Category Archives: LEDs

IoT Planet, a new European event dedicated to the Internet of Things (IoT), will co-locate this year with SEMICON Europa (25-27 October) in Grenoble, France.  IoT Planet provides a platform of networking and business to all IoT actors from software development, data management, IT infrastructures, system integration and “Connected Objects” applications.

For over 40 years, SEMI has organized SEMICON Europa, which has served as the premier annual European event for the electronics industry. In 2016, SEMICON Europa will connect the entire electronics supply chain: from materials and equipment, to manufacturing and technology, to advanced packaging and smart system integration – with a strong emphasis on application-driven markets, including Imaging, Power Electronics, Automotive, MedTech, and Flexible Hybrid Electronics.

IoT Planet, in its second year, will cover the full IoT domain with a unique format in mixing exhibition, Start-Up programs, crash tests, hackathon, forums, and debates, and many other events co-designed with the Partners. IoT Planet will connect professional visitors and high tech public across the domains of IoT applications, business, services, societal and private impact and talent management.

Together, the co-located events will offer visitors many learning and networking options along an extended supply chain. The events are expected to attract over 7,000 professional visitors and more than 600 exhibiting companies.

“Tomorrow’s applications will allow people to live smarter – healthier, safer, and more comfortable. The emerging opportunities are endless in smart electronic systems, but technology and system challenges must be overcome by connecting forces and by building on the strengths of different players in the value chain,” says Laith Altimime, president of SEMI Europe. “The co-location of these two events perfectly supports the SEMI 2020 strategy and will accelerate SEMI’s move towards covering the full electronics supply chain.”

“That initiative of co-location will contribute to our fast growth and strong differentiation, while providing a unique European opportunity to explore the full value chain from Silicon to Connected Object, in Grenoble, the European capital of Nanotechnologies and Connected Things,” says Alain Astier, president of IoT Planet UNIVERSAL.

For more information, please visit www.semiconeuropa.org and www.iot-planet.org.

GLOBALFOUNDRIES, a provider of advanced semiconductor manufacturing technology, announced today that Alain Mutricy has joined the company as senior vice president of the Product Management Group. In this role, Mutricy is responsible for the company’s leading edge and mainstream technology solutions and go-to-market activities for these differentiated products.

Mutricy succeeds Mike Cadigan, who will transition to a newly created role as senior vice president of global sales and business development.

“Alain is an accomplished senior executive with more than 25 years of experience in the consumer electronics, mobile, and semiconductor industries,” said GLOBALFOUNDRIES CEO Sanjay Jha. “He brings a strong portfolio of successes contributing to growth, profitability, and competitiveness for global product organizations, which will help him build on the strong foundation we have already established in our product management group. I am thrilled to welcome Alain to the GlobalFoundries team.”

Before joining GlobalFoundries, Mutricy was founder and executive adviser at AxINNOVACTION, a consulting firm that promotes action to unlock and accelerate innovation in big organizations, as well as co-founder and CEO of Vuezr, which attempted to revolutionize mobile direct marketing by delivering product visual recognition to consumers’ mobile devices via augmented reality.

From 2007-2012, Mutricy served as senior vice president of portfolio and device product management for mobile devices at Motorola Mobility Holdings, Inc., where he led a global team responsible for defining the company’s mobile devices product portfolio strategy and structure. He and his team advanced a strategic focus on Android-based smartphones, which included the widely acclaimed family of DROID by Motorola products. During his tenure at Motorola Mobility, Mutricy was also responsible for defining and directing the Mobile Devices business unit’s global strategy for silicon and software platforms, as well as leadership of a global R&D team responsible for designing and implementing integrated circuits, wireless chipset solutions, platform software, product software for non-CDMA products, and an ecosystem strategy for mobile devices.

Prior to joining Motorola in 2007, Mutricy served at Texas Instruments for 18 years, where he was promoted to vice president in January 2002. From 2004 until his departure from Texas Instruments, Mutricy served as vice president and general manager for the company’s Cellular Systems Solutions business. In that role, he was responsible for commercializing and building a leadership position for the company’s wireless chipset solutions for GSM/GPRS/EDGE/3G and OMAP application processors. Prior to leading Cellular Systems Solutions, Mutricy was general manager for the Texas Instruments OMAP business, which he led from start-up status to global leadership between 2000 and 2004. Additionally, from the time he joined Texas Instruments in 1989, Mutricy was promoted through a series of general- management positions, each with increasing scope and responsibility in areas including sales, marketing and general management.

Mutricy holds a master’s degree in engineering from ENSAM and an MBA from HEC Group—both in Paris.

Gartner, Inc. has highlighted the top 10 Internet of Things (IoT) technologies that should be on every organization’s radar through the next two years.

“The IoT demands an extensive range of new technologies and skills that many organizations have yet to master,” said Nick Jones, vice president and distinguished analyst at Gartner. “A recurring theme in the IoT space is the immaturity of technologies and services and of the vendors providing them. Architecting for this immaturity and managing the risk it creates will be a key challenge for organizations exploiting the IoT. In many technology areas, lack of skills will also pose significant challenges.”

The technologies and principles of IoT will have a very broad impact on organizations, affecting business strategy, risk management and a wide range of technical areas such as architecture and network design. The top 10 IoT technologies for 2017 and 2018 are:

IoT Security

The IoT introduces a wide range of new security risks and challenges to the IoT devices themselves, their platforms and operating systems, their communications, and even the systems to which they’re connected. Security technologies will be required to protect IoT devices and platforms from both information attacks and physical tampering, to encrypt their communications, and to address new challenges such as impersonating “things” or denial-of-sleep attacks that drain batteries. IoT security will be complicated by the fact that many “things” use simple processors and operating systems that may not support sophisticated security approaches.

“Experienced IoT security specialists are scarce, and security solutions are currently fragmented and involve multiple vendors,” said Mr. Jones. “New threats will emerge through 2021 as hackers find new ways to attack IoT devices and protocols, so long-lived “things” may need updatable hardware and software to adapt during their life span.”

IoT Analytics

IoT business models will exploit the information collected by “things” in many ways — for example, to understand customer behavior, to deliver services, to improve products, and to identify and intercept business moments. However, IoT demands new analytic approaches. New analytic tools and algorithms are needed now, but as data volumes increase through 2021, the needs of the IoT may diverge further from traditional analytics.

IoT Device (Thing) Management

Long-lived nontrivial “things” will require management and monitoring. This includes device monitoring, firmware and software updates, diagnostics, crash analysis and reporting, physical management, and security management. The IoT also brings new problems of scale to the management task. Tools must be capable of managing and monitoring thousands and perhaps even millions of devices.

Low-Power, Short-Range IoT Networks

Selecting a wireless network for an IoT device involves balancing many conflicting requirements, such as range, battery life, bandwidth, density, endpoint cost and operational cost. Low-power, short-range networks will dominate wireless IoT connectivity through 2025, far outnumbering connections using wide-area IoT networks. However, commercial and technical trade-offs mean that many solutions will coexist, with no single dominant winner and clusters emerging around certain technologies, applications and vendor ecosystems.

Low-Power, Wide-Area Networks

Traditional cellular networks don’t deliver a good combination of technical features and operational cost for those IoT applications that need wide-area coverage combined with relatively low bandwidth, good battery life, low hardware and operating cost, and high connection density. The long-term goal of a wide-area IoT network is to deliver data rates from hundreds of bits per second (bps) to tens of kilobits per second (kbps) with nationwide coverage, a battery life of up to 10 years, an endpoint hardware cost of around $5, and support for hundreds of thousands of devices connected to a base station or its equivalent. The first low-power wide-area networks (LPWANs) were based on proprietary technologies, but in the long term emerging standards such as Narrowband IoT (NB-IoT) will likely dominate this space.

IoT Processors

The processors and architectures used by IoT devices define many of their capabilities, such as whether they are capable of strong security and encryption, power consumption, whether they are sophisticated enough to support an operating system, updatable firmware, and embedded device management agents. As with all hardware design, there are complex trade-offs between features, hardware cost, software cost, software upgradability and so on. As a result, understanding the implications of processor choices will demand deep technical skills.

IoT Operating Systems

Traditional operating systems (OSs) such as Windows and iOS were not designed for IoT applications. They consume too much power, need fast processors, and in some cases, lack features such as guaranteed real-time response. They also have too large a memory footprint for small devices and may not support the chips that IoT developers use. Consequently, a wide range of IoT-specific operating systems has been developed to suit many different hardware footprints and feature needs.

Event Stream Processing

Some IoT applications will generate extremely high data rates that must be analyzed in real time. Systems creating tens of thousands of events per second are common, and millions of events per second can occur in some telecom and telemetry situations. To address such requirements, distributed stream computing platforms (DSCPs) have emerged. They typically use parallel architectures to process very high-rate data streams to perform tasks such as real-time analytics and pattern identification.

IoT Platforms

IoT platforms bundle many of the infrastructure components of an IoT system into a single product. The services provided by such platforms fall into three main categories: (1) low-level device control and operations such as communications, device monitoring and management, security, and firmware updates; (2) IoT data acquisition, transformation and management; and (3) IoT application development, including event-driven logic, application programming, visualization, analytics and adapters to connect to enterprise systems.

IoT Standards and Ecosystems

Although ecosystems and standards aren’t precisely technologies, most eventually materialize as application programming interfaces (APIs). Standards and their associated APIs will be essential because IoT devices will need to interoperate and communicate, and many IoT business models will rely on sharing data between multiple devices and organizations.

Many IoT ecosystems will emerge, and commercial and technical battles between these ecosystems will dominate areas such as the smart home, the smart city and healthcare. Organizations creating products may have to develop variants to support multiple standards or ecosystems and be prepared to update products during their life span as the standards evolve and new standards and related APIs emerge.

More detailed analysis is available for Gartner clients in the report “Top 10 IoT Technologies for 2017 and 2018.” This report is part of the Gartner Special Report “The Internet of Things“, which looks at the necessary steps to building and rolling out an IoT strategy.

ON Semiconductor Corporation has teamed up with RFMicron, Inc. to unveil multifaceted Internet of Things, or IoT, sensor platform supporting battery-free operation.

The IoT Platform Development Kit, SENSORRFGEVK, brings together a series of performance-optimized computing and connectivity modules to facilitate quick and effective deployment of battery-free wireless sensing technology and IoT hardware in locations where power and space constraints are of particular concern. This streamlined and flexible solution takes the approach of moving much of the system’s intelligence away from where the sensors are situated, and placing it on the cloud. Each IoT Platform Development Kit incorporates ON Semiconductor’s battery-free wireless sensor tags, which use RFMicron’s Magnus S2 Sensor IC, and can perform temperature, moisture, pressure, or proximity sensing functions.

The platform also features a UHF RFID reader module with 32 decibels-milliwatt (dBm) power rating and an 860 megahertz (MHz) to 960 MHz frequency range. Localized data processing is performed by the ARM Cortex-A8 based AM335x system-on-chip (SoC). The platform has the capacity to transfer captured data either wirelessly (via WLAN, Zigbee, Z-Wave, UHF Gen 2, etc.) or using wireline infrastructure (via KNX, CAN, SPI, Ethernet. etc.). This development kit complements ON Semiconductor’s existing wireless sensor evaluation kit, SPS1M-EVK, which provides a set of tools test our sensor capabilities.

“This IoT Platform Development Kit opens up greater opportunities for IoT-based data-acquisition/monitoring enabling the implementation of wireless sensors quickly and effectively into many applications. Using it, the data from multiple sensors can rapidly be accessed, analyzed and used on multiple backend networks,” states Gary Straker, vice president and General Manager of Protection and Signal Division at ON Semiconductor. “As a result of this platform, wireless sensing technology can now be deployed into application scenarios where a mains supply is simply not available or where replacing batteries would be too difficult and costly to undertake. This ground-breaking product will markedly broaden the scope of IoT deployment and this development kit offers a tool that makes evaluating the technology simple for multiple application use cases. Through this wireless sensing technology we will be able to connect what was previously un-connectable.”

The platform also possesses an intuitive touch-enabled user interface, plus LEDs, headers and switches designed to enhance its configurability and expand its operational potential. The sophisticated accompanying software allows the platform to fit seamless into any supported network, serving as a dedicated node. Built-in application firmware will assist engineers in implementing more effective IoT-based data-acquisition/monitoring systems irrespective of their experience level. The combination of all the functions above in a single self-contained board creates an integration tool IoT platforms can use to easily evaluate wireless sensing technology in their ecosystems.

With just a tiny tweak, researchers at Kyushu University greatly increased the device lifetime of organic light-emitting diodes (OLEDs) that use a recently developed class of molecules to convert electricity into light with the potential for increased efficiency at a lower cost in future displays and lighting.

Using the OLED structure in this schematic, researchers were able to delay the degradation in brightness of an OLED with the TADF emitter 4CzIPN by eight to sixteen times. Credit: Daniel Ping-Kuen Tsang and William John Potscavage Jr.

Using the OLED structure in this schematic, researchers were able to delay the degradation in brightness of an OLED with the TADF emitter 4CzIPN by eight to sixteen times. Credit: Daniel Ping-Kuen Tsang and William John Potscavage Jr.

The easily implemented modifications can also potentially increase the lifetime of OLEDs currently used in smartphone displays and large-screen televisions.

Typical OLEDs consist of multiple layers of organic films with various functions. At the core of an OLED is an organic molecule that emits light when a negatively charged electron and a positively charged hole, which can be thought of as a missing electron, meet on the molecule.

Until recently, the light-emitting molecules were either fluorescent materials, which can be low cost but can only use about 25% of electrical charges, or phosphorescent materials, which can harvest 100% of charges but include an expensive metal such as platinum or iridium.

Researchers at Kyushu University’s Center for Organic Photonic and Electronics Research (OPERA) changed this in 2012 with the demonstration of efficient emitters based on a process called thermally activated delayed fluorescence (TADF).

Through clever molecular design, these TADF materials can convert nearly all of the electrical charges to light without the expensive metal used in phosphorescent materials, making both high efficiency and low cost possible.

However, OLEDs under constant operation degrade and become dimmer over time regardless of the emitting material.

Devices that degrade slowly are key for practical applications, and concerns remained that the lifetime of early TADF devices was still on the short side.

But with the leap in lifetime reported in a paper published online March 1, 2016, in Scientific Reports, many of those concerns can now be put to rest.

“While our initial TADF devices lost 5% of their brightness after only 85 hours,” said postdoctoral researcher Daniel Tsang, lead author on the study, “we have now extended that more than eight times just by making a simple modification to the device structure.”

The newly developed modification was to put two extremely thin (1-3 nm) layers of the lithium-containing molecule Liq on each side of the hole blocking layer, which brings electrons to the TADF material, the green emitter 4CzIPN in this case, while preventing holes from exiting the device before contributing to emission.

The devices will last even longer in practical applications because the tests are performed at extreme brightnesses to accelerate the degradation.

Applying additional optimizations that have been previously reported, the 5% drop was further delayed to longer than 1,300 hours, over 16 times that of the initial devices.

“What we are finding is that the TADF materials themselves can be very stable, making them really promising for future displays and lighting,” said Professor Chihaya Adachi, director of OPERA.

The benefits of the Liq layers are not limited to TADF-based OLEDs as the researchers also found an improvement using a similar device structure with a phosphorescent emitter.

Though still trying to completely unravel the degradation mechanism, the researchers found that devices with the Liq layers contain a much lower number of traps, a type of defect that can capture and hold a charge, preventing it from moving freely in the device.

These defects were observed by measuring tiny electrical currents created when charges that were frozen in the traps at extremely cold temperatures escape by receiving a jolt of thermal energy as the device is heated, a process called thermally stimulated current.

Having charges stuck in these traps may increase the chance for interactions with other charges and electrical excitations that can destroy the molecules and lead to degradation.

One of the next major challenges for TADF is stable and efficient blue emitting materials, which are necessary for full color displays and are also still difficult using phosphorescence.

“With the continued development of new materials and device structures,” said Prof. Adachi, “we think that TADF has the potential to solve the challenge of efficient and stable blue emission.”

Demonstrating a strategy that could form the basis for a new class of electronic devices with uniquely tunable properties, researchers at Kyushu University were able to widely vary the emission color and efficiency of organic light-emitting diodes based on exciplexes simply by changing the distance between key molecules in the devices by a few nanometers.

This new way to control electrical properties by slightly changing the device thickness instead of the materials could lead to new kinds of organic electronic devices with switching behavior or light emission that reacts to external factors.

Organic electronic devices such as OLEDs and organic solar cells use thin films of organic molecules for the electrically active materials, making flexible and low-cost devices possible.

A key factor determining the properties of organic devices is the behavior of packets of electrical energy called excitons. An exciton consists of a negative electron attracted to a positive hole, which can be thought of as a missing electron.

In OLEDs, the energy in these excitons is released as light when the electron loses energy and fills the vacancy of the hole. Varying the exciton energy, for example, will change the emission color.

However, excitons are commonly localized on a single organic molecule and tightly bound with binding energies of about 0.5 eV. Thus, entirely new molecules must usually be designed and synthesized to obtain different properties from these Frenkel-type excitons, such as red, green, or blue emission for displays.

Researchers at Kyushu University’s Center for Organic Photonics and Electronics Research (OPERA) instead focused on a different type of exciton called an exciplex, which is formed by a hole and electron located on two different molecules instead of the same molecule.

By manipulating the molecular distance between the electron-donating molecule (donor) and the electron-accepting molecule (acceptor) that carry the exciplex’s hole and electron, respectively, the researchers could modify the properties of these weakly bound excitons.

“What we did is similar to placing sheets of paper between a magnet and a refrigerator,” said Associate Professor Hajime Nakanotani, lead author of the paper reporting these results published online February 26, 2016, in the journal Science Advances.

“By increasing the thickness of an extremely thin layer of organic molecules inserted as a spacer between the donor and acceptor, we could reduce the attraction between the hole and electron in the exciplex and thereby greatly influence the exciplex’s energy, lifetime, and emission color and efficiency.”

Indeed, the changes can be large: by inserting a spacer layer with a thickness of only 5 nm between a donor layer and an acceptor layer in an OLED, the emission color shifted from orange to yellowish green and the light emission efficiency increased 700%.

For this to work, the organic molecule used for the spacer layer must have an excitation energy higher than those of the donor and acceptor, but such materials are already widely available.

While the molecular distance is currently determined by the thickness of the vacuum-deposited spacer layer, the researchers are now looking into other ways to control the distance.

“This gives us a powerful way to greatly vary device properties without redesigning or changing any of the materials,” said Professor Chihaya Adachi, director of OPERA. “In the future, we envision new types of exciton-based devices that respond to external forces like pressure to control the distance and electrical behavior.”

In addition, the researchers found that the exciplexes were still formed when the spacer was 10 nm thick, which is long on a molecular scale.

“This is some of the first evidence that electrons and holes could still interact like this across such a long distance,” commented Professor Adachi, “so this structure may also be a useful tool for studying and understanding the physics of excitons to design better OLEDs and organic solar cells in the future.”

“From both scientific and applications standpoints, we are excited to see where this new path for exciton engineering takes us and hope to establish a new category of exciton-based electronics.”

Researchers from the Moscow Institute of Physics and Technology (MIPT) have for the first time experimentally demonstrated that copper nanophotonic components can operate successfully in photonic devices – it was previously believed that only gold and silver components have the required properties for this. Copper components are not only just as good as components based on noble metals, but, unlike them, they can easily be implemented in integrated circuits using industry-standard fabrication processes.

“This is a kind of revolution – using copper will solve one of the main problems in nanophotonics,” say the authors of the paper. The results have been published in the scientific journal Nano Letters.

The discovery, which is revolutionary for photonics and the computers of the future, was made by researchers from the Laboratory of Nanooptics and Plasmonics at MIPT’s Centre of Nanoscale Optoelectronics. They have succeeded, for the first time, in producing copper nanophotonic components, whose characteristics are just as good as that of gold components. It is interesting to note that the scientists fabricated the copper components using the process compatible with the industry-standard manufacturing technologies that are used today to produce modern integrated circuits. This means that in the very near future copper nanophotonic components will form a basis for the development of energy-efficient light sources, ultra-sensitive sensors, as well as high-performance optoelectronic processors with several thousand cores.

The discovery was made under what is known as nanophotonics – a branch of research which aims, among other things, to replace existing components in data processing devices with more modern components by using photons instead of electrons. However, while the main component in modern electronics, the transistor, can be scaled down in size to a few nanometres, the diffraction of light limits the minimum dimensions of photonic components to the size of about the light wavelength (~1 micrometre). Despite the fundamental nature of this so-called diffraction limit, one can overcome it by using metal-dielectric structures to create truly nanoscale photonic components. Firstly, most metals show a negative permittivity at optical frequencies, and light cannot propagate through them, penetrating to a depth of only 25 nanometres. Secondly, light may be converted into surface plasmon polaritons, surface waves propagating along the surface of a metal. This makes it possible to switch from conventional 3D photonics to 2D surface plasmon photonics, which is known as plasmonics. This gives a possibility to control light at the scale of the order of 100 nanometres, i.e. far beyond the diffraction limit.

It was previously believed that only two metals – gold and silver – could be used to build efficient nanophotonic metal-dielectric nanostructures and it was also thought that all other metals could not be an alternative to these two materials, since they exhibit strong absorption. However, in practice, creating components using gold and silver is not possible because both metals, as they are noble, do not enter into chemical reactions and therefore it is extremely difficult, expensive and in many cases simply impossible to use them to create nanostructures – the basis of modern photonics.

Researchers from MIPT’s Laboratory of Nanooptics and Plasmonics have found a solution to the problem. Based on a generalization of the theory for so-called plasmonic metals, in 2012 they found that copper, as an optical material, is not only able to compete with gold, but it can also be a better alternative. Unlike gold, copper can be easily structured using wet or dry etching. This gives a possibility to make nanoscale components that are easily integrated into silicon photonic or electronic integrated circuits. It took more than two years for the researchers to purchase the required equipment, develop the fabrication process, produce samples, conduct several independent measurements, and confirm this hypothesis experimentally.

“As a result, we succeeded in fabricating copper chips with optical properties that are in no way inferior to gold-based chips,” says the research leader Dmitry Fedyanin. “Furthermore, we managed to do this in a fabrication process compatible with the CMOS technology, which is the basis for all modern integrated circuits, including microprocessors. It’s a kind of revolution in nano photonics.”

The researchers note that the optical properties of thin polycrystalline copper films are determined by their internal structure, and the ability to control this structure, achieve and consistently reproduce the required parameters in technological cycles is the most difficult task. However, they have managed to solve this problem demonstrating that it is possible not only to achieve the required properties with copper, but also that this can be done in nanoscale components, which can be integrated both with silicon nanoelectronics and silicon nanophotonics.

“We conducted ellipsometry of the copper films and then confirmed these results using near-field scanning optical microscopy of the nanostructures. This proves that the properties of copper are not impaired during the whole process of manufacturing nanoscale plasmonic components,” says Dmitry Fedyanin.

These studies provide a foundation for the practical use of copper nanophotonic and plasmonic components, which in the very near future will be used to create LEDs, nanolasers, highly sensitive sensors and transducers for mobile devices, and high performance optoelectronic processors with several tens of thousand cores for graphics cards, personal computers, and supercomputers.

The global market is estimated to reach $2.60 Billion USD by 2022 at a compound annual growth rate (CAGR) of 24.5% from 2016 to 2022, according to a new report from MarketsandMarkets entitled, “GaN Power Devices Market by Technology (Semiconductor Materials, Transistor Application Technologies), Wafer (Wafer Processes, Wafer Size, and Design Configuration), Device (Power Discrete, Power ICS), Products, Application & Geography – Global Forecast to 2022.”

Three major segments which show tremendous growth are satellite communication, RADAR, and wireless application due to the new launches of GaN power semiconductor devices for these application segments and continuous technological developments to improve the power handling capacity and increasing the switching frequency. This report analyzes the Global GaN Power Devices market with respect to market drivers, opportunities, and trends in different regions.Emergence of new technologies will drive the growth The development of GaN-on-Silicon technology, with GaN deposited on highly doped silicon substrates in the end of the previous century, facilitated development of high-brightness and ultra-high brightness LEDs. Several other technologies facilitated development of organic and phosphor LEDs, leading to production of several blue, violet, purple, UV, and white LEDs throughout the past decade. The latest development that aids this field is quantum dots (QD) technology. The biggest advantage and driver for the GaN semiconductor devices market is the continuous emergence of technologies to overcome the challenges faced at every stage, thereby increasing the production volume every year.Information communication technology and consumer electronics segments contribute maximum market share The ICT sector combines both Information technology and communication (including all forms of communication, such as RF, satellite, and telecommunication) sectors. The technological evolution of the GaN semiconductor devices is accelerating the usage of GaN-enabled devices in this end user sector,primarily owing to increased demand and extensive industry focus on various types of RF and wireless applications.

Consumer electronics is one of the major revenue contributing end use sectors, with significant revenue for GaN opto-semiconductor devices. The revenue growth is slowly gaining pace with slow penetration of GaN power semiconductor devices for various consumer applications.Japan expected to contribute the largest market share for GaN Wafer Market Japan is expected to have the largest market share and dominate the GaN wafer market from 2016 to 2022. The market in Japan is driven by the rise in applications in this region and continuous developments taking place in the semiconductor industry. Japan stands second among all geographical regions, in terms of key player distribution, with several players being headquartered in this country.

Some of the major players in Japan for GaN Power Devices Market are: Renesas Electronics (Japan), ROHM Company Limited (Japan), Nichia Corporation (Japan), Toshiba Corporation (Japan), Toyoda Gosei Limited (Japan), and others.

Some of the key market players in the GaN power devices market in this report are: Fujitsu Ltd. (Japan), Toshiba Corp. (Japan), Koninklijke Philips N.V. (Netherlands), Texas Instruments (U.S.), EPIGAN NV (Belgium), NTT Advanced Technology Corporation (Japan), RF Micro Devices Incorporated (U.S.), Cree Incorporated (U.S.), Aixtron SE (Germany), International Quantum Epitaxy plc (U.K.), Mitsubishi Chemical Corporation (Japan), AZZURO Semiconductors AG (Germany) among others.

The scope of the report covers detailed information regarding the major factors influencing the growth of the GaN power devices market such as drivers, restraints, challenges, and opportunities. A detailed analysis of the key industry players has been carried out to provide insights into their business overview, products and services, key strategies, new product launches, mergers & acquisitions, partnerships, agreements, collaborations and recent developments associated with the GaN power devices market.

Veeco Instruments Inc. announced today the launch of the new TurboDisc K475i Arsenic Phosphide (As/P) Metal Organic Chemical Vapor Deposition (MOCVD) System for the production of red, orange, yellow (R/O/Y) light emitting diodes (LEDs), as well as multi-junction III-V solar cells, laser diodes and transistors.

“Veeco continues to drive innovation with MOCVD technology that enables us to lower manufacturing costs and increase production with systems that are reliable, flexible and easy to use,” said Shuangxiang Zhang, General Manager of Yangzhou Changelight Co., Ltd.

According to research firm Strategies Unlimited, R/O/Y LED demand is expected to grow at a 10 percent compound annual rate through 2023. This demand for red, orange and yellow LEDs is being driven by signage, automotive, display and general lighting applications, as well as the emergence of new applications such as wearable smart devices.

Incorporating proprietary TurboDisc and Uniform FlowFlange MOCVD technologies, the new K475i system enables Veeco customers to reduce LED cost per wafer by up to 20 percent compared to alternative systems through higher productivity, best-in-class yields and reduced operating expenses.

Veeco’s proprietary Uniform FlowFlange technology produces films with very high uniformity and improved within-wafer and wafer-to-wafer repeatability resulting in the industry’s lowest cost of ownership. This patented technology provides ease-of-tuning for fast process optimization and fast tool recovery time after maintenance enabling the highest productivity for applications such as lighting, display, solar, laser diodes, pseudomorphic high electron mobility transistors (pHEMTs) and heterojunction bipolar transistors (HBTs).

LED Taiwan will be held at TWTC Nangang Exhibition Hall in Taipei on April 13-16. As the LED market stabilizes, companies in the industry continue to invest in technology R&D as part of their efforts to stand out amid a pricing war of end products. In line with current key issues in the industry, this year’s LED Taiwan will feature five theme pavilions, several industry forums and the TechSTAGE. The Taiwan International Lighting Show (TiLS) will be co-located; with 700 booths, the exhibitions and conferences expect to attract over 20,000 visitors.

Research firm LEDinside estimated that the value of the global high-brightness LED market will increase three percent year-over-year in 2016. Despite the modest outlook, prospects still look good for niche applications in IR LED or UV LED, and may even become the main growth driver in the market. In LED lighting, the market reached US$25.7 billion of revenue in 2015 with a penetration rate at 31 percent. The numbers are expected to increase to $30.5 billion and 36 percent, respectively, in 2016.

LED Taiwan is made possible with collaboration and resources from SEMI, TAITRA, the Taiwan Lighting Fixture Export Association and the Taiwan Optoelectronic Semiconductor Industry Association. Each year, foreign buyers and leading manufacturers are invited to the exposition where various business matching events, forums and meetings are arranged to help Taiwan vendors expand connections and secure business opportunities by interacting with the elite members of foreign industrial and academic circles.

In addition to the existing pavilions (High-Brightness LED and Sapphire), LED Taiwan 2016 expands three more pavilions (LED Components, Smart Lighting Technology and Power Devices) and also invited international leading companies: Aurora Optoelectronics, Cree, Epileds, Epistar, Lextar, MLS, and Rubicon to demonstrate on show floor to help visitors explore the latest moves and trends in the market to increase their global competitiveness.

To enable innovation and bring more energy to the local LED industry, TechSTAGE will be held as part of this year’s LED Taiwan event, showcasing the Taiwan LED R&D capability in the areas of LED Manufacturing Equipment & Materials, Power Device Technology, Sapphire Processing Technology & Application, LED Advanced Technologies, and Smart Lighting & Automobile Lighting. For more information on LED Taiwan, please visit: www.ledtaiwan.org/en/ (English) or www.ledtaiwan.org/zh/.