reliability window of the process.

With the metal line shrinkage in advanced CMOS process, Cu void under via bottom becomes much crucial than before. Actually, it perhaps is the most important defect in device reliability concern. Unlike Cu voids or pits on metal line, such defects cannot be easily detected by on-line defect screen methodology, neither electrical test nor wafer yield testing. The reason is that Cu interconnection is still valid at that time. The most decisive step of Cu void detection under via bottom is the reliability test. Alers et al. [11] showed that Cu voids affected electron migration resistance. Wang et al. [12] had pointed out that Cu voids under via bottom were the major factor resulting in failure during stress and/or electron migration tests. In our exper- iment, Cu loss under via bottom was strongly related to high temperature storage (HTS) and high temperature operation life (HTOL) reliability tests. Thermal and/or electronic stresses may resulted from many processes, including Si manufacturing, bumping, wafer yield test and even early failure rate (EFR) stage in reliability test. It should be further clarified.

Experimental procedures

A. Cu scheme and process

A via structure consisted of metal chains and via holes as displayed in FIGURE 1. Dual Cu damascene with “via first” process was applied to prepare the test sample. The Cu interconnection was made by BEOL Cu dual-damascene process which included an etching stop layer, dielectric deposition, metal line/via lithography, metal line/via dry etching, post etching wet clean containing deionized water (DIW) with discharging gas, deposition of barrier films and Cu-seed layer, Cu ECP and Cu CMP.

Screen Shot 2018-03-22 at 1.10.02 PM

In advanced technology, EM resistance decreasing with metal line shrinkage of Cu interconnects was a major concern, specifically for dimensions of metal line and via bottom less than 30 nm. As the interconnect dimension shrunk, the EM resistance of Cu interconnects was deteriorated and decreasing the service life of device. In order to improve EM resistance of Cu damascene, doping the Cu interconnects with appropriate elements was one of engineering approaches. Manganese (Mn) is one of the most popular element applied in Cu dopping. Mn could diffuse through the Cu interconnects and segregate along the interface between Cu and low-k dielectric layer. It was served as the barrier layer, adhesion promoter and oxidation retardant because the diffusivity of Mn in Cu was much faster than self-diffusivity of Cu, approximately one order of magnitude higher. It indicated that Mn atoms initially alloyed in Cu were migrated into surface and interface, and formed an oxide layer leaving the pure Cu behind after annealing step. In addition, Mn could also repair discontinuous barrier layer (Ta/TaN) by forming a local manganese silicate diffusion barrier layer. It was so called self-forming Cu-Mn diffusion barriers [13,14].

In this research, both Cu/1% Mn and Cu/1% Al served as underlying alloys were evaluated by Cu recess. The introduction of Cu/1% Al in the test was for the purpose of comparison. The main body of Cu interconnection of dual-damascene process included via etching, post etching wet clean, deposition of barrier films and Cu-seed layer and ECP. They were separated by different key process variables, such as dry etching power split, post etching as well as wet clean discharging gas flow rate split. The effect of these process variables on Cu loss under via bottom was evaluated in the experiment.

B. Methodology

FIGURE 2 illustrated a schematic diagram of Cu recess in the device. The Cu recess of via bottom was observed using the step-by-step TEM followed by dry etch and wet clean processes. The Cu line was receded back into the bottom of Cu metal after the process. The Cu recess data were helpful to define which stage played the crucial role in Cu loss of via bottom. Electrical and wafer yield tests were applied in order to locate any abnormality after all processes were completed.

Screen Shot 2018-03-22 at 1.10.08 PM

To unveil the effects of thermal/electronic stresses on Cu voids under via bottom, HTS (175oC) and HTOL (175oC with double device operation voltages) were performed to evaluate wafer yield swap after HTS and HTOL. Wafer yield swap was able to exam the yield before/after HTS and HTOL. The good die was failed if the Cu loss under via bottom occurred. After wafer yield swap dice was confirmed, failure analysis was performed by focus ion beam (FIB), scanning electron microscope (SEM) and transmission electron microscope (TEM). In addition, the chemical analysis was examined using energy dispersive spectroscope (EDS).

Results and discussion

A special design of metal line via structure with high aspect ratio of approximately 5 was performed in order to deteriorate Cu loss under via bottom. We inspected Cu recess of two different underlying metals, Cu/1% Mn and Cu/1% Al. FIGURE 3 displayed Cu recesses of Cu/1% Al and Cu/1% Mn underlying metals, respectively. Under the same process condition, the Cu recess of Cu/1% Mn was only half of Cu/1% Al, so Cu/1% Mn was more protective than Cu/1% Al. There was a strong correlation between EM cumulative failure rate and the type of underlying metals. Cu/1% Al showed much lower time to failure (TTF) and deteriorated EM performance as compared with that of Cu/1% Mn. It clearly demonstrated that Cu/1% Mn was more protective than Cu/1% Al, and failure rate of Cu/1% Mn was only 1/30 of Cu/1%. The performance of Cu/1% Al was significantly inferior to that of Cu/1% Mn. Therefore, Cu/1% Al was selected in following tests in order to enhance the differences of other key process variables.

Screen Shot 2018-03-22 at 1.10.15 PM

In the standard (STD) condition, Cu recess was inspected by step-by-step TEM of dry etching and post etching wet clean with discharging gas process, and there were approximately 5nm and 7nm (12nm–5nm=7nm)in depth of Cu loss as shown in FIGURE 4. The following barrier films and Cu-seed process only slightly consumed underlying Cu. The Cu recess only slightly increased 0.3 nm in barrier film deposition process. The pre-cleaning process was necessary before barrier film deposition in order to remove CuO on Cu surface for improved adhesion. Based on observations of Cu recess results in step-by-step TEM, post etching wet clean process also played an important role in Cu recess of via bottom.

Screen Shot 2018-03-22 at 1.10.22 PM

Dry etching by plasma not only eroded about 5nm in depth of Cu under the via bottom but also oxidized the underlying Cu which was supposed to be removed in subsequent wet cleaning process. Post etching wet clean included applying chemical solvent to clean by-product of dry etching and DI water clean to remove the chemical solvent. The DI water was with aid of discharging gas, such as CO2, in order to neutralize the accumulated charge generated by the plasma in previous dry etching. However, the discharging gas acidified the DI water and resulted in Cu loss in post etching wet cleaning process.

FIGURE 5 shows Cu recesses with different dry etching power splits. The change of plasma power split changed the degree of Cu recess. At the condition of 200 W less than STD, i.e., STD-200W, the Cu recess was less than 3nm. Although the structure looks good in shape, poor performance was observed from electrical test and wafer yield after the process was completed. Via open resulted in upper Cu disconnected from underlying Cu as demonstrated by TEM observation (Fig. 5). It was deduced that dry etching process did not etch entire via hole, especially for the dielectric layer. Although post wet cleaning slightly extended the open area under via bottom, barrier films were not well deposited on the via hole. Therefore, poor coating was obtained from the subsequent ECP process. The via resistance marked up significantly as the dry etching power decreased to 200 W less than STD, i.e., STD-200W.

Screen Shot 2018-03-22 at 1.10.30 PM

 

FIGURE 6 shows wafer yields after open/short tests with different dry etching power splits. In the open/short tests, the failure rate was decreased with decreasing the dry etching power from STD+100W to STD-100W due to less damage to the Cu substrate for lower dry etching power. The Cu recess was decreased from 17.9 nm (STD+100W) to 8.7 nm (STD-100W) as demonstrated in FIGURE 5. However, dramatically increased failure rate was observed when the dry etching power was decreased to 200 W less than STD (STD-200 W). Because the lowest dry etching power, STD-200W, was insufficient to enlarge the via hole, and resulted in increasing the via resistance. Therefore, the failure rate of STD-200W was as high as 10% as displayed in Fig. 6. There was an optimal dry etching power of STD-100W in order to maximize the wafer yield in the experiment.

Screen Shot 2018-03-22 at 1.10.37 PM

FIGURE 7 showed the variation of Cu recess with different discharging gas flow splits in the post etching wet cleaning process. The discharging gas flow was strongly related to the Cu recess, and it demonstrated that the chemical property of wet clean also played a crucial role in Cu recess. FIGURE 8 showed that the wafer yield failure rate was decreased with decreasing the post wet clean discharging flow from STD+200 sccm to STD-400 sccm. The major function of discharging gas, CO2, neutralized the accumulated charge generated by the plasma in previous dry etching. It was necessary in post etching wet cleaning process. However,it should be kept below STD-300sccm in order to improve wafer yield in the experiment.

Screen Shot 2018-03-22 at 1.10.47 PM Screen Shot 2018-03-22 at 1.10.55 PM

The reliability test result of HTOL with thermal and electronic stresses over 168 hours showed several good chips transferred to bad ones with open short bin, which was called bin swap. FIB, SEM, TEM and EDS were used in failure analyses. FIGURE 9 showed the comparison of Cu recesses before and after HTOL tests for 168 hours. It was obvious that a deeper Cu recess was observed after stress applied. Before the stress applied, the via interconnect linked with underlying metal line. This is the key reason why it was difficult to detect this type of failure in the electrical test. In Fig. 9, the Cu recess before stress applied was 23.3 nm and it extended into 42.4 nm after HTOL test for 168 hours. The Cu recess extended into twice or even triple after thermal and electronic stresses applied. Therefore, quality of the via bottom joint was greatly deteriorated if there were Cu voids under the via bottom. With increasing applied thermal and electrical stresses to via bottom, the crack propagated to entire via bottom. The via bottom finally was disconnected from underlying metal line. It was so-called via open in semiconductor industry.

Screen Shot 2018-03-22 at 1.11.01 PM

FIGURE 10 showed TEM bright field and EDS mapping of Ta at the failure location after HTOL for 168 hours. Taking a close look at the via bottom next to the interface of underlying metal line, the non-uniform barrier film was widely observed as shown in Fig. 10(a). It was the original failure location. In Fig. 10(a), TEM inspection of the failure location after HTOL test for 168 hours showed significant Cu loss, more than 30 nm, under via bottom. It was much greater than the Cu recess before thermal and electrical stress applied (12 nm). Based on the EDS mapping of Ta (Fig. 10(b)), the barrier film, TaN, was formed adjacent to the Cu loss of via bottom. It was important to note that the TaN was almost disappeared from corner of the via bottom. The disconnection of barrier film from the corner resulted in deteriorated Cu interface, and the Cu began to degen- erate and shrink under applied thermal and electronic stresses. It finally resulted in separation of the upper and underlying Cu. The via bottom was completely opened and caused the failure of device.

Screen Shot 2018-03-22 at 1.11.07 PM

Summary

With the metal line dimensional shrinkage in advanced packaging, Cu metallization has increased the concerns on long-term reliability of devices caused by Cu loss under via bottom. This work explores the effect of underlying metallic alloys and the influence of Cu loss under via bottom after dry etching and wet clean. Important conclusions are listed below:

1. Cu/1% Mn is more protective than original Cu/1% Al. The application of Cu/1% Mn improves both EM and SM resistances of via bottom.

2. Both plasma power of dry etching and the discharging gas flow of wet clean play important roles in the Cu loss under via bottom. Cu loss was initiated first after dry etching due to plasma damage. The plasma not only etched the underlying Cu of via bottom, but also oxidized the underlying Cu surface. Subsequent post etching wet clean with acidic water generated by discharging gas removes CuO at interface, and causes more Cu loss in subsequent wet cleaning process. They are the major mechanism of Cu loss under via bottom. Pre-cleaning of barrier films to remove superficial CuO on Cu for better adhesion is only a minor factor in Cu loss under via bottom.

3. To Improve the Cu loss under via bottom, effective approaches include applying protective metal line, such as Cu/ 1% Mn, minimizing interfacial damage by decreasing the power of dry etching, and the discharge gas flow of post etching.

Acknowledgement

Authors greatly acknowledge the support of Taiwan Semiconductor Manufacturing Company (TSMC) for this study.

References

1. K.Ueno, M.Suzuki, A.Matsumoto, K.Motoyama, T.Tonegawa, N. Ito, K. Arita, Y. Tsuchiya, T. Wake, A. Kubo, K. Sugai, N. Oda, H. Miyamoto, S. Satio, “A high reliability copper dual-damascene interconnection with direct-contact via structure”, 2000 IEDM Tech. Digest IEEE (2000), p. 265.
2. M.H.Tsai,W.J.Tsai,S.L.Shue,C.H.Yu,M.S.Liang,“Reliabilityof dual damascene Cu metallization”, in: Proceedings of the 2000 Inter- national Interconnect Technology Conference, IEEE (2000), p. 214.
3. C.Ryu,K.W.Kwon,A.L.S.Loke,H.Lee,T.Nogami,V.M.Dubin,R.A. Kavari, G.W. Ray, S.S. Wong, “Microstructure and reliability of copper interconnects”, IEEE Trans. Electron Devices 46 (1999), p. 1113.
4. M.H. Tsai, R. Augur, V. Blaschke, R.H. Havemann, E.F. Ogawa, P.S. Ho, W.K. Yeh, S.L. Shue, C.H Yu, M.S. Liang, “Electromigration reliability of dual damascene Cu/CVD SiOC interconnects”, in: Proceedings of the 2001 International Interconnect Technology Conference, IEEE (2001).
5. J.P. Lu, L. Chen, D. Gonzalez, H.L. Guo, D.J. Rose, M. Marudachalam, W.U. Hsu, H.Y. Liu, F. Cataldi, B. Chatterjee, P.B. Smith, P. Holverson, R.L. Guldi, N.M. Russell, G. Shinn, S. Zuhoski, J.D. Luttmer, “Understanding and eliminating defects in electroplated Cu films”, in: Interconnect Technology Conference, Proceedings of the IEEE 2001 International (2001), p. 280.
6. Z.G. Song, S.K. Loh, M. Gunawardana, C.K. Oh, S. Redkar, “Unique defects and analyses with copper damascene process for multilevel metallization”, in: IPFA 2003, Proceedings of the 10th International Symposium on the Physical and Failure Analysis of Integrated Circuits, (2003), p. 12.
7. P. Wrschka, J. Hernandez, G.S. Oehrlein, J.A. Negrych, G. Haag, P. Rau, J.E. Currie, “Development of a slurry employing a unique silica abrasive for the CMP of Cu damascene structures”, J. Electrochem. Soc. 148 (2001), p. 321.
8. T.C. Wang, Y.L. Wang, T.E. Hsieh, S.C. Chang, Y.L. Cheng, “Copper voids improvement for copper dual damascene interconnection process”, J. Phy. Chem. Sol. 69 (2008), p. 566.
9. R.L. Guldi, J.B. Shaw, J. Ritchison, S. Oestreich, K. Davis, R. Fiordalice, “Characterization of copper voids in dual damascene processes”, in: Proceedings of Advanced Semiconductor Manufac- turing 2002 IEEE/SEMI Conference and Workshop (2002), p. 351.
10. J. Reid, V. Bhaskaran, R. Contolini, E. Patton, R. Jackson, E. Broadbent, T. Walsh, S. Mayer, R. Schetty, J. Martin, M. Toben, S. Menard, “Optimization of damascene feature fill for copper electro- plating process”, in: Proceedings of Interconnect Technology, IEEE International Conference (1999), p. 284.
11. G.B. Alers, D. Dornisch, J. Siri, K. Kattige, L. Tam, E. Broadbent, G.W. Ray, “Trade-off between reliability and post-CMP defects during recrystallization anneal for copper damascene interconnects”, in: Reliability Physics Symposium, 2001. Proceedings of the 39th Annual 2001 IEEE International (2001), p. 350.
12. T.C. Wang, T.E. Hsieh, M.T. Wang, D.S. Su, C.H. Chang, Y.L. Wang, J.Y.M. Lee, “Stress migration and electromigration improvement for copper dual damascene interconnection”, J. Electrochem. Soc. 152 (2005), p. 45.
13. J. Koike, M. Haneda, J. Iijima, M. Wada, “Cu alloy metallization for self-forming barrier process”, IEEE Interconnect Technology Conference (2006), p. 161.
14. J. Koike, M. Wada, “Self-forming diffusion barrier layer in Cu-Mn alloy metallization”, App. Phy. Lett. 87, 041911 (2005)
15. J.P. Wang, Y.K. Su, “Effects of surface cleaning on stressvoiding and electromigration of Cu-damascene interconnection”, Trans. Device. Mater. Relia. IEEE (2008), p. 210.

Working up a sweat from carrying a heavy load? That is when the textile works at its best. Researchers at Chalmers University of Technology have developed a fabric that converts kinetic energy into electric power, in cooperation with the Swedish School of Textiles in Borås and the research institute Swerea IVF. The greater the load applied to the textile and the wetter it becomes the more electricity it generates. The results are now published in the Nature Partner journal Flexible Electronics.

Chalmers researchers Anja Lund and Christian Müller have developed a woven fabric that generates electricity when it is stretched or exposed to pressure. The fabric can currently generate enough power to light an LED, send wireless signals or drive small electric units such as a pocket calculator or a digital watch.

The technology is based on the piezoelectric effect, which results in the generation of electricity from deformation of a piezoelectric material, such as when it is stretched. In the study the researchers created a textile by weaving a piezoelectric yarn together with an electrically conducting yarn, which is required to transport the generated electric current.

“The textile is flexible and soft and becomes even more efficient when moist or wet,” Lund says. “To demonstrate the results from our research we use a piece of the textile in the shoulder strap of a bag. The heavier the weight packed in the bag and the more of the bag that consists of our fabric, the more electric power we obtain. When our bag is loaded with 3 kilos of books, we produce a continuous output of 4 microwatts. That’s enough to intermittently light an LED. By making an entire bag from our textile, we could get enough energy to transmit wireless signals.”

The piezoelectric yarn is made up of twenty-four fibres, each as thin as a strand of hair. When the fibres are sufficiently moist they become enclosed in liquid and the yarn becomes more efficient, since this improves the electrical contact between the fibres. The technology is based on previous studies by the researchers in which they developed the piezoelectric fibres, to which they have now added a further dimension.

“The piezoelectric fibres consist of a piezoelectric shell around an electrically conducting core,” Lund says. “The piezoelectric yarn in combination with a commercial conducting yarn constitute an electric circuit connected in series.”

Previous work by the researchers on piezoelectric textiles has so far mainly focused on sensors and their ability to generate electric signals through pressure sensitivity. Using the energy to continuously drive electronic components is unique.

“Woven textiles from piezoelectric yarns makes the technology easily accessible and it could be useful in everyday life. It’s also possible to add more materials to the weave or to use it as a layer in a multi-layer product. It requires some modification, but it’s possible,” Lund says.

The researchers consider that the technology is, in principle, ready for larger scale production. It is now mainly up to industrial product developers to find out how to make use of the technology. Despite the advanced technology underlying the material, the cost is relatively low and is comparable with the price of Gore-Tex. Through their collaboration with the Swedish School of Textiles in Borås the researchers have been able to demonstrate that the yarn can be woven in industrial looms and is sufficiently wear-resistant to cope with the harsh conditions of mass production.

Bringing together a technical program that encompasses ‘big integration’ of a number of critical industry trends – machine learning, IoT, artificial intelligence, wearable/implantable biomedical applications, big data, and cloud computing – the 2018 Symposia on VLSI Technology & Circuits will showcase a convergence of technologies needed for ‘smart living.’ As the microelectronics industry’s premiere international conference covering technology, circuits, and systems, the Symposia continues to define the evolution of innovations that will shape the future of our increasingly connected world.

The Symposia theme of “Technology, Circuits & Systems for Smart Living” connects the related plenary presentations, panel discussions, focus sessions, short courses, along with a new Friday Forum on machine learning to provide a unique synergy between advanced technology developments, innovative circuit design, and the applications that they enable – as part of our global society’s transition to a new frontier of smart, connected devices and systems that change the way humans interact with technology – and with each other.

“This year’s Technology program is focused on the critical building blocks needed to realize a truly integrated IoT,” said Mukesh Khare, Symposium on VLSI Technology general chair. “Advanced memory technologies for AI and machine learning, the next wave of advanced computing (supercomputing/cloud/neuromorphic), the cutting edge of CMOS scaling (beyond 5nm/nanowire devices), and the advanced low-power sensors needed to connect them all are just some of the highlights of the Technology program.”

“The Circuits program will examine how the next wave of computing systems need to be designed to realize the potential of AI, machine learning, SOC technology, wearable/implantable biomedical systems, and the IoT,” explained Gunther Lehmann, Symposium on VLSI Circuits general chair. “A demonstration session that showcases real-life applications is designed to enable conference participants to see these innovations first hand.”

The Symposia will also include a series of joint focus sessions that include invited and contributed papers on topics of mutual interest to both technology and circuit attendees. As part of the unique Symposia program, these joint Technology & Circuits focus sessions enable participants to engage in meaningful interaction with their colleagues in different disciplines. In addition, there will be a joint evening panel session by leading industry experts to address critical issues surrounding major industry developments.

Capping off the joint Symposia program will be a series of nine presentations comprising the Friday Forum on machine learning, a subject area that continues to evolve as an impactful driver of the integrated systems that are part of the Symposia’s “Smart Living” theme.

The annual Symposium on VLSI Technology & Circuits will be held at the Hilton Hawaiian Village in Honolulu, Hawaii from June 19-21, 2018, with Short Courses held on June 18 and a special Friday Forum dedicated to machine learning/AI topics on June 22. The two conferences have been held together since 1987, providing an opportunity for the world’s top device technologists, circuit and system designers to exchange leading edge research on microelectronics technology, with alternating venues between Hawaii and Japan. A single registration enables participants to attend both Symposia.

The Symposium on VLSI Technology is sponsored by the IEEE Electron Devices Society and the Japan Society of Applied Physics, in cooperation with the IEEE Solid State Circuits Society.

The Symposium on VLSI Circuits is sponsored by the IEEE Solid State Circuits Society and the Japan Society of Applied Physics, in cooperation with the Institute of Electronics, Information and Communication Engineers.

Researchers at RIT have found a more efficient fabricating process to produce semiconductors used in today’s electronic devices. They also confirmed that materials other than silicon can be used successfully in the development process that could increase performance of electronic devices. This fabrication process–the I-MacEtch, or inverse metal-assisted chemical etching method–can help meet the growing demand for more powerful and reliable nano-technologies needed for solar cells, smartphones, telecommunications grids and new applications in photonics and quantum computing.

“What is novel about our work is that for the first time we are looking at applying I-MacEtch processing to indium-gallium-phosphide materials. I-MacEtch is an alternative to two conventional approaches and is a technique that has been used in the field–but the materials that have been explored are fairly limited,” said Parsian Mohseni, assistant professor of microsystems engineering in RIT’s Kate Gleason College of Engineering. He is also director of the EINS Laboratory at the university.

Demands for improved computer processing power have led researchers to explore both new processes and other materials beyond silicon to produce electronic components, Mohseni explained. The I-MacEtch process combines the benefits of two traditional methods–wet etching and reactive ion etching, or REI. Indium-gallium-phosphide is one of several materials being tested to complement silicon as a means to improve current capacity of semiconductor processing.

“This is a very well-known material and has applications in the electronics and solar cell industries,” he said. “We are not re-inventing the wheel; we are establishing new protocols for treating the existing material that is more cost effective, and a more sustainable process.”

Semiconductor devices are created on wafers through a multi-step process to coat, remove or pattern conductive materials. Traditional processes are wet etch, where a sample with blocked aspects is immersed in an acid bath to remove substances, and reactive ion etching, where ions bombard exposed surfaces on the wafer to change its chemical properties and remove materials in those exposed regions. Both have been used to develop the intricate electronic patterns on circuits and use silicon as a foundation for this type of patterning. Improving patterning methods by I-MacEtch could mean reducing fabrication complexity of various photonic and electronic devices.

Researchers and semiconductor fabrication scientists have been using MacEtch extensively for processing silicon. At the same time, assessments of other materials in the III-V range of individual elements that may be conducive to this same type of fabrication with similar advantages are underway. In his research, Mohseni is also looking at different alloys of those III-V materials, namely the ternary alloys such as indium-gallium-phosphide (InGaP).

The research detailed in the upcoming issue of the American Chemical Society’s Applied Materials and Interfaces journal highlights how the nanofabrication methodology was applied to InGaP and how it can impact the processing of device applications and generation of high aspect ratio and nano-scale semiconductor features, said Thomas Wilhelm, a microsystems engineering doctoral student and first-author of the paper. The novel processing method can be significant in the development of ordered arrays of high aspect ratio structures such as nanowires.

For solar cells, the goal is to minimize the cost-to-power-produced ratio, and if it is possible to lower the cost of making the cell, and increasing the efficiency of it, this improves the device overall. Exploring new methods of fabricating the existing, relevant materials in a way that allows for faster, less expensive and more controlled processing by combining the benefits of wet etching and RIE has been the focus of Mohseni’s work. The improved process means avoiding expensive, bulky, hazardous processing methods.

“We are using a simple benchtop set up and we end up with very similar structures; in fact, one can argue that they are higher in quality than the structures that we can generate with RIE for a fraction of the cost and with less time, less steps throughout, without the higher temperature conditions or expensive instrumentation,” he said.