Category Archives: LEDs

Ultratech, Inc. (Nasdaq:  UTEK), a supplier of lithography, laser­ processing and inspection systems used to manufacture semiconductor devices and high-brightness LEDs (HBLEDs), as well as atomic layer deposition (ALD) systems, today announced that it has received a repeat, multiple-system order from a leading semiconductor manufacturer for its advanced packaging AP300 lithography systems. The AP300 systems will be utilized for high-volume, leading-edge, fan-out wafer-level packaging (FOWLP) applications used to manufacture application processors. Ultratech will begin shipping the AP300 systems in the first two quarters of this year to the customer’s facility in Asia.

Ultratech General Manager and Vice President of Lithography Products Rezwan Lateef stated, “Ultratech has maintained its leadership position in the advanced packaging market segment by consistently delivering superior on-wafer results, cost-of-ownership and reliability performance for high-volume manufacturing (HVM) environments. Fan-out technologies continue to be the optimal solution for the highly-demanding mobile and wireless markets by offering improved performance in a reduced form factor. The AP300 is ideally suited to address this market with HVM -proven extendibility well below 2 microns. This substantial repeat order again confirms our technology leadership and the value proposition of Ultratech’s AP300 systems over full-field 1X scanners and reduction steppers. We are pleased to expand our photolithography-tool-of-record position at this valued customer. We look forward to working with them to meet their volume production and technology roadmaps.”

Ultratech’s AP300 Family of Lithography Steppers 

The AP300 family of lithography systems is built on Ultratech’s customizable Unity Platform, delivering superior overlay, resolution and side wall profile performance and enabling highly-automated and cost-effective manufacturing. These systems are particularly well suited for copper pillar, fan-out, through-silicon via (TSV) and silicon interposer applications. In addition, the platform has numerous application-specific product features to enable next-generation packaging techniques, such as Ultratech’s award winning dual-side alignment (DSA) system, utilized around the world in volume production.

Seoul Semiconductor announced the immediate start of the mass production of its LED chip-on-board package for use in LED filament bulbs, a market currently estimated to be $1.3 billion globally.

Mr. Ki-bum Nam, CTO of Seoul Semiconductor, said, “Based on its strong patents, Seoul Semiconductor will continue to increase its market share in the filament LED bulb market, which is a blue ocean market estimated at $1.3 billion.” He added: “We will widely promote the superiority of Seoul Semiconductor’s LED technology with its filament LEDs.”

Seoul Semiconductor’s filament LEDs can realize high-quality light close to natural light through differentiated chip-on-board (COB) packaging technology and can produce stunning emotional lighting with omnidirectional emission technology, combining a small footprint with a wide beam angle. The Color Rendering Index (CRI) is 80 or better and different LEDs having a flux between 105 and 210 lumens are available. All of them feature a Correlated Color Temperature (CCT) of 2,700 K. Therefore, they are used to create a classical atmosphere through high-quality light in many spaces, like cafes and hotels or even bed- and living rooms, making them an alternative to incandescent light bulbs that have been phased out in 2014.

Development of this technology at Seoul Semiconductor started already in the early 2000s, even before there was a market for filament-LEDs, but production was held until the market was now ready for them. This decision demonstrates the company’s clear long-term strategy and vision. Seoul Semiconductor now holds hundreds of patents for filament LEDs, covering chip manufacturing, COB-packaging, module and bulb manufacturing processes. These are all core technologies for manufacturing filament LED products and this portfolio leads to a strong IP protection of customers using Seoul Semiconductor’s filament LEDs.

An official at Seoul Semiconductor stated: “We are readying legal actions, as many of the LED bulbs released in the market have infringed our proprietary technologies.”

The global light bulb market is estimated at 7 billion pieces annually, of which 2.5 billion units are light bulbs for various decoration purposes, a market being addressed by the filament LEDs. The application of them in this market has started and they can not only be applied to globe bulbs in their various forms, but also to candle lamps in special shapes. These diverse applications are supported by two different lengths of the LEDs: 38 mm and 50 mm.

Picosun Oy, a provider of high quality Atomic Layer Deposition (ALD) technology, announced a collaboration with Osram Opto Semiconductors and other partners to create a new generation of advanced LED lighting solutions.

In order to keep spearheading the global LED market, it is vital for the manufacturers to constantly improve the performance and lifetime of their products. Picosun’s ALD technology is already in production use at various LED manufacturing sites, yet there are still various novel applications where its full potential is just waiting to be taken to industrial use.

In the project FLINGO, Picosun joins forces with Osram Opto Semiconductors, who is also the coordinator of the project, and several European top universities and R&D organizations to realize the next generation high-brightness and high-durability LEDs. The ability of Picosun’s ALD technology to create superb quality thin films inside ultra-high aspect ratio structures, over high steps, and on other topologically challenging surface details is in key role in this development. The leading film quality and purity, and the fast, cost-efficient mass manufacturing in fully automated batch ALD tools are other key assets where Picosun’s ALD solutions will accelerate the market entrance of the new LED products.

“We are very pleased to have Picosun as our project partner in FLINGO. We have full trust in their excellent ALD know-how, and that combining this with the specific expertise of our other project partners will result in exciting new technologies and make this a successful project,” states Dr. David O’Brien, project coordinator of Osram Opto Semiconductors.

“LED industry is definitely one of our key market segments. This is why we are very happy to collaborate with Osram, one of the global LED leaders, and our other project partners to enable disruptive, high performance LED technology to strengthens Europe’s position in the front row of worldwide LED business,” continues Juhana Kostamo, Managing Director of Picosun.

Intel Corporation yesterday announced plans to invest more than $7 billion to complete Fab 42, a project Intel had previously started and then left vacant. The high-volume factory is in Chandler, Ariz., and is targeted to use the 7 nanometer (nm) manufacturing process. The announcement was made by U.S. President Donald Trump and Intel CEO Brian Krzanich at the White House.

Intel Corporation on Tuesday, Feb. 8, 2017, announced plans to invest more than $7 billion to complete Fab 42. On completion, Fab 42 in Chandler, Ariz., is expected to be the most advanced semiconductor factory in the world. (Credit: Intel Corporation)

Intel Corporation on Tuesday, Feb. 8, 2017, announced plans to invest more than $7 billion to complete Fab 42. On completion, Fab 42 in Chandler, Ariz., is expected to be the most advanced semiconductor factory in the world. (Credit: Intel Corporation)

According to Intel’s official press release, the completion of Fab 42 in 3 to 4 years will directly create approximately 3,000 high-tech, high-wage Intel jobs for process engineers, equipment technicians, and facilities-support engineers and technicians who will work at the site. Combined with the indirect impact on businesses that will help support the factory’s operations, Fab 42 is expected to create more than 10,000 total long-term jobs in Arizona.

Mr. Trump said of the announcement: “The people of Arizona will be very happy. It’s a lot of jobs.”

There will be no incentives from the federal government for the Intel project, the White House said.

Context for the investment was outlined in an e-mail from Intel’s CEO to employees.

“Intel’s business continues to grow and investment in manufacturing capacity and R&D ensures that the pace of Moore’s law continues to march on, fueling technology innovations the world loves and depends on,” said Krzanich. “This factory will help the U.S. maintain its position as the global leader in the semiconductor industry.”

“Intel is a global manufacturing and technology company, yet we think of ourselves as a leading American innovation enterprise,” Krzanich added. “America has a unique combination of talent, a vibrant business environment and access to global markets, which has enabled U.S. companies like Intel to foster economic growth and innovation. Our factories support jobs — high-wage, high-tech manufacturing jobs that are the economic engines of the states where they are located.”

Intel is America’s largest high-technology capital expenditure investor ($5.1 billion in the U.S. 2015) and its third largest investor in global R&D ($12.1 billion in 20151). The majority of Intel’s manufacturing and R&D is in the United States. As a result, Intel employs more than 50,000 people in the United States, while directly supporting almost half a million other U.S. jobs across a range of industries, including semiconductor tooling, software, logistics, channels, OEMs and other manufacturers that incorporate our products into theirs.

The 7nm semiconductor manufacturing process targeted for Fab 42 will be the most advanced semiconductor process technology used in the world and represents the future of Moore’s Law. In 1968, Intel co-founder Gordon Moore predicted that computing power will become significantly more capable and yet cost less year after year.

The chips made on the 7nm process will power the most sophisticated computers, data centers, sensors and other high-tech devices, and enable things like artificial intelligence, more advanced cars and transportation services, breakthroughs in medical research and treatment, and more. These are areas that depend upon having the highest amount of computing power, access to the fastest networks, the most data storage, the smallest chip sizes, and other benefits that come from advancing Moore’s Law.

After the announcement, President Trump tweeted his thanks to Krzanich, calling the factory a great investment in jobs and innovation. In his email to employees, Krzanich said that he had chosen to announce the expansion at the White House to “level the global playing field and make U.S. manufacturing competitive worldwide through new regulatory standards and investment policies.”

“When we disagree, we don’t walk away,” he wrote. “We believe that we must be part of the conversation to voice our views on key issues such as immigration, H1B visas and other policies that are essential to innovation.”

During Mr. Trump’s presidential campaign, Krzanich had reportedly planned a Trump fundraiser event and then cancelled following numerous controversial statements from Trump regarding his proposed immigration policies. Intel has continued to be critical of the Trump administration’s immigration policies, joining over 100 other companies to file a legal brief challenging President Trump’s January 27 executive order which blocked entry of all refugees and immigrants from seven predominantly Muslim countries. Recently, Krzanich took to Twitter to criticize the order, voicing the company’s support of lawful immigration.

In 2012, Paul Otellini, then Intel’s CEO, made a similar promise about Fab 42 in the company of Obama, during a visit to Hillsboro, Oregon.

Entegris, Inc. (NASDAQ: ENTG), a developer in specialty chemicals and advanced materials handling solutions for the microelectronics industry, announced today it has introduced a new platform for advanced gas purification that improves wafer yields for semiconductor and LED applications. The new family of GateKeeper Gas Purification Systems (GPS) applies new purification media to provide best-in-class gas purity at a wide range of flow rates with a reduced equipment footprint. With expanded capacity in South Korea, Entegris now manufactures GateKeeper GPS systems in both North America and Asia.

“Our customers face unprecedented contamination control challenges to efficiently manufacture today’s increasingly complex leading-edge-devices. The new Gatekeeper GPS family of systems provide the advanced solutions required to maximize yield in these environments,” said Entegris Senior Vice President of Microcontamination Control, Clint Haris. “In conjunction with these new technology introductions, we continue our investments in our North America and Asia facilities to expand our global service and manufacturing capabilities.”

Semiconductor processes for advanced nodes, as well as LED manufacturing requirements, call for increased purity to remove defect-causing contaminants found in process gases. The GateKeeper GPS family of systems removes a variety of contaminants from gas streams down to the parts-per-trillion level and can be configured to a wide range of flow rates. Gases purified include CDA, N2, H2, H2 for EUV, Ar and NH3. Additionally, manufacturers are looking for tools that require significantly less sub-fab floor space. The reduced footprint allows customers to devote valuable sub-fab floor space to other tool needs or increase purification capacity with additional systems.

“We collaborated closely with our customers to identify purity requirements to meet their need to remove new contaminants and increased sensitivity to known contaminants,” said Director of Gas Purification Product Management, Jordan Ruple. “As a result, we are proud to be the first to offer this level of purity – in a variety of gases and flow rates – for systems of this size.”

The latest GateKeeper system will be on display during the SEMICON Korea trade show in Seoul, February 8-10, 2017.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced the global semiconductor industry posted sales totaling $338.9 billion in 2016, the industry’s highest-ever annual sales and a modest increase of 1.1 percent compared to the 2015 total. Global sales for the month of December 2016 reached $31.0 billion, equaling the previous month’s total and bettering sales from December 2015 by 12.3 percent. Fourth quarter sales of $93.0 billion were 12.3 percent higher than the total from the fourth quarter of 2015 and 5.4 percent more than the third quarter of 2016. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Following a slow start to the year, the global semiconductor market picked up steam mid-year and never looked back, reaching nearly $340 billion in sales in 2016, the industry’s highest-ever annual total,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Market growth was driven by macroeconomic factors, industry trends, and the ever-increasing amount of semiconductor technology in devices the world depends on for working, communicating, manufacturing, treating illness, and countless other applications. We expect modest growth to continue in 2017 and beyond.”

2016 worldwide revenue

Several semiconductor product segments stood out in 2016. Logic was the largest semiconductor category by sales with $91.5 billion in 2016, or 27.0 percent of the total semiconductor market. Memory ($76.8 billion) and micro-ICs ($60.6 billion) – a category that includes microprocessors – rounded out the top three segments in terms of total sales. Sensors and actuators was the fastest growing segment, increasing 22.7 percent in 2016. Other product segments that posted increased sales in 2016 include NAND flash memory, which reached $32.0 billion in sales for a 11.0 percent annual increase, digital signal processors ($2.9 billion/12.5 percent increase), diodes ($2.5 billion/8.7 percent increase), small signal transistors ($1.9 billion/7.3 percent), and analog ($47.8 billion/5.8 percent increase).

Regionally, annual sales increased 9.2 percent in China, leading all regional markets, and in Japan (3.8 percent). All other regional markets – Asia Pacific/All Other (-1.7 percent), Europe (-4.5 percent), and the Americas (-4.7 percent) – saw decreased sales compared to 2015.

“A strong semiconductor industry is strategically important to U.S. economic growth, national security, and technological leadership,” said Neuffer. “We urge Congress and the new administration to enact polices in 2017 that spur U.S. job creation, and innovation and allow American businesses to compete on a more level playing field with our competitors abroad. We look forward to working with policymakers in the year ahead to further strengthen the semiconductor industry, the broader tech sector, and our economy.”

Veeco Instruments Inc. (NASDAQ: VECO), a developer of advanced thin film etch and deposition process equipment, and Ultratech, Inc. (NASDAQ: UTEK), a supplier of lithography, laser-processing and inspection systems used to manufacture semiconductor devices and LEDs, today announced that they have signed a definitive agreement for Veeco Instruments Inc. (“Veeco”) to acquire Ultratech, Inc. (“Ultratech”). The Boards of Directors of both Veeco and Ultratech have unanimously approved the transaction.

Ultratech shareholders will receive (i) $21.75 per share in cash and (ii) 0.2675 of a share of Veeco common stock for each Ultratech common share outstanding. Based on Veeco’s closing stock price on February 1, 2017, the transaction consideration is valued at approximately $28.64 per Ultratech share. The implied total transaction value is approximately $815 million and the implied enterprise value is approximately $550 million, net of Ultratech’s net cash balance as of December 31, 2016. Post transaction it is projected that Ultratech shareholders will own approximately 15 percent of the combined company.

Ultratech is a recognized leader of lithography products for Advanced Packaging applications and for LEDs and is a pioneer for laser spike anneal technology used for the production of semiconductor devices. In addition, the company offers wafer inspection solutions leveraging its proprietary coherent gradient sensing (CGS) technology which address a wide variety of semiconductor applications.

“The strategic combination will establish Veeco as a leading equipment supplier in the high growth Advanced Packaging industry. Ultratech’s leadership in lithography together with Veeco’s Precision Surface Processing (PSP) solutions form a strong technology portfolio to address the most critical Advanced Packaging applications. We believe our complementary end market exposure and customer relationships will create the ideal platform to accelerate growth,” said John R. Peeler, Veeco’s Chairman and Chief Executive Officer. “Ultratech is a great fit with our strategy to profitably grow our business and diversify our revenue. We expect this transaction to be immediately accretive to adjusted EBITDA and non-GAAP EPS.”

Ultratech Chairman and Chief Executive Officer, Arthur W. Zafiropoulo said, “Both companies have a strong heritage of developing innovative and cutting-edge technologies. The combined company will create a formidable team to execute against growth opportunities and deliver significant value to customers and shareholders.”

Veeco expects to realize approximately $15 million in annualized run rate synergies within 24 months after closing, to be achieved through increased efficiencies and leveraging the scale of the combined businesses. The combined company is expected to have an efficient balance sheet, benefiting from the deployment of excess cash.

The transaction is expected to close in the second calendar quarter of 2017, subject to approval by Ultratech shareholders, regulatory approvals in the U.S. and other customary closing conditions.

Leti, a research institute of CEA Tech, today announced it has developed a μLED fabrication process to create high-resolution arrays at 10-micron pitch. That pixelization and the 873 x 500 resolution that are enabled by the new process exceed technology.

Designed for micro-display applications such as augmented-reality or virtual-reality tools and wearable devices, the blue or green GaN/InGaN µLED arrays use Leti’s proprietary self-aligned technology. That process is key to achieving such a small pixel pitch. A combination of several damascene metallization steps used to create a common cathode is also expected to provide good thermal dissipation and prevent voltage drops within the micro-LED matrix. Electro-optical measurements showcase record efficiency and brightness exceeding requirements for device integration.

The results were presented Feb. 2 at SPIE Photonics West in San Francisco in a paper: “Processing and Characterization of High-Resolution GaN/InGaN LED Arrays at 10-Micron Pitch for Micro-Display Applications”.

“Leti’s self-aligned process allows the creation of high-resolution µLED matrices with a reduced pixel pitch of 10µm and paves the way towards even smaller pitches for next-generation devices,” said Ludovic Dupré, one of the paper’s authors. “In addition, the use of the damascene metallization process of the cathode, which also is a new process developed at Leti, is a breakthrough compared to previous demonstrations of micro-LED matrices. The common cathode indeed fills the whole volume between the micro-LEDs and provides metallic spreading of electrical current between them, as well as thermal dissipation. These results are promising for integrating a micro-LED matrix in micro-display devices by hybridization on CMOS active matrices, and first prototypes are currently being tested.”

The electronic data connections within and between microchips are increasingly becoming a bottleneck in the exponential growth of data traffic worldwide. Optical connections are the obvious successors but optical data transmission requires an adequate nanoscale light source, and this has been lacking. Scientists at Eindhoven University of Technology (TU/e) now have created a light source that has the right characteristics: a nano-LED that is 1000 times more efficient than its predecessors, and is capable of handling gigabits per second data speeds. They have published their findings in the online journal Nature Communications.

This is a scanning electron microscope picture of the new nano-LED, including some details. Credit: Eindhoven University of Technology

This is a scanning electron microscope picture of the new nano-LED, including some details. Credit: Eindhoven University of Technology

With electrical cables reaching their limits, optical connections like fiberglass are increasingly becoming the standard for data traffic. Over longer distances almost all data transmission is optical. Within computer systems and microchips, too, the growth of data traffic is exponential, but that traffic is still electronic, and this is increasingly becoming a bottleneck. Since these connections (‘interconnects’) account for the majority of the energy consumed by chips, many scientists around the world are working on enabling optical (photonic) interconnects. Crucial to this is the light source that converts the data into light signals which must be small enough to fit into the microscopic structures of microchips. At the same time, the output capacity and efficiency have to be good. Especially the efficiency is a challenge, as small light sources, powered by nano- or microwatts, have always performed very inefficiently to date.

Researchers at TU Eindhoven have now developed a light-emitting diode (LED) of some hundred nanometers with an integrated light channel (waveguide) to transport the light signal. This integrated nano-LED is a 1000 times more efficient than the best variants developed elsewhere. The Eindhoven-based researchers have especially made progress in the quality of the integrated coupling of the light source and the waveguide whereby much less light is lost and therefore far more light enters the waveguide. The efficiency of the new nano-LED currently lies between 0.01 and 1 percent, but the researchers expect to be well above that figure soon thanks to a new production method.

Another key characteristic of the new nano-LED is that it is integrated into a silicon substrate on a membrane of indium phosphide. Silicon is the basic material for microchips but is not suitable for light sources whereas indium phosphide is. Furthermore, tests reveal that the new element converts electrical signals rapidly into optical signals and can handle data speeds of several gigabits per second.

The researchers in Eindhoven believe that their nano-LED is a viable solution that will take the brake off the growth of data traffic on chips. However, they are cautious about the prospects. The development is not yet at the stage where it can be exploited by the industry and the production technology that is needed still has to get off the ground.

(Note: This is Part 2 of a two-part article; Part 1 is here)

By Denny McGuirk, president and CEO, SEMI

“Do not go where the path may lead, go instead where there is no path and leave a trail,” was how I started last week’s article.  In that article we looked back on 2016 and the incredible progress of the industry and how it continually cuts new trail and keeps moving at the speed of Moore’s Law.  In this week’s follow up, I would like to talk about where the industry is going and how SEMI is changing to keep up with it.  As not everyone is aware of all SEMI does, the following is a quick reminder on how SEMI works to represent the industry before looking ahead to 2017, specifically, and beyond.

SEMI, the global non-profit association connecting and representing the worldwide electronics manufacturing supply chain, has been growing with the industry for 47 years.  SEMI has evolved over the years, but it has remained as the central point to connect.  Whether connecting for business, connecting for collective action, or connecting to synchronize technology, SEMI connects for member growth and prosperity.

Our industry is in the midst of a vast change.  To deal with the escalating complexity (making a semiconductor chip now uses the great majority of the periodic table of the elements) and capital cost, many companies have had to combine, consolidate, and increasingly collaborate along the length of the electronics manufacturing supply chain.

Some companies have broadened their businesses by investing in adjacent segments such as Flexible Hybrid Electronics (FHE), MEMS, Sensors, LEDs, PV, and Display.  Lines are blurring between segments – PCBs have morphed into flexible substrates, SiP is both a device and a system.  Electronics integrators are rapidly innovating and driving new form factors, new requirements, and new technologies which require wide cooperation across the length of the electronics manufacturing supply chain and across a breadth of segments.

The business is changing and SEMI’s members are changing.  When SEMI’s members change, SEMI must change, too – and SEMI has, and is.  SEMI developed a transformation plan, SEMI 2020, which I wrote about at the beginning of 2016.  We’re well on our way on this path and I’d like to update you on what we’ve accomplished and what’s to come.

SEMI 2020: “The Only Time You Should Look Back is to See How Far You’ve Come”

SEMI organized its SEMI 2020 transformation into three basic pillars of the SEMI 2020 strategy.  First, “reenergizing the base,” where SEMI focuses on enriching delivered value for the present day needs of its traditionally engaged membership base.  Second, “building communities and collaboration,” where SEMI works to develop specific forums and groups to meet specific needs and focus on specific technologies and products.  Third, “evolving SEMI value propositions for 2020,” which is the work of changing and innovating SEMI products and services for the needs of the industry in the future.

To date, SEMI has made great progress on these three pillars, here are a few examples:

1. Reenergize Base

  • Grew membership to ~2,000 global SEMI member companies
  • Growth in SEMICON expositions:
    • 248,738 global exhibition visitors in 2016 (up 8 percent year-over-year)
    • 4,410 global exhibitors in 2016 (up 5 percent in m2 of exhibition space sold)
  • Realignment of SEMI with organization changes in Americas, China, Europe, and HQ

2. Build Communities and Collaboration

 

  • FlexTech joined SEMI as Strategic Association Partner: SEMI FLEX conferences and programs are now in America, Europe, Korea, SEA and Japan
  • MEMS and Sensors Industry Group (MSIG) joined SEMI as Strategic Association Partner
  • SEMI Special Interest Groups developed and globalized — Chemical and Gases Manufacturers Group (CGMG), SEMI integrated Packaging and Test (SiPAT), Semiconductor Components, Instruments & Subsystems (SCIS), etc. — integrating broad areas of the supply chain
  • Development of SEMI Collaborative Technology Platforms with initial activities in Interconnect, Heterogeneous Integration Roadmap (partnered with IEEE CPMT, EDS, & Photonics Societies), etc.
  • Introduction and co-sponsoring of special interest programs such as FUTURECAR and regional SMC conferences

 

3. Evolve SEMI Value Propositions for 2020

  • SEMI (automation) Standards adapted for Smart Manufacturing (Industry 4.0)
  • Improved channels: new SEMI Global Update, new website, social media (follow SEMI on LinkedIn and Twitter), infographics
  • New data products such as 200mm reportpackaging report, mobile version of fab database (FabView)
  • New programs such as SEMI European MEMS conference
  • SEMI Foundation widening scope on Workforce Development
  • Advocacy activities leveraging collective action on trade, industry funding, export control, taxation, and sustainable manufacturing (including regulation of safety, materials, and environmental impact).

 

SEMI 2020: “The Road to Success is Always Under Construction”

 

SEMI continues to conduct surveys, uses multiple means of gathering the voice of the customer, and constantly aligns with guidance from its various committees, regional advisory boards, and International Board of Directors.  Despite its name, SEMI 2020 is a journey and not a destination.  SEMI will continue to evolve, develop, and add critical communities, services, products, and industry advocacy as SEMI’s members evolve.

While many of the SEMI activities captured above will continue, the following provides a sampling of activities more specific to SEMI’s work in 2017.

1. Reenergize Base

  • Increase frequency and depth of SEMI outreach and grow SEMI’s global membership and engagement
  • Launch SEMICON Europa 2017 co-location with productronica in Munich to connect to electronics manufacturing supply chain while preserving SEMI’s core community within its own show
  • Launch new engagement and experiential components at SEMICON West and SEMICON Japan
  • Move HQ headquarters to more member-suited, collaborative, efficient, and smaller building in Milpitas

 

2. Build Communities and Collaboration

 

  • Develop four vertical application collaborative forums:  World of IoT, Smart Automobile, Smart Manufacturing, and Smart MedTech
  • Fully integrate FlexTech and MSIG into SEMI’s global infrastructure and develop regional communities and events for these distinct adjacent communities
  • Provide association services to the Fab Owners Association as a SEMI Strategic Association Partnership
  • Continue to develop and increase global participation in SEMI Special Interest Groups such as SCIS, CGMG, and SiPAT to provide the specific and current needs of SEMI’s members

 

3. Evolve SEMI Value Propositions for 2020

  • Provide greater inbound and outbound member visibility and member services for fast-developing China region
  • Further develop SEMI Standards for Smart Manufacturing including a focus on big data and security
  • Advocate for funding for SEMI member pre-competitive projects in all global regions
  • Develop and improve industry training and education capabilities in all regions
  • Raise visibility for SEMI in securing unrestricted trade for semiconductor manufacturing and extended supply chain

“Roads Were Made for Journeys, Not Destinations”  

This quotation, generally attributed to Confucius, ties the themes of the road of this year’s annual update to my personal journey.  As you may know, at the end of 2016, I announced my intention to retire and while I’ll remain until a successor is identified, this will be my last SEMI update.

My personal journey has definitely not been a straight line and that’s made it all the more interesting – and, I hope, made me a “more skillful driver.”  Instead of the road, the sky used to be my home (although, with trips to Asia and Europe, sometimes it still feels like I’m still there!), with many years flying with the United States Air Force.  After that, my path led to the world of non-profit leadership and eventually, prior to SEMI, leading IPC, the interconnect trade association.  As the industry has blurred the borders of PC boards and substrates and semiconductor packages, maybe it was natural that I would also shift from IPC to SEMI.

I’ve been at SEMI for over five years and have constantly been amazed by the speed of the industry, the exceptional professionals and their astounding innovations, and the tight global cooperation and support.  When I started, there was a flashpoint in the potential jump to pursue the 450mm wafer size.  I got to know our industry and our members very quickly!  But, I almost immediately learned, this is a unique industry where collaboration across the electronics manufacturing supply chain is critical, where global stakeholders are well connected, and where – with Moore’s Law as precedent – industry leaders are used to working together, no matter if collaborators or competitors, for the good of the industry.

I am grateful to call many in our industry friends.  It is with regret that I won’t be seeing these friends as frequently as before, certainly.  However, I am pleased to be leaving behind a sound a valued SEMI organization with the professionals and plans in place to carry SEMI 2020 forward and deliver more valued services, products, and above all connections for its members.  I am happy for my time at SEMI and am grateful to the SEMI staff, SEMI International Board of Directors, and SEMI Members for the opportunity to serve the amazing association