Category Archives: Packaging Materials

Soft materials are great at damping energy — that’s why rubber tires are so good at absorbing the shock of bumps and potholes. But if researchers are going to build autonomous soft systems, like soft robots, they’ll need a way to transmit energy through soft materials.

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with colleagues at the California Institute of Technology, have developed a way to send mechanical signals through soft materials.

The research is described in the Proceedings of the National Academy of Sciences.

“Soft autonomous systems have received a lot of attention because, just like the human body or other biological systems, they can be adaptive and perform delicate movements. However, the highly dissipative nature of soft materials limits or altogether prevents certain functions,” said Jordan Raney, postdoctoral fellow at SEAS and first author of the paper. “By storing energy in the architecture itself we can make up for the energy losses due to dissipation, allowing the propagation of mechanical signals across long distances.”

The system uses the centuries-old concept of bistable beams — structures stable in two distinct state — to store and release elastic energy along the path of a wave. The system consists of a chain of bistable elastomeric beams connected by elastomeric linear springs. When those beams are deformed, they snap and store energy in the form of elastic deformation. As the signal moves down the elastomer, it snaps the beams back into place, releasing the stored energy and sending the signal downstream like a line of dominos. The bistable system prevents the signal from dissipating downstream.

“This design solves two fundamental problems in transmitting information through materials,” said Katia Bertoldi, the John L. Loeb Associate Professor of the Natural Sciences at SEAS and senior author of the paper.  “It not only overcomes dissipation, but it also eliminates dispersive effects, so that the signal propagates without distortion.  As such, we maintain signal strength and clarity from start to end.”

The beam geometry requires precise fabrication techniques. If the angle or thickness of one beam is off by one degree or millimeter, the whole system fails.

The team used advanced 3D printing techniques to fabricate the system.

“We’re developing new materials and printing methods that enable the fabrication of soft materials with programmable bistable elements,” said Jennifer A. Lewis, the Hansjorg Wyss Professor of Biologically Inspired Engineering and coauthor of the paper.

The team designed and printed a soft logic gate using this system. The gate, which looks like a tuning fork, can be controlled to act as either as an AND or as an OR gate.

“It’s amazing what you can do using simple beams — a building block that’s been around hundreds of years,” said Bertoldi. “You can do new stuff with a very old, well studied and very simple component.”

This research was supported by the National Science Foundation and the Harvard University Materials Research Science and Engineering Center (MRSEC).

To continue advancing, next-generation electronic devices must fully exploit the nanoscale, where materials span just billionths of a meter. But balancing complexity, precision, and manufacturing scalability on such fantastically small scales is inevitably difficult. Fortunately, some nanomaterials can be coaxed into snapping themselves into desired formations-a process called self-assembly.

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have just developed a way to direct the self-assembly of multiple molecular patterns within a single material, producing new nanoscale architectures. The results were published in the journal Nature Communications.

“This is a significant conceptual leap in self-assembly,” said Brookhaven Lab physicist Aaron Stein, lead author on the study. “In the past, we were limited to a single emergent pattern, but this technique breaks that barrier with relative ease. This is significant for basic research, certainly, but it could also change the way we design and manufacture electronics.”

Microchips, for example, use meticulously patterned templates to produce the nanoscale structures that process and store information. Through self-assembly, however, these structures can spontaneously form without that exhaustive preliminary patterning. And now, self-assembly can generate multiple distinct patterns-greatly increasing the complexity of nanostructures that can be formed in a single step.

“This technique fits quite easily into existing microchip fabrication workflows,” said study coauthor Kevin Yager, also a Brookhaven physicist. “It’s exciting to make a fundamental discovery that could one day find its way into our computers.”

The experimental work was conducted entirely at Brookhaven Lab’s Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility, leveraging in-house expertise and instrumentation.

Cooking up organized complexity

The collaboration used block copolymers-chains of two distinct molecules linked together-because of their intrinsic ability to self-assemble.

“As powerful as self-assembly is, we suspected that guiding the process would enhance it to create truly ‘responsive’ self-assembly,” said study coauthor Greg Doerk of Brookhaven. “That’s exactly where we pushed it.”

To guide self-assembly, scientists create precise but simple substrate templates. Using a method called electron beam lithography-Stein’s specialty-they etch patterns thousands of times thinner than a human hair on the template surface. They then add a solution containing a set of block copolymers onto the template, spin the substrate to create a thin coating, and “bake” it all in an oven to kick the molecules into formation. Thermal energy drives interaction between the block copolymers and the template, setting the final configuration-in this instance, parallel lines or dots in a grid.

“In conventional self-assembly, the final nanostructures follow the template’s guiding lines, but are of a single pattern type,” Stein said. “But that all just changed.”

Lines and dots, living together

The collaboration had previously discovered that mixing together different block copolymers allowed multiple, co-existing line and dot nanostructures to form.

“We had discovered an exciting phenomenon, but couldn’t select which morphology would emerge,” Yager said. But then the team found that tweaking the substrate changed the structures that emerged. By simply adjusting the spacing and thickness of the lithographic line patterns-easy to fabricate using modern tools-the self-assembling blocks can be locally converted into ultra-thin lines, or high-density arrays of nano-dots.

“We realized that combining our self-assembling materials with nanofabricated guides gave us that elusive control. And, of course, these new geometries are achieved on an incredibly small scale,” said Yager.

“In essence,” said Stein, “we’ve created ‘smart’ templates for nanomaterial self-assembly. How far we can push the technique remains to be seen, but it opens some very promising pathways.”

Gwen Wright, another CFN coauthor, added, “Many nano-fabrication labs should be able to do this tomorrow with their in-house tools-the trick was discovering it was even possible.”

The scientists plan to increase the sophistication of the process, using more complex materials in order to move toward more device-like architectures.

“The ongoing and open collaboration within the CFN made this possible,” said Charles Black, director of the CFN. “We had experts in self-assembly, electron beam lithography, and even electron microscopy to characterize the materials, all under one roof, all pushing the limits of nanoscience.”

The newest Airbus and Boeing passenger jets flying today are made primarily from advanced composite materials such as carbon fiber reinforced plastic — extremely light, durable materials that reduce the overall weight of the plane by as much as 20 percent compared to aluminum-bodied planes. Such lightweight airframes translate directly to fuel savings, which is a major point in advanced composites’ favor.

But composite materials are also surprisingly vulnerable: While aluminum can withstand relatively large impacts before cracking, the many layers in composites can break apart due to relatively small impacts — a drawback that is considered the material’s Achilles’ heel.

Now MIT aerospace engineers have found a way to bond composite layers in such a way that the resulting material is substantially stronger and more resistant to damage than other advanced composites. Their results are published this week in the journal Composites Science and Technology.

The researchers fastened the layers of composite materials together using carbon nanotubes — atom-thin rolls of carbon that, despite their microscopic stature, are incredibly strong. They embedded tiny “forests” of carbon nanotubes within a glue-like polymer matrix, then pressed the matrix between layers of carbon fiber composites. The nanotubes, resembling tiny, vertically-aligned stitches, worked themselves within the crevices of each composite layer, serving as a scaffold to hold the layers together.

In experiments to test the material’s strength, the team found that, compared with existing composite materials, the stitched composites were 30 percent stronger, withstanding greater forces before breaking apart.

Roberto Guzman, who led the work as an MIT postdoc in the Department of Aeronautics and Astronautics (AeroAstro), says the improvement may lead to stronger, lighter airplane parts — particularly those that require nails or bolts, which can crack conventional composites.

“More work needs to be done, but we are really positive that this will lead to stronger, lighter planes,” says Guzman, who is now a researcher at the IMDEA Materials Institute, in Spain. “That means a lot of fuel saved, which is great for the environment and for our pockets.”

The study’s co-authors include AeroAstro professor Brian Wardle and researchers from the Swedish aerospace and defense company Saab AB.

“Size matters”

Today’s composite materials are composed of layers, or plies, of horizontal carbon fibers, held together by a polymer glue, which Wardle describes as “a very, very weak, problematic area.” Attempts to strengthen this glue region include Z-pinning and 3-D weaving — methods that involve pinning or weaving bundles of carbon fibers through composite layers, similar to pushing nails through plywood, or thread through fabric.

“A stitch or nail is thousands of times bigger than carbon fibers,” Wardle says. “So when you drive them through the composite, you break thousands of carbon fibers and damage the composite.”

Carbon nanotubes, by contrast, are about 10 nanometers in diameter — nearly a million times smaller than the carbon fibers.

“Size matters, because we’re able to put these nanotubes in without disturbing the larger carbon fibers, and that’s what maintains the composite’s strength,” Wardle says. “What helps us enhance strength is that carbon nanotubes have 1,000 times more surface area than carbon fibers, which lets them bond better with the polymer matrix.”

Stacking up the competition

Guzman and Wardle came up with a technique to integrate a scaffold of carbon nanotubes within the polymer glue. They first grew a forest of vertically-aligned carbon nanotubes, following a procedure that Wardle’s group previously developed. They then transferred the forest onto a sticky, uncured composite layer and repeated the process to generate a stack of 16 composite plies — a typical composite laminate makeup — with carbon nanotubes glued between each layer.

To test the material’s strength, the team performed a tension-bearing test — a standard test used to size aerospace parts — where the researchers put a bolt through a hole in the composite, then ripped it out. While existing composites typically break under such tension, the team found the stitched composites were stronger, able to withstand 30 percent more force before cracking.

The researchers also performed an open-hole compression test, applying force to squeeze the bolt hole shut. In that case, the stitched composite withstood 14 percent more force before breaking, compared to existing composites.

“The strength enhancements suggest this material will be more resistant to any type of damaging events or features,” Wardle says. “And since the majority of the newest planes are more than 50 percent composite by weight, improving these state-of-the art composites has very positive implications for aircraft structural performance.”

A team of scientists led by the Department of Energy’s Oak Ridge National Laboratory has developed a novel way to produce two-dimensional nanosheets by separating bulk materials with nontoxic liquid nitrogen. The environmentally friendly process generates a 20-fold increase in surface area per sheet, which could expand the nanomaterials’ commercial applications.

ORNL's Huiyuan Zhu places a sample of boron nitride, or "white graphene," into a furnace as part of a novel, nontoxic gas exfoliation process to separate 2-D nano materials. Credit: ORNL

ORNL’s Huiyuan Zhu places a sample of boron nitride, or “white graphene,” into a furnace as part of a novel, nontoxic gas exfoliation process to separate 2-D nano materials. Credit: ORNL

“It’s actually a very simple procedure,” said ORNL chemist Huiyuan Zhu, who co-authored a study published in Angewandte Chemie International Edition. “We heated commercially available boron nitride in a furnace to 800 degrees Celsius to expand the material’s 2D layers. Then, we immediately dipped the material into liquid nitrogen, which penetrates through the interlayers, gasifies into nitrogen, and exfoliates, or separates, the material into ultrathin layers.”

Nanosheets of boron nitride could be used in separation and catalysis, such as transforming carbon monoxide to carbon dioxide in gasoline-powered engines. They also may act as an absorbent to mop up hazardous waste. Zhu said the team’s controlled gas exfoliation process could be used to synthesize other 2D nanomaterials such as graphene, which has potential applications in semiconductors, photovoltaics, electrodes and water purification.

Because of the versatility and commercial potential of one-atom-thick 2D nanomaterials, scientists are seeking more efficient ways to produce larger sheets. Current exfoliation procedures use harsh chemicals that produce hazardous byproducts and reduce the amount of surface area per nanosheet, Zhu said.

“In this particular case, the surface area of the boron nitride nanosheets is 278 square meters per gram, and the commercially available boron nitride material has a surface area of only 10 square meters per gram,” Zhu said. “With 20 times more surface area, boron nitride can be used as a great support for catalysis.”

Further research is planned to expand the surface area of boron nitride nanosheets and also test their feasibility in cleaning up engine exhaust and improving the efficiency of hydrogen fuel cells.

Engineers from the University of Utah and the University of Minnesota have discovered that interfacing two particular oxide-based materials makes them highly conductive, a boon for future electronics that could result in much more power-efficient laptops, electric cars and home appliances that also don’t need cumbersome power supplies.

Their findings were published this month in the scientific journal, APL Materials, from the American Institute of Physics.

The team led by University of Utah electrical and computer engineering assistant professor Berardi Sensale-Rodriguez and University of Minnesota chemical engineering and materials science assistant professor Bharat Jalan revealed that when two oxide compounds — strontium titanate (STO) and neodymium titanate (NTO) — interact with each other, the bonds between the atoms are arranged in a way that produces many free electrons, the particles that can carry electrical current. STO and NTO are by themselves known as insulators — materials like glass — that are not conductive at all.

But when they interface, the amount of electrons produced is a hundred times larger than what is possible in semiconductors. “It is also about five times more conductive than silicon [the material most used in electronics],” Sensale-Rodriguez says.

This innovation could greatly improve power transistors — devices in electronics that regulate the electrical current –by making power supplies much more efficient for items ranging from televisions and refrigerators to handheld devices, Sensale-Rodriguez says. Today, electronics manufacturers use a material called gallium nitride for transistors in power supplies and other electronics that carry large electrical currents. But that material has been explored and optimized for many years and likely cannot be made more efficient. In this discovery made by the Utah and Minnesota team, the interface between STO and NTO can be at the very least as conductive as gallium nitride and likely will be much more in the future.

“When I look at the future, I see that we can perhaps improve conductivity by an order of magnitude through optimizing of the materials growth,” Jalan says. “We are bringing the possibility of high power, low energy oxide electronics closer to reality.”

Power transistors that use this combination of materials could lead to smaller devices and appliances because their power supplies would be more energy efficient. Laptop computers, for example, could ditch the bulky external power supplies — the big black boxes attached to the power cords — in favor of smaller supplies that are instead built inside the computer. Large appliances that consume a lot of electricity such as air conditioners could be more power efficient. And because there is less power wasted (wasted electricity usually dissipates into heat), these devices will not run as hot as before, says Sensale-Rodriguez. He also believes that if more electronics use these materials for transistors, collectively it could save significant amounts of electricity for the country.

“It’s fundamentally a different road toward power electronics, and the results are very exciting” he says. “But we still need to do more research.”

New levels of performance of electronics technology have been enabled by flip-chip technology, fueling the growth of global markets for semiconductors, electronic devices, and a host of industrial and consumer products. BCC Research reveals in its new report that increasing complexity of the architecture of chip design and fabrication is spurring this market’s exponential growth rate.

Semiconductor devices like integrated circuits (ICs) are connected to external circuitry using flip-chip technology by means of solder bumps deposited onto chip pads. Traditionally, devices are connected from substrates or other active components using wire bonds. More specifically, flip chip is directly attached to a board, substrate, or carrier by various conductive methods called bumping. The chip is “bumped” by laying it on a substrate and thus uses a “face down” process. Wire bonding, the older methodology gradually being replaced by flip chip, used a “face up” process.

The global market for flip-chip technology, which totaled $24.9 billion in 2015, should reach $27.2 billion and $41.4 billion in 2016 and 2021, respectively, increasing at a five-year compound annual growth rate (CAGR) of 8.8%. As a segment, copper (Cu) pillar bumping process owned the largest market share in 2015, and should retain its position during the forecast period. The Cu pillar bumping process is expected to reach $21.2 billion by 2021, reflecting a five-year CAGR of 16.7%.

The flip-chip market is a technology-driven market. Manufacturers are focusing on developing new technologies for the bumping process, which in turn is increasing the demand for raw materials required for manufacturing. This leads to aggressive growth in this industry among raw material suppliers. The many advantages over other packaging methods such as reliability, size, flexibility, performance, and cost are the prime factors driving the growth of the flip-chip market. The market is also driven by availability of flip-chip raw materials, equipment, and services.

Demand for flip chips with controlled collapse chip connection (C4) technology has grown significantly due to the shrinking size of chips and demand for more sophisticated structures. Improved thermal heat transfer and performance at higher frequencies also drive the market for flip chips.

Flip-chip bumping extensively uses various wafer bumping technologies, such as lead-free solder, gold stud bumping, and so forth. Copper bumping accounts for the major share of the market. Tin-lead (Sn-Pb) solder is expected to show a highly negative growth rate. Government initiatives to ban toxic substances have impacted its market heavily.

“The Cu pillar bumping process provides better performance, low cost, and is a nontoxic process,” says BCC Research analyst Sinha Guarav. “In addition, increasing demand for communication devices and other computing devices is also expected to have a positive impact on the Cu pillar bumping market.”

Flip-Chip Technologies and Global Markets (SMC089B) analyzes the evolution, architecture, and value chain of flip-chip technologies. Global market drivers and trends, with data from 2015, 2016, and projections of CAGRs through 2021 also are provided.

BCC Research is a publisher of market research reports that provide organizations with intelligence to drive smart business decisions.

Quantum drag


July 20, 2016

Friction and drag are commonplace in nature. You experience these phenomena when riding in an airplane, pairing electrical wiring, or rubbing pieces of sandpaper together.

Friction and drag also exist at the quantum level, the realm of atoms and molecules invisible to the naked eye. But how these forces interact across materials and energy sources remain in doubt.

In a new study, University of Iowa theoretical physicist Michael Flatté proposes that a magnetic current flowing through a magnetic iron sheet will cause a current in a second, nearby magnetic iron sheet, even though the sheets aren’t connected. The movement is created, Flatté and his team say, when electrons whose magnetic spin is disturbed by the current on the first sheet exert a force, through electromagnetic radiation, to create magnetic spin in the second sheet.

The findings may prove beneficial in the emerging field of spintronics, which seeks to channel the energy from spin waves generated by electrons to create smaller, more energy-efficient computers and electronic devices.

“It means there are more ways to manipulate through magnetic currents than we thought, and that’s a good thing,” says Flatté, senior author and team leader on the paper published June 9 in the journal Physical Review Letters.

Flatté has been studying how currents in magnetic materials might be used to build electronic circuits at the nanoscale, where dimensions are measured in billionths of a meter, or roughly 1/50,000 the width of a human hair. Scientists knew that an electrical current introduced in a wire will drag a current in another nearby wire. Flatté’s team reasoned that the same effects may hold true for magnetic currents in magnetic layers.

In a magnetic substance, such as iron, each atom acts as a small, individual magnet. These atomic magnets tend to point in the same direction, like an array of tiny compasses fixated on a common magnetic point. But the slightest disturbance to the direction of just one of these atomic magnets throws the entire group into disarray: The collective magnetic strength in the group decreases. The smallest individual disturbance is called a magnon.

Flatté and his team report that a steady magnon current introduced into one iron magnetic layer will produce a magnon current in a second layer–in the same plane of the layer but at an angle to the introduced current. They propose that the electron spins disturbed in the layer where the current was introduced engage in a sort of “cross talk” with spins in the other layer, exerting a force that drags the spins along for the ride.

“What’s exciting is you get this response (in the layer with no introduced current), even though there’s no physical connection between the layers,” says Flatté, professor in the physics department and director of the Optical Science and Technology Center at the UI. “This is a physical reaction through electromagnetic radiation.”

How electrons in one layer communicate and dictate action to electrons in a separate layer is somewhat bizarre.

Take electricity: When an electrical current flows in one wire, a mutual friction drags current in a nearby wire. At the quantum level, the physical dynamics appear to be different. Imagine that each electron in a solid has an internal bar magnet, a tiny compass of sorts. In a magnetic material, those internal bar magnets are aligned. When heat or a current is applied to the solid, the electrons’ compasses get repositioned, creating a magnetic spin wave that ripples through the solid. In the theoretical case studied by Flatté, the disturbance to the solid excites magnons in one layer that then exert influence on the other layer, creating a spin wave in the other layer, even though it is physically separate.

“It turns out there is the same effect with spin waves,” Flatté says.

Contributing authors include Tianyu Liu with the physics and astronomy department at the UI and Giovanni Vignale at the University of Missouri, Columbia.

The U.S. National Science Foundation funded the research through grants to the Center for Emergent Materials.

In a recent work published in Nature Communications, the research group led by ICREA Professor at ICFO Frank Koppens demonstrate a novel way to detect low-energy photons using vertical heterostructures made by stacking graphene and other 2D semiconducting materials. By studying the photoresponse of these atomically thin sandwiches, the researchers have shown that it is possible to generate a current by heating electrons in graphene with infrared light and extracting the hottest electrons over a vertical energy barrier.

This ingenious mechanism, named photo-thermionic effect, takes advantage of the unique optical properties of graphene such as its broadband absorption, ultrafast response and gate-tunability. Moreover, owing to their vertical geometry, devices relying on this effect make use of the entire surface of graphene and can be potentially scaled up and integrated with flexible or rigid platforms.

More generally, this study reveals once again the amazing properties of these man-made heterostructures. According to Prof. Frank Koppens “this is just the tip of the iceberg, these 2D sandwiches still have a lot to reveal”. ICFO researcher Mathieu Massicotte, first author of this study, emphasizes the new possibilities opened up by these new materials: “Everyone knows it is possible to detect light with graphene using in-plane geometries, but what about the out-of-plane direction? To answer, you need to think outside the 2D box!”

The results obtained from this study have shown that heterostructures made of 2D materials and graphene can be used to detect low-energy photons which could lead to new, fast and efficient optoelectronic applications, such as high-speed integrated communication systems and infrared energy harvesting. In addition, it demonstrates the compatibility of 2D materials with the digital chips currently utilized in cameras, paving the way for low cost infrared spectrometers and imaging systems.

Nano-electronics research center imec and Synopsys, Inc. (NASDAQ: SNPS) today announced an interconnect resistivity model to support the screening and selection of alternative interconnect metals and liner-barrier materials at the 7nm node and beyond. With the continued scaling of advanced process nodes, the impact of parasitic interconnect resistance on the switching delay of standard cells rises considerably. The new model developed through this collaboration enables the evaluation of interconnect material and process options through simulations in the early stages of technology development, when wafer data is not available, and in the process optimization and integration stages of technology development, where it reduces expensive and time-consuming wafer-based iterations.

“We have already released to our partners a number of sets of model parameters related to various liner/barrier systems for Cu metallization or to alternative metals, such as Ru and Co, which they will use to screen metallization options for next-generation interconnect technologies,” stated Dan Mocuta, director, Logic Device and Integration at imec.

To use the new resistivity model, customers simulate the fabrication of the interconnect structure in 3D using the Synopsys process emulation tool Process Explorer, and then simulate the wire and via resistance in Raphael, the Synopsys gold standard interconnect field solver. This simulation flow accounts for the impact of layout rules, multi-patterning flows, and process-induced 3D features on the resistance of any conductive net in a multilayer interconnect stack, thereby predicting the influence of material, process and patterning choices on the interconnect resistance at scaled dimensions.

Imec has calibrated the resistivity model to wafer data for Cu, W, Ru and Co interconnects.

“The new resistivity model developed through this collaboration with imec is an important component of our pre-wafer simulation solution to enable our mutual customers to perform early screening of interconnect technology options at advanced nodes,” said Dr. Howard Ko, senior vice president and general manager of the Silicon Engineering Group at Synopsys.

Imec’s research into advanced logic scaling is performed in cooperation with imec’s key partners in its core CMOS programs including GlobalFoundries, Intel, Micron, SK Hynix, Samsung, TSMC, Huawei, Qualcomm and Sony.

imec synopsys 1 imec synopsys 2

3D model of a multilayer interconnect stack (a) after process emulations using the Synopsys Sentaurus™ Process Explorer and 3D local resistivity profile (b) within wires and vias

AMICRA Microtechnologies, a German-based vendor of advanced back-end assembly processing equipment for advanced packaging applications, has received an order for the AFC Plus System from Fabrinet West. The equipment will be installed in Fabrinet’s optical packaging service facility in Santa Clara, California. AMICRA and Fabrinet have agreed to establish a partnership agreement whereby both companies will work together to provide customers with best support for application and process development activities.

“For AMICRA, this is a strategic partnership to support our existing installed base and to support our rapidly growing USA market,” states AMICRA managing director, Dr. Johann Weinhaendler, on the latest purchase order.

The AFC Plus will provide Fabrinet with the die attach capability to maintain its leadership role in the Opto/Photonic contract manufacturing market, while providing sample build capability for AMICRA’s customers in the USA. The AFC Plus has the flexibility to process most advanced packages especially for in-situ eutectic bonding requiring 0.5µm placement accuracy.  The AFC Plus system which will be delivered in Q3/2016 and supports die placement accuracies down to ±0.5μm @ 3σ for both eutectic and epoxy bonding with cycle times down to 20 to 30 seconds/bond or 180 to 120 UPH making it well suited for processing VCSEL/AOC, Silicon Photonic, Laser Bar and MEMS components.

“Fabrinet is bringing its advanced optical packaging capabilities to Silicon Valley, where a large fraction of our customers are based. AMICRA’s AFC Plus die attach platform sets the industry standard for accuracy, throughput, and robustness. Along with many other capabilities, such as active optical alignment, wire bond, epoxy underfill, laser dicing, and various metrology tools, Fabrinet is planning to offer its customers process/product development services starting in August 2016” states Dr. Hong Hou, Fabrinet’s Executive Vice President and Chief Technical Officer. “The partnership with AMICRA allows Fabrinet to offer the best in class technical support to customers brought by both companies.”

The AMICRA die bonding product line also includes the NOVA Plus, which supports placement accuracies down to ±2.5μm @ 3σ with cycle times down to 3 seconds/bond or 1,200 UPH, and the NOVA FanOut, specifically for the FanOut market, offering a large bonding area of 550mm x 600mm while maintaining die placement accuracies down to ±3.0μm @ 3σ with cycle times down to 1.2 seconds/bond or 3,000 UPH.

Other AMICRA products include the fully automated, high-speed wafer inking system AIS, and the semi-automatic wafer inking system SIS, as well as the fully automated, high-speed precision dispensing system HDS, offered in a quad- or dual-headed configuration to support underfill, glob-top, general dispensing applications and more.

AMICRA will be exhibiting and available for equipment and technical application discussions at SEMICON West (July 12-14) and SEMICON Taiwan (Sept 7-9).

AFCPlus