Category Archives: Wafer Processing

Overall revenue for the power semiconductors market globally dropped slightly in 2015, due primarily to macroeconomic factors and application-specific issues, according to a new report from IHS Markit (Nasdaq: INFO), a world leader in critical information, analytics and solutions.

The global market for power semiconductors fell 2.6 percent to $34 billion in 2015, the report says. Discrete power semiconductor product revenue declined 10.1 percent, while power module revenues decreased by 11.4 percent and power integrated-circuit (IC) revenues increased by 4.5 percent overall.

The report identifies Infineon Technologies as last year’s leading power semiconductor manufacturer, with 12 percent of the market, Texas Instruments with 11 percent and STMicroelectronics with 6 percent.

“While Texas Instruments previously led the market in 2014, the company was overtaken by Infineon Technologies in 2015, following its acquisition of International Rectifier and LS Power Semitech,” said Richard Eden, senior analyst, IHS Markit. “Infineon was the leading global supplier of both discrete power semiconductors and power modules, and the fourth-largest supplier of power management ICs. Infineon has been the leading supplier of discretes for several years, but overtook Mitsubishi Electric to lead the power module market for the first time in 2015, again, due to the International Rectifier and LS Power Semitech acquisitions.”

Figure 1

Figure 1

According to the latest Power Semiconductor Market Share Report from IHS Markit, while Infineon Technologies’ acquisition of International Rectifier was the largest acquisition last year, several other deals also changed the terrain of the power semiconductor market landscape. Key deals in 2015 included the following: MediaTek acquired RichTek; Microchip acquired Micrel; NXP Semiconductors acquired Freescale Semiconductor; NXP Semiconductors also created WeEn Semiconductors, a joint venture with Beijing JianGuang Asset Management Co. Ltd (JAC Capital); CSR Times Electric merged with China CNR Corporation to form CRRC Times Electric; and ROHM Semiconductor acquired Powervation.

“Companies were active in acquisitions for several reasons — especially the low financing cost in multiple regions of the world, which meant that borrowing rates in the United States and European Central bank were nearly zero,” said Jonathan Liao, senior analyst, IHS Markit. “In addition, the acquiring company typically increases its revenues and margins by taking the acquired company’s existing customers and sales without incurring marketing, advertising and other additional costs.”

The Power Semiconductor Market Share Report, part of the Power Semiconductor Intelligence Service from IHS Markit, offers insight into the global market for power semiconductor discretes, modules and integrated circuits. This year’s report includes Power ICs for the first time, as well as discrete power semiconductors and power semiconductor modules. For more information about purchasing IHS Markit information, contact the sales department at [email protected].

POET Technologies Inc. (OTCQX:POETF) (TSX Venture:PTK), a developer of opto-electronics fabrication processes for the semiconductor industry, today announced that it has taken one more significant step toward its goal of developing a fully integrated commercial opto-electronic technology platform.

The milestone achieved is the first demonstration of functional Hetero-junction Field Effect Transistors (HFETs) down to 250nm effective gate lengths on the same proprietary epitaxy and utilizing the same integrated process sequence that was previously used to demonstrate high performance detectors. This milestone is the latest in POET’s initiative to integrate a detector, HFET and laser together into a single chip, the three key components of an active optical cable, a current market target for POET.

“Two of the three critical individual pieces of an integrated opto-electronic product are now in place and undergoing their respective optimization cycles,” said Dr. Subhash Deshmukh, POET’s Chief Operating Officer.  “As reported earlier, we have encountered delays in completing the VCSEL milestone.  The VCSEL continues to be our focus, even while we simultaneously make progress on other aspects of the technology.  The characterization that has been done to date on the VCSEL points to required optimization of a few layers in a very complex and unique epitaxial stack and fine tuning of the resonant cavity mode. The new and optimized epitaxial structure is expected to be delivered to the foundry for processing over the next couple of months,” said Dr. Deshmukh.  “We have not uncovered any fundamental show-stoppers.  We are charting new territory here and as pointed out at the recent town hall meeting and at the annual meeting of shareholders, technical issues are commonly encountered throughout the R&D process and we are systematically understanding and addressing these issues.”

POET has already demonstrated electrical functionality of the VCSEL with desired thyristor characteristics and demonstrated lasing modes through optical pumping of the VCSEL cavity (in other words light emission was detected on the epitaxial wafer surface).  However in order to enable electrical pumping of the VCSEL, the team has had to redesign some aspects of the epitaxial stack. VCSEL functionality was previously verified in a lab setting and the functionality of that original laser has been retested and reconfirmed.

“POET management is delighted to report this new achievement and reaffirms their confidence in the roadmap and progress in the lab to fab to commercialization of monolithic opto-electronic products. We will provide the next update around the earnings call, which we intend to schedule for early Q4 2016,” said Dr. Suresh Venkatesan.

Europe’s largest electronics manufacturing exhibition SEMICON Europa (25-27 October) will take place in Grenoble at ALPEXPO. SEMICON Europa connects exhibitors and attendees to collaborate and network with over 5,800 engineers, executives, and key decision-makers. Over 70 percent of visitors make buying and investment decisions. SEMICON Europa brings Europe together for the latest advances in IC manufacturing, flexible hybrid electronics, MedTech, automotive electronics, imaging, design and fabless, Smart Manufacturing, materials, power electronics, and more.

Highlights of SEMICON Europa include:

  • Pavilions and Cluster Segments: Design and Fabless; Imaging; MEMS, Test & Packaging; Secondary Equipment; Innovation Village; and ALLE DES CLUSTERS
  • Materials Package: Includes Power Electronics Conference and 2016FLEX (flexible hybrid electronics), plus sessions on Electronics for Automotive, Advanced Materials, MedTech and Photonics
  • Smart and Sustainable Manufacturing Conference: Features Smart Manufacturing presentations from NXP Semiconductor, ST Microelectronics, Technische Universitat Dresden; plus Sustainable Manufacturing presentations from Intel, Infineon Technologies, DAS Environmental Expert GmbH, and University of Dublin

Featuring over 100 hours of technical sessions and presentations, SEMICON Europa also includes:

  • Market Briefing
  • Semiconductor Manufacturing & Technology: 20th Fab Management Forum plus sessions on Lithography, Photonics, and MEMS
  • Packaging Conference and Integrated Test sessions
  • 2016FLEX Europe: Silicon electronics and flexible systems, flexible electrical components, materials advancements, applications and new developments
  • Application and Innovation: Imaging Conference, Power Electronics Conference, and sessions on MedTech, Automotive Electronics, and “What’s Next?”

SEMICON Europa rotates between Grenoble (France) and Dresden (Germany), two of Europe’s largest epicenters. With the support of public and private stakeholders across Europe, the new SEMICON Europa enables exhibitors to reach new audiences and business partners and take full advantage of the strong microelectronic clusters in Europe. Over 350 exhibiting companies at SEMICON Europa represent the suppliers of Europe’s leading electronics companies. Learn more about exhibiting at SEMICON Europa.

SEMICON Europa 2016 sponsors include: e2v, EV Group, Lam Research, NovaCentrix, SiConnex, SPIL Siliconware, Tokyo Electron, and VAT.  To secure your exhibition space and/or to learn more about SEMICON Europa (exhibition or registration), please visit: www.semiconeuropa.org/en.

Lam Research Corp. (NASDAQ: LRCX), an advanced manufacturer of semiconductor equipment, today introduced an atomic layer deposition (ALD) process for depositing low-fluorine-content tungsten films, the latest addition to its ALTUS family of products. With the industry’s first low-fluorine tungsten (LFW) ALD process, the ALTUS Max E Series addresses memory chipmakers’ key challenges and enables the continued scaling of 3D NAND and DRAM devices. Building on Lam’s market-leading product portfolio for memory applications, the new system is gaining market traction worldwide, winning production positions at leading 3D NAND and DRAM manufacturers and placement at multiple R&D sites.

“Consumer demand for ever more powerful devices is driving the need for high-capacity, high-performance storage, and deposition and etch are key process technology enablers of advanced memory chips,” said Tim Archer, Lam’s chief operating officer. “With the addition of the ALTUS Max E Series, we are expanding our memory portfolio and enabling our customers to capitalize on this next wave of industry drivers. Over the past twelve months, as the 3D NAND inflection has accelerated, we have doubled our shipments for these applications, leading to the largest deposition and etch installed base in our 3D NAND served markets.”

As manufacturers increase the number of memory cell layers for 3D NAND, two issues have become apparent for tungsten deposition in the word line fill application. First, fluorine diffusion from the tungsten film into the dielectrics can cause physical defects. Second, higher cumulative stress in devices with more than 48 pairs has resulted in excessive bowing. The resulting defects and stress can cause yield loss, as well as degraded electrical performance and device reliability. Because of these issues, tungsten films for advanced 3D NAND devices must have significantly reduced fluorine and intrinsic stress. Further, as critical dimensions shrink, resistance scaling becomes more challenging for the DRAM buried word line, as well as for metal gate/metal contact applications in logic devices.

“As memory chip manufacturers move to smaller nodes, the features that need to be filled are increasingly narrow and have higher aspect ratios,” said Sesha Varadarajan, group vice president, Deposition Product Group. “Lam’s new LFW ALD solution uses a controlled surface reaction to tune stress and fluorine levels and to lower resistance, all while delivering the required tungsten fill performance and productivity. When compared to chemical vapor deposition tungsten, the ALTUS Max E Series lowers fluorine content by up to 100x, lowers stress by up to 10x, and reduces resistivity by over 30%, solving some of our customers’ most critical scaling and integration challenges.”

The ALTUS Max E Series with LFW ALD technology offers a unique all-ALD deposition process that leverages Lam’s PNL (Pulsed Nucleation Layer) technology, which is the industry benchmark for tungsten ALD with 15 years of market leadership and more than 1,000 modules in production. Lam led the transition of chemical vapor deposition (CVD) tungsten nucleation to ALD tungsten nucleation with its PNL technology. The company continued that leadership by advancing low-resistivity tungsten solutions with its products ALTUS Max with PNLxT™, ALTUS Max with LRWxT, and ALTUS Max ExtremeFill for enhanced fill performance.

The ALTUS products use Lam’s quad-station module (QSM) architecture to allow per-station optimization of tungsten nucleation and fill for fluorine, stress, and resistance without compromising fill performance since station temperature can be set independently. The QSM configuration also maximizes productivity of the all-ALD process by providing up to 12 pedestals per system, enabling the highest footprint productivity in the industry.

Designers of solar cells may soon be setting their sights higher, as a discovery by a team of researchers has revealed a class of materials that could be better at converting sunlight into energy than those currently being used in solar arrays. Their research shows how a material can be used to extract power from a small portion of the sunlight spectrum with a conversion efficiency that is above its theoretical maximum — a value called the Shockley-Queisser limit. This finding, which could lead to more power-efficient solar cells, was seeded in a near-half-century old discovery by Russian physicist Vladimir M. Fridkin, a visiting professor of physics at Drexel, who is also known as one of the innovators behind the photocopier.

The team, which includes scientists from Drexel University, the Shubnikov Institute of Crystallography of the Russian Academy of Sciences, the University of Pennsylvania and the U. S. Naval Research Laboratory recently published its findings in the journal Nature Photonics. Their article “Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator,” explains how they were able to use a barium titanate crystal to convert sunlight into electric power much more efficiently than the Shockley-Queisser limit would dictate for a material that absorbs almost no light in the visible spectrum — only ultraviolet.

A phenomenon that is the foundation for the new findings was observed by Fridkin, who is one of the principal co-authors of the paper, some 47 years ago, when he discovered a physical mechanism for converting light into electrical power — one that differs from the method currently employed in solar cells. The mechanism relies on collecting “hot” electrons, those that carry additional energy in a photovoltaic material when excited by sunlight, before they lose their energy. And though it has received relatively little attention until recently, the so-called “bulk photovoltaic effect,” might now be the key to revolutionizing our use of solar energy.

The limits of solar energy

Solar energy conversion has been limited thus far due to solar cell design and electrochemical characteristics inherent to the materials used to make them.

“In a conventional solar cell — made with a semiconductor — absorption of sunlight occurs at an interface between two regions, one containing an excess of negative-charge carriers, called electrons, and the other containing an excess of positive-charge carriers, called holes,” said Alessia Polemi, a research professor in Drexel’s College of Engineering and one of the co-authors of the paper.

In order to generate electron-hole pairs at the interface, which is necessary to have an electric current, the sunlight’s photons must excite the electrons to a level of energy that enables them to vacate the valence band and move into the conduction band — the difference in energy levels between these two bands is referred to as the “band gap.” This means that in photovoltaic materials, not all of the available solar spectrum can be converted into electrical power. And for sunlight photon energies that are higher than the band gap, the excited electrons will lose it excess energy as heat, rather than converting it to electric current. This process further reduces the amount of power can be extracted from a solar cell.

“The light-induced carriers generate a voltage, and their flow constitutes a current. Practical solar cells produce power, which is the product of current and voltage,” Polemi said. “This voltage, and therefore the power that can be obtained, is also limited by the band gap.”

But, as Fridkin discovered in 1969 — and the team validates with this research — this limitation is not universal, which means solar cells can be improved.

New life for an old theory

When Fridkin and his colleagues at the Institute of Crystallography in Moscow observed an unusually high photovoltage while studying the ferroelectric antimony sulfide iodide — a material that did not have any junction separating the carriers — he posited that crystal symmetry could be the origin for its remarkable photovoltaic properties. He later explained how this “bulk photovoltaic effect,” which is very weak, involves the transport of photo-generated hot electrons in a particular direction without collisions, which cause cooling of the electrons.

This is significant because the limit on solar power conversion from the Shockley-Queisser theory is based on the assumption that all of this excess energy is lost — wasted as heat. But the team’s discovery shows that not all of the excess energy of hot electrons is lost, and that the energy can, in fact, be extracted as power before thermalizing.

“The main result — exceeding [the energy gap-specific] Shockley-Queisser [power efficiency limit] using a small fraction of the solar spectrum — is caused by two mechanisms,” Fridkin said. “The first is the bulk photovoltaic effect involving hot carriers and second is the strong screening field, which leads to impact ionization and multiplication of these carriers, increasing the quantum yield.”

Impact ionization, which leads to carrier multiplication, can be likened to an array of dominoes in which each domino represents a bound electron. When a photon interacts with an electron, it excites the electron, which, when subject to the strong field, accelerates and ‘ionizes’ or liberates other bound electrons in its path, each of which, in turn, also accelerates and triggers the release of others. This process continues successively — like setting off multiple domino cascades with a single tipped tile — amounting to a much greater current.

This second mechanism, the screening field, is an electric field is present in all ferroelectric materials. But with the nanoscale electrode used to collect the current in a solar cell, the field is enhanced, and this has the beneficial effect of promoting impact ionization and carrier multiplication. Following the domino analogy, the field drives the cascade effect, ensuring that it continues from one domino to the next.

“This result is very promising for high efficiency solar cells based on application of ferroelectrics having an energy gap in the higher intensity region of the solar spectrum,” Fridkin said.

Building toward a breakthrough

“Who would have expected that an electrical insulator could be used to improve solar energy conversion?” said Jonathan E. Spanier, a professor of materials science, physics and electrical engineering at Drexel and one of the principal authors of the study. “Barium titanate absorbs less than a tenth of the spectrum of the sun. But our device converts incident power 50 percent more efficiently than the theoretical limit for a conventional solar cell constructed using this material or a material of the same energy gap.”

This breakthrough builds on research conducted several years ago by Andrew M. Rappe, Blanchard Professor of Chemistry and of Materials Science & Engineering at the University of Pennsylvania, one of the principal authors, and Steve M. Young, also a co-author on the new report. Rappe and Young showed how bulk photovoltaic currents could be calculated — which led Spanier and collaborators to investigate if higher power conversion efficiency could be attained in ferroelectrics.

“There are many exciting reports utilizing nanoscale materials or phenomena for improving solar energy conversion,” Spanier said. “Professor Fridkin appreciated decades ago that the bulk photovoltaic effect enables free electrons that are generated by light and have excess energy to travel in a particular direction before they cool or ‘thermalize’–and lose their excess energy to vibrations of the crystal lattice.”

Rappe was also responsible for connecting Spanier to Fridkin in 2015, a collaboration that set in motion the research now detailed in Nature Photonics — a validation of Fridkin’s decades-old vision.

“Vladimir is internationally renowned for his pioneering contributions to the field of electroxerography, having built the first working photocopier in the world,” Rappe said. “He then became a leader in ferroelectricity and piezoelectricity, and preeminent in understanding light interactions with ferroelectrics. Fridkin explained how, in crystals that lack inversion symmetry, photo-excited electrons acquire asymmetry in their momenta. This, in turn, causes them to move in one direction instead of the opposite direction. It is amazing that the same person who discovered these bulk photovoltaic effects nearly 50 years ago is now helping to harness them for practical use in nanomaterials.”

Park Systems, a manufacturer of Atomic Force Microscope, today announced NX20 300mm, the only AFM on the market capable of scanning the entire sample area of 300mm wafers using a 300mm vacuum chuck while keeping the system noise level below 0.5angstrom (Å) RMS. Park NX20 300mm enables AFM inspection and scans over the entire sample area of 300mm wafers by using a full 300mm x 300mm motorized XY stage so the system can access any location on a 300mm wafer.

“Today large samples of up to 300mm wafers and substrates are widely used for process development, failure analysis, and production but so far there has not been an AFM measurement tool that can accurately measure all samples simultaneously,” comments Keibock Lee, Park Systems President. “The new Park NX20 is the perfect solution for shared labs whose samples come in various sizes–small and large—as it supports from large to small coupon samples and is compatible with all the modes and options available to Park’s other research AFM products.”

“With a single loading, the entire 300mm wafer area can be accessed for low-noise AFM measurements,” adds Lee.  “This opens up a whole new scope of measurement automation on a 300 mm wafer.”

Parks NX20 300 mm is the only product that can hold a 300mm sample unlike current products on the market, for example the system that come closest to Park is combined with 300mm sample chuck but requires the user to load 9 times to access the entire 300mm wafer area because the range of the motorized XY stage is limited to 180mm x 220mm.

The Park NX20 300mm system is run by SmartScan, Park’s new operating software with automatic scan control and comes with the “Batch Mode” functionality where the users can perform recipe-automated, unlimited number of sequential multiple-site measurements over the 300 mm x 300 mm area.The automated measurements over a 300 mm wafer dramatically improve the user-convenience and productivity in an industrial lab where a comparison among site-to-site and sample-to-sample surface morphologies, e.g. height, surface roughness, etc., is important.

Park NX20 300mm standard vacuum chuck is designed to hold samples ranging in size from 300mm to 100mm, and can even support small coupon samples of arbitrary shapes using a vacuum hole. Products on the market now are limited to 200mm sample sizes and must rely on cutting up the sample to maintain the low noise required by industry, which is cumbersome and makes sharing the AFM challenging.

Park Systems, recognized for innovation in Nanoscale metrology, is the recipient of the Frost and Sullivan 2016 Global Enabling Technology Leadership Award for its proprietary technologies, such as the SmartScan OS and True Non-Contact Mode which have given its products an edge over competing solutions in terms of user friendliness, efficiency, and accuracy. These innovations have allowed Park Systems to bring the power of AFM to a wider user-base, enabling researchers and engineers further scientific discoveries and technological progress from materials to semiconductor to life sciences.

“Park NX20 300mm is another demonstration of Park Systems’s ability to innovate products demanded in today’s fast-growing semiconductor industry where status quo will not suffice in this new era of nanotechnology advances,” states Frost & Sullivan Industry Analyst Mariano Kimbara.

Since 1997, Park Systems has added significant innovations to their original AFM design to revolutionize imaging methodologies and enhance the user experience, resulting in their unbridled success.   Park Systems holds 32 patents related to AFM technology, including True Non-Contact Mode using decoupled XY and Z scanners, PTR measurements of HDD application, NX-Bio technology using Scanning ion conductance microscopy (SICM) on live cell, 3D AFM, Full automation AFM operation software (SmartScan).   SmartScan fully automatizes AFM imaging making it very easy for anyone to take an image of a sample at nanoscale resolution and clarity comparable to one taken by an expert.

Park Systems has a full range of AFM systems that provide solutions for researchers and industry engineers across a wide spectrum of disciplines including chemistry, materials, physics, life sciences, semiconductor and data storage. Used by thousands of the most distinguished academic and research institutions worldwide, Park is recognized as an innovate partner in nanoscale technologies.

Samco, a semiconductor process equipment developer and manufacturer based in Japan, announced that it will open its Malaysia branch office on Aug. 10, 2016 in Petaling Jaya, a suburb of Kuala Lumpur.

“With our new office conveniently located near Kuala Lumpur, we expect to better serve Malaysia’s research universities and manufacturers,” says Osamu Tsuji, Samco’s chairman, president and CEO. “Four company representatives will be assigned to this new location, where they will actively provide production-type systems and services, consisting of the three major technologies Samco specializes in.”

These technologies include: thin film deposition with PECVD and ALD systems; microfabrication with ICP etching, RIE and DRIE systems; and surface treatment with plasma cleaning and UV ozone cleaning systems.

“Samco has been continually enhancing its sales presence and service capability in Southeast Asia since the establishment of Samco’s Singapore office 20 years ago,” says Tsuji. “The region has seen an increased number of semiconductor and electronic component manufacturers in recent years, which initially led to the creation of the company’s former Vietnam service office in Ho Chi Minh during 2012.”

However, Tsuji adds, there was still a considerable physical distance between the Vietnam office and the Europe-based device manufacturers that have accumulated in Malaysia (mainly in Penang, Kuala Lumpur and Malacca), as well as the research institutions of some of Samco’s important customers.

“Bridging that distance was one reason Samco decided to replace its Vietnam office with our new location in Malaysia,” he says.

These efforts to strengthen the company’s presence in Southeast Asia include samco-ucp, which was established in Liechenstein after the acquisition of plasma cleaner systems maker UCP in May 2014, and now serves as Samco’s main European office.

“Some of samco-ucp’s chief customers are concentrated in Southeast Asia,” says Tsuji. “Our Malaysia office will also be used as a sales and service base for samco-ucp’s main product, production-type plasma cleaners that operate with a remote plasma source.”

Currently, the company’s annual sales in the region are nearly 2 million USD, which is expected to rise to 5 million USD after three years.

“With the combined sales revenue from both companies, we plan to increase Samco’s annual revenue in Malaysia to 10 million USD,” says Tsuji.

Samco’s Malaysia branch office is located at:

C-8-21, Block C, Centum at Oasis Corporate Park,
No. 2, Jalan PJU 1A/2, Ara Damansara, 47301
Petaling Jaya, Selangor Darul Ehsan, Malaysia

In addition to the monthly Updates, IC Insights’ subscription to The McClean Report includes three “subscriber only” webcasts.  The first of these webcasts was presented on August 3, 2016 and discussed semiconductor industry capital spending trends, the worldwide economic outlook, the semiconductor industry forecast through 2020, as well as China’s failures and successes on its path to increasing its presence in the IC industry.

In total, IC Insights forecasts that semiconductor industry capital spending will increase by only 3% this year after declining by 2% in 2015.  However, driven by the top three spenders—Samsung, TSMC, and Intel—capital spending in 2016 is expected to be heavily skewed toward the second half of this year. Figure 1 shows that the combined 2016 outlays for the top three semiconductor industry spenders are forecast to be 90% higher in the second half of this year as compared to the first half.

Figure 1

Figure 1

Combined, the “Big 3” spenders are forecast to represent 45% of the total semiconductor industry outlays this year.  An overview of each company’s actual 1H16 spending and their 2H16 spending outlook is shown below.

Samsung — The company spent only about $3.4 billion in capital expenditures in 1H16, just 31% of its forecasted $11.0 billion full-year 2016 budget.

TSMC — Its outlays in the first half of 2016 were only $3.4 billion, leaving $6.6 billion to be spent in the second half of this year in order to reach its full-year $10.0 billion budget.  This would represent a 2H16/1H16 spending increase of 92%.

Intel — Spent just $3.6 billion in 1H16.  The company needs to spend $5.9 billion in the second half of this year to reach its current $9.5 billion spending budget, which would be a 2H16/1H16 increase of 61%.

In contrast to the “Big 3” spenders, capital outlays by the rest of the semiconductor suppliers are forecast to shrink by 16% in the second half of this year as compared to the first half.  In total, 2H16 semiconductor industry capital spending is expected to be up 20% over 1H16 outlays, setting up a busy period for the semiconductor equipment suppliers through the end of this year.

Further trends and analysis relating to semiconductor capital spending through 2020 are covered in the 250-plus-page Mid-Year Update to the 2016 edition of The McClean Report.

GLOBALFOUNDRIES announced that Wallace Pai has been appointed as vice president and general manager of China. Pai will be responsible for driving the company’s strategic direction in China as it expands its presence and customer base in the region.

Pai has more than two decades of experience in the semiconductor industry, with expertise in strategic planning, corporate development, marketing and ecosystem growth. Throughout his career as a senior executive at Motorola, Qualcomm, Samsung and Synaptics, he has shaped strategy and led numerous strategic initiatives and investments in China. He is fluent in Mandarin and Cantonese, and has extensive access to business networks throughout the Greater China region. Pai will be based primarily in Shanghai and will report to Mike Cadigan, senior vice president of global sales and business development.

“Greater China represents a multi-billion dollar market opportunity, with significant growth potential for GLOBALFOUNDRIES,” Cadigan said. “Wallace has the ideal background and expertise to help drive our strategy, working closely with our extensive sales and design resources in the region. As we build on this base with a planned manufacturing presence, we will be well positioned to serve customers in Greater China and beyond.”

Wallace joins GLOBALFOUNDRIES from Synaptics, where he was vice president and general manager for the touch and display business where he spent most of the time in Greater China, Korea and Japan. Prior to Synaptics, Pai served as vice president of corporate business development at Samsung, where he led strategic initiatives and investments for the mobile and semiconductor business. He came to Samsung from Motorola Mobility, where as corporate vice president he led corporate development and managed Motorola’s corporate venture fund, driving a number of strategic acquisitions and divestitures key to establishing the foundation and trajectory for the company. Before Motorola, Pai worked at Qualcomm in a number of leadership roles in global business development, product management and strategic planning.

Pai holds an MBA from Harvard Business School and an MSEE from the University of Michigan, Ann Arbor. Early in his career, Wallace was a consultant for McKinsey & Company and a microprocessor design engineer at Intel.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $79.1 billion during the second quarter of 2016, an increase of 1.0 percent over the previous quarter and a decrease of 5.8 percent compared to the second quarter of 2015. Global sales for the month of June 2016 reached $26.4 billion, an uptick of 1.1 percent over last month’s total of $26.1 billion, but down 5.8 percent from the June 2015 total of $28.0 billion. Cumulatively, year-to-date sales during the first half of 2016 were 5.8 percent lower than they were at the same point in 2015. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Global semiconductor sales increased slightly from Q1 to Q2 but remain behind the pace from last year, due largely to global economic uncertainty and sluggish demand,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Sales into Japan and China have been a bright spot midway through 2016, and a modest rebound in sales is projected during the second half of the year.”

Regionally, sales increased compared to June 2015 in China (1.7 percent), but fell in Asia Pacific/All Other (-11.0 percent), the Americas (-10.8 percent), Europe (-5.5 percent), and Japan (-1.3 percent). Sales were up slightly compared to last month in the Americas (3.0 percent), China (2.2 percent) and Europe (1.7 percent), but down somewhat in Japan (-1.0 percent) and Asia Pacific/All Other (-0.6 percent).

sales graph sales table