Category Archives: Packaging Materials

Researchers at Queen Mary University of London, University of Cambridge and Max Planck Institute for Solid State Research have discovered how a pinch of salt can be used to drastically improve the performance of batteries.

They found that adding salt to the inside of a supermolecular sponge and then baking it at a high temperature transformed the sponge into a carbon-based structure.

Surprisingly, the salt reacted with the sponge in special ways and turned it from a homogeneous mass to an intricate structure with fibres, struts, pillars and webs. This kind of 3D hierarchically organised carbon structure has proven very difficult to grow in a laboratory but is crucial in providing unimpeded ion transport to active sites in a battery.

In the study, published in JACS (Journal of the American Chemical Society), the researchers demonstrate that the use of these materials in Lithium-ion batteries not only enables the batteries to be charged-up rapidly, but also at one of the highest capacities.

Due to their intricate architecture the researchers have termed these structures ‘nano-diatoms’, and believe they could also be used in energy storage and conversion, for example as electrocatalysts for hydrogen production.

Lead author and project leader Dr Stoyan Smoukov, from Queen Mary’s School of Engineering and Materials Science, said: “This metamorphosis only happens when we heat the compounds to 800 degrees centigrade and was as unexpected as hatching fire-born dragons instead of getting baked eggs in the Game of Thrones. It is very satisfying that after the initial surprise, we have also discovered how to control the transformations with chemical composition.”

Carbon, including graphene and carbon nanotubes, is a family of the most versatile materials in nature, used in catalysis and electronics because of its conductivity and chemical and thermal stability.

3D carbon-based nanostructures with multiple levels of hierarchy not only can retain useful physical properties like good electronic conductivity but also can have unique properties. These 3D carbon-based materials can exhibit improved wettability (to facilitate ion infiltration), high strength per unit weight, and directional pathways for fluid transport.

It is, however, very challenging to make carbon-based multilevel hierarchical structures, particularly via simple chemical routes, yet these structures would be useful if such materials are to be made in large quantities for industry.

The supermolecular sponge used in the study is also known as a metal organic framework (MOF) material. These MOFs are attractive, molecularly designed porous materials with many promising applications such as gas storage and separation. The retention of high surface area after carbonisation – or baking at a high temperature – makes them interesting as electrode materials for batteries. However, so far carbonising MOFs has preserved the structure of the initial particles like that of a dense carbon foam. By adding salts to these MOF sponges and carbonising them, the researchers discovered a series of carbon-based materials with multiple levels of hierarchy.

Dr R. Vasant Kumar, a collaborator on the study from University of Cambridge, commented: “This work pushes the use of the MOFs to a new level. The strategy for structuring carbon materials could be important not only in energy storage but also in energy conversion, and sensing.”

Lead author, Tiesheng Wang, from University of Cambridge, said: “Potentially, we could design nano-diatoms with desired structures and active sites incorporated in the carbon as there are thousands of MOFs and salts for us to select.”

University of Waterloo chemists have found a much faster and more efficient way to store and process information by expanding the limitations of how the flow of electricity can be used and managed.

In a recently released study, the chemists discovered that light can induce magnetization in certain semiconductors – the standard class of materials at the heart of all computing devices today.

“These results could allow for a fundamentally new way to process, transfer, and store information by electronic devices, that is much faster and more efficient than conventional electronics.”

For decades, computer chips have been shrinking thanks to a steady stream of technological improvements in processing density. Experts have, however, been warning that we’ll soon reach the end of the trend known as Moore’s Law, in which the number of transistors per square inch on integrated circuits double every year.

“Simply put, there’s a physical limit to the performance of conventional semiconductors as well as how dense you can build a chip,” said Pavle Radovanovic, a professor of chemistry and a member of the Waterloo Institute for Nanotechnology. “In order to continue improving chip performance, you would either need to change the material transistors are made of – from silicon, say to carbon nanotubes or graphene – or change how our current materials store and process information.”

Radovanovic’s finding is made possible by magnetism and a field called spintronics, which proposes to store binary information within an electron’s spin direction, in addition to its charge and plasmonics, which studies collective oscillations of elements in a material.

“We’ve basically magnetized individual semiconducting nanocrystals (tiny particles nearly 10,000 times smaller than the width of a human hair) with light at room temperature,” said Radovanovic. “It’s the first time someone’s been able to use collective motion of electrons, known as plasmon, to induce a stable magnetization within such a non-magnetic semiconductor material.”

In manipulating plasmon in doped indium oxide nanocrystals Radovanovic’s findings proves that the magnetic and semiconducting properties can indeed be coupled, all without needing ultra-low temperatures (cryogens) to operate a device.

He anticipates the findings could initially lead to highly sensitive magneto-optical sensors for thermal imaging and chemical sensing. In the future, he hopes to extend this approach to quantum sensing, data storage, and quantum information processing.

Air Liquide Advanced Materials, Inc. (ALAM) has been chosen by the New Jersey chapter of the Association for Corporate Growth as an honoree for the 2018 Corporate Growth Awards.

The ACG NJ Corporate Growth Awards were established in 2015 and honor companies that exemplify sustained innovation, excellence and corporate growth. ALAM has been a strong presence in the New Jersey business community since 2013 when it acquired Voltaix, a Branchburg, NJ-based electronics materials company founded in 1986. As the leading manufacturer of speciality chemicals in the semiconductor industry, ALAM is committed to continued long-term growth and engagement with the communities in which it operates.

ALAM is one of five New Jersey companies to receive the distinction at the ACG NJ Corporate Growth Conference and Awards on May 8, 2018 at The Palace at Somerset Park, NJ for a half-day event including a CEO panel discussion and awards ceremony.

Paul Burlingame, Air Liquide Advanced Materials, Inc. President & CEO said, “We are proud to receive the 2018 ACG NJ Corporate Growth Award in recognition of the innovation, operational agility, and customer focus exhibited by Air Liquide Advanced Materials employees every day. As a result of these efforts Air Liquide Advanced Materials remains committed to continued growth fueled by new products, collaborations and markets.”

In the wake of its recent discovery of a flat form of gallium, an international team led by scientists from Rice University has created another two-dimensional material that the researchers said could be a game changer for solar fuel generation. Rice materials scientist Pulickel Ajayan and colleagues extracted 3-atom-thick hematene from common iron ore. The research was introduced in a paper today in Nature Nanotechnology.

Hematene may be an efficient photocatalyst, especially for splitting water into hydrogen and oxygen, and could also serve as an ultrathin magnetic material for spintronic-based devices, the researchers said.

“2D magnetism is becoming a very exciting field with recent advances in synthesizing such materials, but the synthesis techniques are complex and the materials’ stability is limited,” Ajayan said. “Here, we have a simple, scalable method, and the hematene structure should be environmentally stable.”

Ajayan’s lab worked with researchers at the University of Houston and in India, Brazil, Germany and elsewhere to exfoliate the material from naturally occurring hematite using a combination of sonication, centrifugation and vacuum-assisted filtration.

Hematite was already known to have photocatalytic properties, but they are not good enough to be useful, the researchers said.

“For a material to be an efficient photocatalyst, it should absorb the visible part of sunlight, generate electrical charges and transport them to the surface of the material to carry out the desired reaction,” said Oomman Varghese, a co-author and associate professor of physics at the University of Houston.

“Hematite absorbs sunlight from ultraviolet to the yellow-orange region, but the charges produced are very short-lived. As a result, they become extinct before they reach the surface,” he said.

Hematene photocatalysis is more efficient because photons generate negative and positive charges within a few atoms of the surface, the researchers said. By pairing the new material with titanium dioxide nanotube arrays, which provide an easy pathway for electrons to leave the hematene, the scientists found they could allow more visible light to be absorbed.

The researchers also discovered that hematene’s magnetic properties differ from those of hematite. While native hematite is antiferromagnetic, tests showed that hematene is ferromagnetic, like a common magnet. In ferromagnets, atoms’ magnetic moments point in the same direction. In antiferromagnets, the moments in adjacent atoms alternate.

Unlike carbon and its 2D form, graphene, hematite is a non-van der Waals material, meaning it’s held together by 3D bonding networks rather than non-chemical and comparatively weaker atomic van der Waals interactions.

“Most 2D materials to date have been derived from bulk counterparts that are layered in nature and generally known as van der Waals solids,” said co-author Professor Anantharaman Malie Madom Ramaswamy Iyer of the Cochin University of Science and Technology, India. “2D materials from bulk precursors having (non-van der Waals) 3D bonding networks are rare, and in this context hematene assumes great significance.”

According to co-author Chandra Sekhar Tiwary, a former postdoctoral researcher at Rice and now an assistant professor at the Indian Institute of Technology, Gandhinagar, the collaborators are exploring other non-van der Waals materials for their 2D potential.

 The 2018 Critical Materials Council (CMC) Conference—held April 26-27 at the Hilton Chandler in Arizona— was a great gathering with presentations from Everspin, Intel, GlobalFoundries, and NXP discussing current fab challenges, and the relationships to near-term materials solutions. Held immediately following private CMC face-to-face meeting, this public event enabled targeted discussions on problems, opportunities, and issues in the present and future materials market.

Session 1 presentations from Keller&Heckman, KPMG, Semico, VLSI Research, and the United States’ Environmental Protection Agency reminded attendees of the many environmental, financial, and political factors impacting global fab supply-chains. Jeff Morris, the US EPA’s Director of the Office of Pollution Prevention and Toxics, reviewed the status of enforcement of the Toxic Substances Control Act (TSCA) with a focus on N-Methylpyrrolidone (NMP), per- and poly-fluorinated Substances (PFAS, PFOS, PFOA), and Photo-Acid Generators (PAG) used in semiconductor manufacturing.

Session 2 covering materials issues in fabs today explored the evolving specifications needed in silicon wafers, ion-implantation, noble gases, and metal depositions including atomic-layer (ALD) chemical-vapor (CVD) physical-vapor (PVD) and electro-chemical (ECD). The Figure shows 200mm-diameter silicon wafer global supply and manufacturing demand from 2015 to 2020, as modeled by TECHCET President and CEO Lita Shon-Roy in her presentation on materials markets. TECHCET expects that this year will see a balancing and then an excess of supply in this wafer size used for manufacturing Opto-electronics, Sensors, and Discretes (OSD) along with Radio Frequency (RF) communications chips.

The presentations on cobalt processing from Air Liquide, Applied Materials, Fraunhofer, and Fujimi—mostly in Session 3—provided fantastic perspectives on solutions to inherent integration challenges with this metal. Cobalt has been used as a barrier or a liner for on-chip copper interconnect lines for many years, but the material is now being integrated as the entire interconnect material for the smallest metal lines in the most aggressively scaled IC structures. Nicolas Blasco of Air Liquide discussed the complex path to discovering novel ALD precursors, while Michelle Garza of Fujimi discussed ways to manage the complexity of developing new Chemical-Mechanical Planarization (CMP) slurries for application-specific cobalt integration.

Senior Analyst with TECHCET Ed Korczynski presented an update on the latest lithography materials to enable patterning the smallest possible commercial IC devices, including recently disclosed Self-Aligned Multi-Patterning (SAMP) technology options to improve IC yields. Cost models for different multi-patterning process flows were recently presented at the 2018 SPIE Advanced Lithography conference showing how Extreme Ultra-Violet (EUV) lithography can be cost-effective despite double the tool costs. Key to cost-effective use of EUV will be control of stochastic yield losses which are colloquially termed “Black Swans”.

The Wednesday night reception and the Thursday night break-out roundtable discussions gave everyone time to make new connections and have discrete discussions on metrology, specifications, and technology integration. Block your calendar in 2019 for the 4th annual CMC Conference, tentatively scheduled for April 25-26 in the US. www.cmcfabs.org www.techcet.com

ABOUT CMC: The Critical Materials Council (CMC) of Semiconductor Fabricators (CMCFabs.org) is a membership-based organization that works to anticipate and solve critical materials issues in a pre-competitive environment. The CMC is a unit of TECHCET.

ABOUT TECHCET: TECHCET CA LLC is an advisory service firm focused on process materials supply chains, electronic materials technology, and materials market analysis for the semiconductor, display, solar/PV, and LED industries. Since 2000, the company has been responsible for producing the SEMATECH Critical Material Reports, covering silicon wafers, semiconductor gases, wet chemicals, CMP consumables, Photoresists, and ALD/CVD Precursors. For additional information about these reports or about CMC Fabs membership or associate-membership for suppliers please contact Diane Scott at [email protected]  +1-480-332-8336, or go to www.techcet.com or www.cmcfabs.org.

Researchers at Duke University and North Carolina State University have demonstrated the first custom semiconductor microparticles that can be steered into various configurations repeatedly while suspended in water.

With an initial six custom particles that predictably interact with one another in the presence of alternating current (AC) electric fields of varying frequencies, the study presents the first steps toward realizing advanced applications such as artificial muscles and reconfigurable computer systems.

The study appears online on May 3 in the journal Nature Communications.

“We’ve engineered and encoded multiple dynamic responses in different microparticles to create a reconfigurable silicon toolbox,” said Ugonna Ohiri, a recently graduated electrical engineering doctoral student from Duke and first author of the paper. “By providing a means of controllably assembling and disassembling these particles, we’re bringing a new tool to the field of active matter.”

While previous researchers have worked to define self-assembling systems, few have worked with semiconductor particles, and none have explored the wide range of custom shapes, sizes and coatings that are available to the micro- and nanofabrication industry. Engineering particles from silicon presents the opportunity to physically realize electronic devices that can self-assemble and disassemble on demand. Customizing their shapes and sizes presents opportunities to explore a wide-ranging design space of new motile behaviors.

“Most previous work performed using self-assembling particles has been done with shapes such as spheres and other off-the-shelf materials,” said Nan Jokerst, the J. A. Jones Professor of Electrical and Computer Engineering at Duke. “Now that we can customize whatever arbitrary shapes, electrical characteristics and patterned coatings we want with silicon, a whole new world is opening up.”

In the study, Jokerst and Ohiri fabricated silicon particles of various shapes, sizes and electrical properties. In collaboration with Orlin Velev, the INVISTA Professor of Chemical and Biomolecular Engineering at NC State, they characterized how these particles responded to different magnitudes and frequencies of electric fields while submerged in water.

Based on these observations, the researchers then fabricated new batches of customized particles that were likely to exhibit the behaviors they were looking for, resulting in six different engineered silicon microparticle compositions that could move through water, synchronize their motions, and reversibly assemble and disassemble on demand.

The thin film particles are 10-micron by 20-micron rectangles that are 3.5 microns thick. They’re fabricated using Silicon-on-Insulator (SOI) technology. Since they can be made using the same fabrication technology that produces integrated circuits, millions of identical particles could be produced at a time.

“The idea is that eventually we’re going to be able to make silicon computational systems that assemble, disassemble and then reassemble in a different format,” said Jokerst. “That’s a long way off in the future, but this work provides a sense of the capabilities that are out there and is the first demonstration of how we might achieve those sorts of devices.”

That is, however, only the tip of the proverbial iceberg. Some of the particles were fabricated with both p-type and n-type regions to create p-n junctions — common electrical components that allow electricity to pass in only one direction. Tiny metal patterns were also placed on the particles’ surfaces to create p-n junction diodes with contacts. In the future, researchers could even engineer particles with patterns using other electrically conductive or insulating materials, complex integrated circuits, or microprocessors on or within the silicon.

“This work is just a small snapshot of the tools we have to control particle dynamics,” said Ohiri. “We haven’t even scratched the surface of all of the behaviors that we can engineer, but we hope that this multidisciplinary study can pioneer future studies to design artificial active materials.”

A simple method that uses hydrogen chloride can better control the crystal structure of a common semiconductor and shows promise for novel high-powered electronic applications.

The electronic components used in computers and mobile devices operate at relatively lower power. But high-power applications, such as controlling electrical power grids, require alternative materials that can cope with much higher voltages. For example, an insulating material begins to conduct electricity when the field is high enough, an effect known as electrical breakdown. For this reason, power electronics often use nitride-based semiconductors, such as gallium nitride, which have a very high breakdown field and can be epitaxially grown to create multilayered semiconductors.

However, ever-increasing energy demands and the desire to make electricity distribution more efficient requires even more electrically robust materials. Gallium oxide (Ga2O3) has a theoretical breakdown field more than twice that of gallium-nitride alloys and so has emerged as an exciting candidate for this function. The latest challenge however is a simple way to deposit high-quality gallium oxide on the substrates commonly used for power electronics, such as sapphire.

Haiding Sun, Xiaohang Li, and co-workers from KAUST worked with industry partners Structured Materials Industries, Inc. in the U.S. to demonstrate a relatively simple method to control the crystal structure of gallium oxides on a sapphire substrate using a technology known as metalorganic chemical vapor deposition (MOCVD). “We were able to control the growth by changing just one parameter: the flow rate of hydrogen chloride in the chamber,” explains Sun. “This is the first time that hydrogen chloride has been used during oxide growth in an MOCVD reactor.”

Working in a clean suit in the lab, Dr. Sun holds up a gallium-oxide template. Credit: © 2018 KAUST

Working in a clean suit in the lab, Dr. Sun holds up a gallium-oxide template. Credit: © 2018 KAUST

The atoms in gallium oxide can be arranged in a number of different forms known as polymorphs. β­­­?Ga2O3 is the most stable polymorph but is difficult to grow on substrates of other materials. ε?Ga2O3 has been grown on sapphire but its growth rate has been difficult to control.

Different polymorphs of gallium oxide can be grown in a MOCVD chamber by controlling the flow of hydrogen chloride.

Different polymorphs of gallium oxide can be grown in a MOCVD chamber by controlling the flow of hydrogen chloride.

To meet growing market demand for high-density 2.5D and 3D stacked semiconductor solutions, Silicon Valley-based ALLVIA, Inc. has expanded its in-house capabilities to include the formation of through-quartz vias (TQV) ranging from 15 microns in diameter and 100 microns deep to 50 microns in diameter and 250 microns deep. ALLVIA’s new TQV solution significantly improves the performance of 3D-ICs by creating IC interconnects with lower parasitic capacitance than can be achieved with the earlier generation of through-silicon via (TSV) technology.

he company had been outsourcing the production of via holes in the fused silica (quartz) that it uses, but its newly added capability brings all via-drilling operations in-house, expanding ALLVIA’s intellectual property and reducing the cost of production. The company will continue to apply its proprietary technology to fill the high-aspect-ratio via holes with copper plating to fabricate finished interposer products.

Sergey Savastiouk, CEO of ALLVIA, said, “Performing our own via drilling in fused silica allows us to improve turnaround times and production volumes for our customers while also delivering better quality using our state-of-the-art technology for copper plating, chemical mechanical polishing and deep via thin-film deposition.”

In addition to providing via foundry services, ALLVIA applies its technology in manufacturing and selling ultra-thin quartz interposers that form the electrical connections between a silicon chip and a printed circuit board.

Engineers at the University of California, Riverside, have demonstrated prototype devices made of an exotic material that can conduct a current density 50 times greater than conventional copper interconnect technology.

Current density is the amount of electrical current per cross-sectional area at a given point. As transistors in integrated circuits become smaller and smaller, they need higher and higher current densities to perform at the desired level. Most conventional electrical conductors, such as copper, tend to break due to overheating or other factors at high current densities, presenting a barrier to creating increasingly small components.

Microscopy image of an electronic device made with 1D ZrTe3 nanoribbons. The nanoribbon channel is indicated in green color. The metal contacts are shown in yellow color. Note than owing to the nanometer scale thickness the yellow metal contacts appear to be under the green channel while in reality they are on top. Credit: Balandin lab, UC Riverside

Microscopy image of an electronic device made with 1D ZrTe3 nanoribbons. The nanoribbon channel is indicated in green color. The metal contacts are shown in yellow color. Note than owing to the nanometer scale thickness the yellow metal contacts appear to be under the green channel while in reality they are on top. Credit: Balandin lab, UC Riverside

The electronics industry needs alternatives to silicon and copper that can sustain extremely high current densities at sizes of just a few nanometers.

The advent of graphene resulted in a massive, worldwide effort directed at investigation of other two-dimensional, or 2D, layered materials that would meet the need for nanoscale electronic components that can sustain a high current density. While 2D materials consist of a single layer of atoms, 1D materials consist of individual chains of atoms weakly bound to one another, but their potential for electronics has not been as widely studied.

One can think of 2D materials as thin slices of bread while 1D materials are like spaghetti. Compared to 1D materials, 2D materials seem huge.

A group of researchers led by Alexander A. Balandin, a distinguished professor of electrical and computer engineering in the Marlan and Rosemary Bourns College of Engineering at UC Riverside, discovered that zirconium tritelluride, or ZrTe3, nanoribbons have an exceptionally high current density that far exceeds that of any conventional metals like copper.

The new strategy undertaken by the UC Riverside team pushes research from two-dimensional to one-dimensional materials­­– an important advance for the future generation of electronics.

“Conventional metals are polycrystalline. They have grain boundaries and surface roughness, which scatter electrons,” Balandin said. “Quasi-one-dimensional materials such as ZrTe3consist of single-crystal atomic chains in one direction. They do not have grain boundaries and often have atomically smooth surfaces after exfoliation. We attributed the exceptionally high current density in ZrTe3 to the single-crystal nature of quasi-1D materials.”

In principle, such quasi-1D materials could be grown directly into nanowires with a cross-section that corresponds to an individual atomic thread, or chain. In the present study the level of the current sustained by the ZrTe3 quantum wires was higher than reported for any metals or other 1D materials. It almost reaches the current density in carbon nanotubes and graphene.

Electronic devices depend on special wiring to carry information between different parts of a circuit or system. As developers miniaturize devices, their internal parts also must become smaller, and the interconnects that carry information between parts must become smallest of all. Depending on how they are configured, the ZrTe3 nanoribbons could be made into either nanometer-scale local interconnects or device channels for components of the tiniest devices.

The UC Riverside group’s experiments were conducted with nanoribbons that had been sliced from a pre-made sheet of material. Industrial applications need to grow nanoribbon directly on the wafer. This manufacturing process is already under development, and Balandin believes 1D nanomaterials hold possibilities for applications in future electronics.

“The most exciting thing about the quasi-1D materials is that they can be truly synthesized into the channels or interconnects with the ultimately small cross-section of one atomic thread– approximately one nanometer by one nanometer,” Balandin said.

In even the most fuel-efficient cars, about 60 percent of the total energy of gasoline is lost through heat in the exhaust pipe and radiator. To combat this, researchers are developing new thermoelectic materials that can convert heat into electricity. These semiconducting materials could recirculate electricity back into the vehicle and improve fuel efficiency by up to 5 percent.

The challenge is, current thermoelectric materials for waste heat recovery are very expensive and time consuming to develop. One of the state of the art materials, made from a combination of hafnium and zirconium (elements most commonly used in nuclear reactors), took 15 years from its initial discovery to optimized performance.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed an algorithm that can discover and optimize these materials in a matter of months, relying on solving quantum mechanical equations, without any experimental input.

“These thermoelectric systems are very complicated,” said Boris Kozinsky, a recently appointed Associate Professor of Computational Materials Science at SEAS and senior author of the paper. “Semiconducting materials need to have very specific properties to work in this system, including high electrical conductivity, high thermopower, and low thermal conductivity, so that all that heat gets converted into electricity. Our goal was to find a new material that satisfies all the important properties for thermoelectric conversion while at the same time being stable and cheap.”

Kozinsky co-authored the research with Georgy Samsonidze, a research engineer at the Robert Bosch Research and Technology Center in Cambridge, MA, where both authors conducted most of the research.

In order to find such a material, the team developed an algorithm that can predict electronic transport properties of a material based only on the chemical elements used in the crystalline crystal. The key was to simplify the computational approach for electron-phonon scattering and to speed it up by about 10,000 times, compared to existing algorithms.

The new method and computational screening results are published in Advanced Energy Materials.

Using the improved algorithm, the researchers screened many possible crystal structures, including structures that had never been synthesized before. From those, Kozinsky and Samsonidze whittled the list down to several interesting candidates. Of those candidates, the researchers did further computational optimization and sent the top performers to the experimental team.

In an earlier effort experimentalists synthesized the top candidates suggested by these computations and found a material that was as efficient and as stable as previous thermoelectric materials but 10 times cheaper. The total time from initial screening to working devices: 15 months.

“We did in 15 months of computation and experimentation what took 15 years for previous materials to be optimized,” said Kozinsky. “What’s really exciting is that we’re probably not fully understanding the extent of the simplification yet. We could potentially make this method even faster and cheaper.”

Kozinsky said he hopes to improve the new methodology and use it to explore electronic transport in a wider class of new exotic materials such as topological insulators.