Category Archives: Wafer Processing

By Heidi Hoffman, SEMI

SEMI continues to transform to increase its impact on the success of the electronics industry supply chain. As one step in that process, SEMI President & CEO Ajit Manocha has formed a new group, Technology Communities, to better collaborate, align, and enhance all of SEMI’s technology-focused activities by operating them under one umbrella. The group is led by industry-veteran Mike Ciesinski, the new vice president of Technology Communities. Mike has more than 20 years’ experience creating and managing industry consortia and a strong record of fostering collaboration among industry, academia, and government research and development (R&D) agencies.

The charter of Technology Communities is to share best practices for SEMI’s special interest groups (SIGs), including hosting industry-wide CTO forums; providing regional insights; forming member, industry and academic consortia; and engaging with technology thought-leaders. The goal is to elevate the prominence of electronics technology in an effort to improve lives and enhance member profitability by speeding industry collaboration and opportunities for innovation.

SEMI SIGs serve as member groups that share information, explore common opportunities in a synergistic and non-competitive environment and provide a collective voice on issues within the global electronics industry. By segmenting the sprawling electronics supply chain into focused communities, SIGs foster more effective technical discussions and provide exclusive networking and speaking opportunities.

The Technology Communities encompasses Fab Owners Alliance (FOA), FlexTech, and MEMS & Sensors Industry Group (MSIG), as well as the SEMI Standards organization.  It supports key SEMI market verticals including Smart Manufacturing, Smart Data, and Smart MedTech.

Technology Communities also includes the Chemical & Gases Manufacturers Group (CGMG), the Silicon Manufacturers Group (SMG), the Collaborative Alliance for Semiconductor Test (CAST), Semiconductor Components, Instruments and Subsystems (SCIS), the Strategic Innovation Platforms (SIP) and the Heterogeneous Integration Roadmap. Each one of these communities has a unique and focused mission.

For SEMI’s members, these groups mean more opportunities to meet with peers and customers and help to define industry direction.

Members can be confident that SEMI technology SIGs are led by experienced industry professionals with extensive networks and a strong technical knowledge in their respective areas. Alongside Ciesinski, SEMI veteran Tom Salmon leads FOA, while James Amano directs SEMI Standards. Melissa Grupen-Shemansky, PhD, is the new FlexTech leader and CTO, while Frank Shemansky, Jr., PhD, is the MEMS and sensors CTO and oversees the MSIG group.

The HQ team is joined by experienced, knowledgeable professionals in each of SEMI’s seven regions to provide a global network and cross-region collaboration.

It’s easy to get involved and the SEMI groups are always seeking new members and industry drivers. Visit SEMI Special Interest Groups for more details on SEMI’s special interest groups. We will also be bringing you more in-depth articles on each of the technology groups in SGU.

Most of the groups and committees are available to any SEMI member in good standing – simply request to join.  Come to one of our upcoming events – such as 2018FLEX and MSTC2018 — to discuss opportunities to participate.

MACOM Technology Solutions Holdings, Inc. (NASDAQ: MTSI) (“MACOM”), a supplier of high-performance RF, microwave, millimeterwave and lightwave semiconductor products, and STMicroelectronics (NYSE: STM) today announced an agreement to develop GaN (Gallium Nitride) on Silicon wafers to be manufactured by ST for MACOM’s use across an array of RF applications. While expanding MACOM’s source of supply, the agreement also grants to ST the right to manufacture and sell its own GaN on Silicon products in RF markets outside of mobile phone, wireless basestation and related commercial telecom infrastructure applications.

Through this agreement, MACOM expects to access increased Silicon wafer manufacturing capacity and improved cost structure that could displace incumbent Silicon LDMOS and accelerate the adoption of GaN on Silicon in mainstream markets. ST and MACOM have been working together for several years to bring GaN on Silicon production up in ST’s CMOS wafer fab. As currently scheduled, sample production from ST is expected to begin in 2018.

“This agreement punctuates our long journey of leading the RF industry’s conversion to GaN on Silicon technology. To date, MACOM has refined and proven the merits of GaN on Silicon using rather modest compound semiconductor factories, replicating and even exceeding the RF performance and reliability of expensive GaN on SiC alternative technology,” said John Croteau, President and CEO, MACOM. “We expect this collaboration with ST to bring those GaN innovations to bear in a Silicon supply chain that can ultimately service the most demanding customers and applications.”

“ST’s scale and operational excellence in Silicon wafer manufacturing aims to unlock the potential to drive new RF power applications for MACOM and ST as it delivers the economic breakthroughs necessary to expand the market for GaN on Silicon,” said Marco Monti, President of the Automotive and Discrete Product Group, STMicroelectronics. “While expanding the opportunities for existing RF applications is appealing, we’re even more excited about using GaN on Silicon in new RF Energy applications, especially in automotive applications, such as plasma ignition for more efficient combustion in conventional engines, and in RF lighting applications, for more efficient and longer-lasting lighting systems.”

“Once the $0.04/watt barrier for high power RF semiconductor devices is crossed, significant opportunities for the RF energy market may open up,” said Eric Higham, Director Advanced Semiconductor Applications Service at Strategy Analytics. Higham continued, “Potential RF energy device shipments could be in the hundreds of millions for applications including commercial microwave cooking, automotive lighting and ignition, and plasma lighting, with sales reaching into the billions of dollars.”

By Jamie Girard and Jay Chittooran, SEMI Public Policy

With much pride, President Donald Trump, in his State of the Union address last week, touted the signature legislative achievement of his first year in office – passage of the Tax Cuts and Jobs Act.  As companies doing business globally, SEMI members have long stressed their concern that the US business tax code was putting them at a disadvantage.  SEMI has worked for many years to voice its position that the US code needed to be reformed to lower the overall tax rate on businesses while also retaining incentives for innovation, like the research and development (R&D) and tax credits.  SEMI also pushed for the US to move to a territorial tax system to bring the US into alignment with the rest of the world.

President Donald Trump, State of the Union speech. Photo credit: CNN

President Donald Trump, State of the Union speech. Photo credit: CNN

The Tax Cuts and Jobs Act implements all the of principle that SEMI members have advocated for, and included other industry priorities like repatriation of foreign held assets at a lower rate.  The new structure promises to allow for a more competitive business environment for companies doing business from the US, and greater growth for them globally.

“As tax cuts create new jobs, let us invest in workforce development and job training,” Trump noted in his State of the Union speech, addressing another major industry priority. “Let us open great vocational schools so our future workers can learn a craft and realize their full potential.”

Workforce development (Talent) is a critical issue for the industry, and SEMI recognizes the pressing need on multiple fronts to find the workers, both technical and highly-educated, to continue the work of driving innovation in the semiconductor industry.  While SEMI works with industry partners to boost the industry talent pool, we also recognize that the federal government has a role to play in ensuring that the US is doing its share to help address the problem. That’s why SEMI supports legislation like H.R. 4023, the Developing Tomorrow’s Engineering and Technical Workforce Act, aimed at providing federal dollars to promote engineering education at all levels of learning. The bill has bipartisan support in Congress, and SEMI will continue to work to see the bill travel to President Trump’s desk for his signature.

Facilitating trade and lowering barriers for good and services to move across borders is key to SEMI’s mission to support its members. The semiconductor industry has catalyzed growth across the global economy – growth that relies heavily on trade.

“America has also finally turned the page on decades of unfair trade deals that sacrificed our prosperity and shipped away our companies, our jobs, and our nation’s wealth,” Trump noted last Tuesday. “The era of economic surrender is over. From now on, we expect trading relationships to be fair and to be reciprocal. We will work to fix bad trade deals and negotiate new ones.”

Unfortunately, trade has been turned into a hot-button political issue, raising many new trade challenges to companies throughout the semiconductor industry. The Trump Administration has levied intense criticism of China, launched a number of trade investigations citing foreign overproduction, and has threatened to withdraw from the Korea-U.S. Free Trade Agreement (KORUS). The United States has also levied tariffs on a number of products, including solar cells. This is all on top of the North American Free Trade Agreement (NAFTA) modernization talks, which have seen slow and shallow progress.

While the United States “reexamines” and stands still, other countries are filling the leadership void. China, Canada, Korea, and the European Union, among others, are negotiating or have concluded trade deals in the last year. Indeed, the updated Trans-Pacific Partnership, which now excludes the US but covers many of the fastest-growing Asian markets, is on track to be enacted by the end of the year. SEMI will continue to work on behalf of its members around the globe to open up new markets and lessen the burden of regulations on cross-border trade and commerce.

Additionally, although President Trump devoted much his address to immigration, he overlooked the opportunity to address the need for immigration reform for high-skilled workers.  This important aspect of the immigration debate, which also has major implications for economic growth, will fall to Congress to sort out in any immigration package it considers in the coming weeks.

Fortunately, Sen. Orrin Hatch (R-UT) recently reintroduced his Immigration Innovation Act, also known as “I-Squared,” which would implement a number of reforms to the H1-B visa and green card system for highly-skilled workers.  The bill would raise the cap for H1-B visas from the current 65,000 to allow for as many as 190,000 in good economic times, while also lifting the cap on greed card holders with STEM degrees from US institutions.  SEMI has long supported these efforts and will continue to work with policymakers to see reforms implemented to improve the system.

While partisanship in Washington remains high, SEMI continues to work on behalf of its members to advance crucial public policy matters for its members with policymakers in Washington, DC. In particular, SEMI focuses on how these issues impact the four 4T’s – Trade, Taxes, Technology and Talent. The path forward on many of these issues will be complicated by midterm election year politics, but the opportunity remains to see real positive changes enacted, even in such a challenging environment.

If you’d like more information on SEMI’s public policy work, or how you can be involved, please contact Jamie Girard at [email protected].

Market shares of top semiconductor equipment manufacturers for the full year 2017 indicate large gains by Tokyo Electron and Lam Research while top supplier Applied Materials dropped, according to the report “Global Semiconductor Equipment: Markets, Market Shares, Market Forecasts,” recently published by The Information Network, a New Tripoli-based market research company.

The chart below shows shares for the entire years of 2016 and 2017. Market shares are for equipment only, excluding service and spare parts, and have been converted for revenues of foreign companies to U.S. dollars on a quarterly exchange rate.

market shares

Market leader Applied Materials lost 1.8 share points among the top seven companies, dropping from 28.8% in 2016 to 27.0% in 2017. Gaining share are Tokyo Electron Ltd., which gained 2.1 share points while rising from 17.4% in 2016 to 19.1% in 2017, and Lam Research, which gained 1.5 share points and grew from a 19.4% share in 2016 to a 20.9% share in 2017.

In third place ASML gained 0.6 share points, growing from an 18.8% share in 2016 to a 19.4% share in 2017.

Fifth place KLA-Tencor is the dominant supplier in the process control sector (inspection and metrology) and competes against Applied Materials and Hitachi High-Technologies, as well as several other companies including Nanometrics, Nova Measuring Instruments, and Rudolph Technologies. KLA-Tencor gained market share against each of its competitors in this sector in 2017.

Much of the equipment revenue growth was attributed to strong growth in the DRAM and NAND sectors, as equipment was installed in memory manufacturers Intel, Micron Technology, Samsung Electronics, SK Hynix, Toshiba, and Western Digital. The memory sector is expected to have grown 60.1% in 2017 and another 9.3% in 2018 according to industry consortium WSTS (World Semiconductor Trade Statistics).

Following the strong growth in the semiconductor equipment market, The Information Network projects another 11% growth in 2018. for semiconductor equipment.

ON Semiconductor (Nasdaq: ON) today announced its top distribution partners for 2017. These awards honor the distributor in each region that led overall channel sales, grew market share, captured increased sales of products from ON Semiconductor’s acquisitions and scored highly on overall process excellence.

The top 2017 distribution partners are:

“Distribution sales accounted for approximately 60 percent of ON Semiconductor’s 2017 annual revenues,” said Jeff Thomson, vice president of global channel sales for ON Semiconductor. “The support of our worldwide distribution partners is fundamental to the success of ON Semiconductor’s ongoing plans to increase market penetration and growing revenue at a faster pace than the industry. The collaborative relationships and progressive sales programs we foster with our channel partners are an integral part of this ongoing plan. As advocates of these goals, each of the 2017 distribution partner award winners successfully grew product sales, generated significant new business, and effectively supported both our customers’ needs and ON Semiconductor’s initiatives for operational excellence. We are pleased to recognize these outstanding channel partners for their valuable contributions throughout 2017 and look forward to continued success in the coming year.”

Silicon has long been the go-to material in the world of microelectronics and semiconductor technology. But silicon still faces limitations, particularly with scalability for power applications. Pushing semiconductor technology to its full potential requires smaller designs at higher energy density.

“One of the largest shortcomings in the world of microelectronics is always good use of power: Designers are always looking to reduce excess power consumption and unnecessary heat generation,” said Gregg Jessen, principal electronics engineer at the Air Force Research Laboratory. “Usually, you would do this by scaling the devices. But the technologies in use today are already scaled close to their limits for the operating voltage desired in many applications. They are limited by their critical electric field strength.”

This is a false-color, plan-view SEM image of a lateral gallium oxide field effect transistor with an optically defined gate. From near (bottom) to far (top): the source, gate, and drain electrodes. Metal is shown in yellow and orange, dark blue represents dielectric material, and lighter blue denotes the gallium oxide substrate. Credit: AFRL Sensors Directorate at WPAFB, Ohio, US

This is a false-color, plan-view SEM image of a lateral gallium oxide field effect transistor with an optically defined gate. From near (bottom) to far (top): the source, gate, and drain electrodes. Metal is shown in yellow and orange, dark blue represents dielectric material, and lighter blue denotes the gallium oxide substrate. Credit: AFRL Sensors Directorate at WPAFB, Ohio, US

Transparent conductive oxides are a key emerging material in semiconductor technology, offering the unlikely combination of conductivity and transparency over the visual spectrum. One conductive oxide in particular has unique properties that allow it to function well in power switching: Ga2O3, or gallium oxide, a material with an incredibly large bandgap.

In their article published this week in Applied Physics Letters, from AIP Publishing, authors Masataka Higashiwaki and Jessen outline a case for producing microelectronics using gallium oxide. The authors focus on field effect transistors (FETs), devices that could greatly benefit from gallium oxide’s large critical electric field strength. a quality which Jessen said could enable the design of FETs with smaller geometries and aggressive doping profiles that would destroy any other FET material.

The material’s flexibility for various applications is due to its broad range of possible conductivities — from highly conductive to very insulating — and high-breakdown-voltage capabilities due to its electric field strength. Consequently, gallium oxide can be scaled to an extreme degree. Large-area gallium oxide wafers can also be grown from the melt, lowering manufacturing costs.

“The next application for gallium oxide will be unipolar FETs for power supplies,” Jessen said. “Critical field strength is the key metric here, and it results in superior energy density capabilities. The critical field strength of gallium oxide is more than 20 times that of silicon and more than twice that of silicon carbide and gallium nitride.”

The authors discuss manufacturing methods for Ga2O3 wafers, the ability to control electron density, and the challenges with hole transport. Their research suggests that unipolar Ga2O3 devices will dominate. Their paper also details Ga2O3 applications in different types of FETs and how the material can be of service in high-voltage, high-power and power-switching applications.

“From a research perspective, gallium oxide is really exciting,” Jessen said. “We are just beginning to understand the full potential of these devices for several applications, and it’s a great time to be involved in the field.”

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced the global semiconductor industry posted sales totaling $412.2 billion in 2017, the industry’s highest-ever annual sales and an increase of 21.6 percent compared to the 2016 total. Global sales for the month of December 2017 reached $38.0 billion, an increase of 22.5 percent over the December 2016 total and 0.8 percent more than the previous month’s total. Fourth-quarter sales of $114.0 billion were 22.5 percent higher than the total from the fourth quarter of 2016 and 5.7 percent more than the third quarter of 2017. Global sales during the fourth quarter of 2017 and during December 2017 were the industry’s highest-ever quarterly and monthly sales, respectively. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

Worldwide semiconductor revenues, year-to-year percent change

Worldwide semiconductor revenues, year-to-year percent change

“As semiconductors have become more heavily embedded in an ever-increasing number of products – from cars to coffee makers – and nascent technologies like artificial intelligence, virtual reality, and the Internet of Things have emerged, global demand for semiconductors has increased, leading to landmark sales in 2017 and a bright outlook for the long term,” said John Neuffer, SIA president and CEO. “The global market experienced across-the-board growth in 2017, with double-digit sales increases in every regional market and nearly all major product categories. We expect the market to grow more modestly in 2018.”

Several semiconductor product segments stood out in 2017. Memory was the largest semiconductor category by sales with $124.0 billion in 2017, and the fastest growing, with sales increasing 61.5 percent. Within the memory category, sales of DRAM products increased 76.8 percent and sales of NAND flash products increased 47.5 percent. Logic ($102.2 billion) and micro-ICs ($63.9 billion) – a category that includes microprocessors – rounded out the top three product categories in terms of total sales. Other fast-growing product categories in 2017 included rectifiers (18.3 percent), diodes (16.4 percent), and sensors and actuators (16.2 percent). Even without sales of memory products, sales of all other products combined increased by nearly 10 percent in 2017.

Annual sales increased substantially across all regions: the Americas (35.0 percent), China (22.2 percent), Europe (17.1 percent), Asia Pacific/All Other (16.4 percent), and Japan (13.3 percent). The Americas market also led the way in growth for the month of December 2017, with sales up 41.4 percent year-to-year and 2.1 percent month-to-month. Next were Europe (20.2 percent/-1.6 percent), China (18.1 percent/1.0 percent), Asia Pacific/All Other (17.4 percent/0.2 percent), and Japan (14.0 percent/0.9 percent).

“A strong semiconductor industry is foundational to America’s economic strength, national security, and global technology leadership,” said Neuffer. “We urge Congress and the Trump Administration to enact polices in 2018 that promote U.S. innovation and allow American businesses to compete on a more level playing field with our counterparts overseas. We look forward to working with policymakers in the year ahead to further strengthen the semiconductor industry, the broader tech sector, and our economy.”

Air Products (NYSE: APD) today announced it has been awarded the industrial gases supply for Samsung Electronics’ second semiconductor fab in Xi’an, Shaanxi Province, western China.

The Xi’an fabrication line, within the Xi’an High-tech Zone (XHTZ), represents one of Samsung’s largest overseas investments and one of the most advanced fabs in China. It produces three-dimensional (3D) vertical NAND (V-NAND) flash memory chips for a wide range of applications, including embedded NAND storage, solid state drives, mobile devices, and other consumer electronics products.

Air Products has been supporting this project since 2014 from a large site housing two large air separation units (ASUs), a hydrogen plant and a bulk specialty gas delivery system. Under the new award, Air Products will expand its site by building several large ASUs, hydrogen and compressed dry air plants, and a bulk specialty gas supply yard to supply ultra-high purity nitrogen, oxygen, argon, hydrogen and compressed dry air to the new fab, which is scheduled to be operational in 2019.

“Samsung is a strategic and longstanding customer for Air Products. It is our honor to have their continued confidence and again be selected to support their business growth and this important project in western China,” said Kyo-Yung Kim, president of Air Products Korea, who also oversees the company’s electronics investment in the XHTZ. “We have been supplying the project with proven safety, reliability and operational excellence. This latest investment further reinforces our global leading position and commitment to serving our valued customer, as well as the broader semiconductor and electronics industries.”

Continuing to build its strong relationship with Samsung Electronics, Air Products also recently announced the next phases of expansion to build two more nitrogen plants serving the customer’s giga fab in Pyeongtaek City, Gyeonggi Province, South Korea.

A leading integrated gases supplier, Air Products has been serving the global electronics industry for more than 40 years, supplying industrial gases safely and reliably to most of the world’s largest technology companies. Air Products is working with these industry leaders to develop the next generation of semiconductors and displays for tablets, computers and mobile devices.

By Emmy Yi, SEMI Taiwan 

Driven by emerging technologies like Artificial Intelligence (AI), Internet of Things (IoT), machine learning and big data, the digital transformation has become an irreversible trend for the electronics manufacturing industry. The global market for smart manufacturing and smart factory technologies is expected to reach US$250 billion in 2018.

“The semiconductor manufacturing process has reached its downscaling limit, making outstanding manufacturing capabilities indispensable for corporations to stay competitive,” said Ana Li, Director of Outreach and Member Service at SEMI. “Advances in cloud computing, data processing, and system integration technologies will be key to driving the broad adoption of smart manufacturing.”

ompany representatives shared insights and successes in manufacturing digitalization.

ompany representatives shared insights and successes in manufacturing digitalization.

To help semiconductor manufacturing companies navigate the digital transformation, SEMI recently held the AI and Smart Manufacturing Forum, a gathering of industry professionals from Microsoft, Stark Technology, Advantech, ISCOM, and Tectura to examine technology trends and smart manufacturing opportunities and challenges. The nearly 100 guests at the forum also included industry veterans from TSMC, ASE, Siliconware, Micron, and AUO. Following are key takeaways from the forum:

1)    Smart manufacturing is the key for digital transformation
Industry 4.0 is all about using automation to better understand customer needs and help drive efficiency improvements that enable better strategic manufacturing decisions. For electronics manufacturers, thriving in the digital transformation should begin with research and development focused on optimizing processes, developing innovative business models, and analyzing data in ways that support their customers’ business values and objectives. Digitization is also crucial for manufacturers to target the right client base, increase productivity, optimize operations and create new revenue opportunities.

2)    Powerful data analysis capabilities will enable manufacturing digitalization

As product development focuses more on smaller production volumes, companies need a powerful data analysis software to accelerate decision-making and problem-solving processes, enhance integration across different types of equipment, and improve management efficiency across enterprise resources including business operations, marketing, and customer service.

3)    The digital transformation will fuel revenue growth
Connectivity and data analysis, the two essential concepts of smart manufacturing, are not only essential for companies to improve facility management efficiency and production line planning but also key for maintaining healthy revenue growth.

“With our more than 130 semiconductor manufacturers and long fab history, Taiwan is in a strong position to help the industry evolve manufacturing to support the explosion of new data-intensive technologies,” said Chen-Wei Chiang, the Senior Specialist at the Taichung City Government’s Economic Development Bureau. “We look forward to working with SEMI to help manufacturers realize the full potential of smart manufacturing.”

With the advent of new data-intensive technologies including AI and IoT, advanced manufacturing processes that improve product yield rates and reduce production costs will become even more important for manufacturers to remain competitive. SEMI Taiwan will continue to assemble representatives from the industry, government, academia and research to examine critical topics in smart manufacturing. To learn more, please contact Emmy Yi, SEMI Taiwan, at
[email protected] or +886.3.560.1777 #205.

 

Boston Semi Equipment (BSE), a global semiconductor test handler manufacturer and provider of test automation technical services, today announced that it has started shipping units of its new strip load/unload module to a top 10 semiconductor manufacturer. The automation modules handle magazines containing strips holding semiconductor devices. The freestanding modules dock to strip-processing equipment via a SMEMA-compliant interface. Operators set up and control the modules using a color touch-screen monitor.

“BSE’s custom engineering group works with semiconductor companies to provide them the exact automation solutions they require,” said Kevin Brennan, vice president of marketing for BSE. “Our multidisciplined team started with our customer’s specification for the strip automation module, and handled the project from concept through to manufacturing of final units. With our global service organization, we can support these modules anywhere in the world.”

BSE’s custom engineering group helps companies accelerate their internal product development activities. Working with BSE, companies can implement cost savings and productivity improvement solutions sooner, helping to grow their market share and improve profits.