Category Archives: Materials

Researchers from Intel Corp. and the University of California, Berkeley, are looking beyond current transistor technology and preparing the way for a new type of memory and logic circuit that could someday be in every computer on the planet.

In a paper appearing online Dec. 3 in advance of publication in the journal Nature, the researchers propose a way to turn relatively new types of materials, multiferroics and topological materials, into logic and memory devices that will be 10 to 100 times more energy-efficient than foreseeable improvements to current microprocessors, which are based on CMOS (complementary metal-oxide-semiconductor).

Single crystals of the multiferroic material bismuth-iron-oxide. The bismuth atoms (blue) form a cubic lattice with oxygen atoms (yellow) at each face of the cube and an iron atom (gray) near the center. The somewhat off-center iron interacts with the oxygen to form an electric dipole (P), which is coupled to the magnetic spins of the atoms (M) so that flipping the dipole with an electric field (E) also flips the magnetic moment. The collective magnetic spins of the atoms in the material encode the binary bits 0 and 1, and allow for information storage and logic operations. Credit: Ramamoorthy Ramesh lab, UC Berkeley

The magneto-electric spin-orbit or MESO devices will also pack five times more logic operations into the same space than CMOS, continuing the trend toward more computations per unit area, a central tenet of Moore’s Law.

The new devices will boost technologies that require intense computing power with low energy use, specifically highly automated, self-driving cars and drones, both of which require ever increasing numbers of computer operations per second.

“As CMOS develops into its maturity, we will basically have very powerful technology options that see us through. In some ways, this could continue computing improvements for another whole generation of people,” said lead author Sasikanth Manipatruni, who leads hardware development for the MESO project at Intel’s Components Research group in Hillsboro, Oregon. MESO was invented by Intel scientists, and Manipatruni designed the first MESO device.

Transistor technology, invented 70 years ago, is used today in everything from cellphones and appliances to cars and supercomputers. Transistors shuffle electrons around inside a semiconductor and store them as binary bits 0 and 1.

In the new MESO devices, the binary bits are the up-and-down magnetic spin states in a multiferroic, a material first created in 2001 by Ramamoorthy Ramesh, a UC Berkeley professor of materials science and engineering and of physics and a senior author of the paper.

“The discovery was that there are materials where you can apply a voltage and change the magnetic order of the multiferroic,” said Ramesh, who is also a faculty scientist at Lawrence Berkeley National Laboratory. “But to me, ‘What would we do with these multiferroics?’ was always a big question. MESO bridges that gap and provides one pathway for computing to evolve”

In the Nature paper, the researchers report that they have reduced the voltage needed for multiferroic magneto-electric switching from 3 volts to 500 millivolts, and predict that it should be possible to reduce this to 100 millivolts: one-fifth to one-tenth that required by CMOS transistors in use today. Lower voltage means lower energy use: the total energy to switch a bit from 1 to 0 would be one-tenth to one-thirtieth of the energy required by CMOS.

“A number of critical techniques need to be developed to allow these new types of computing devices and architectures,” said Manipatruni, who combined the functions of magneto-electrics and spin-orbit materials to propose MESO. “We are trying to trigger a wave of innovation in industry and academia on what the next transistor-like option should look like.”

Internet of things and AI

The need for more energy-efficient computers is urgent. The Department of Energy projects that, with the computer chip industry expected to expand to several trillion dollars in the next few decades, energy use by computers could skyrocket from 3 percent of all U.S. energy consumption today to 20 percent, nearly as much as today’s transportation sector. Without more energy-efficient transistors, the incorporation of computers into everything – the so-called internet of things – would be hampered. And without new science and technology, Ramesh said, America’s lead in making computer chips could be upstaged by semiconductor manufacturers in other countries.

“Because of machine learning, artificial intelligence and IOT, the future home, the future car, the future manufacturing capability is going to look very different,” said Ramesh, who until recently was the associate director for Energy Technologies at Berkeley Lab. “If we use existing technologies and make no more discoveries, the energy consumption is going to be large. We need new science-based breakthroughs.”

Paper co-author Ian Young, a UC Berkeley Ph.D., started a group at Intel eight years ago, along with Manipatruni and Dmitri Nikonov, to investigate alternatives to transistors, and five years ago they began focusing on multiferroics and spin-orbit materials, so-called “topological” materials with unique quantum properties.

“Our analysis brought us to this type of material, magneto-electrics, and all roads led to Ramesh,” said Manipatruni.

Multiferroics and spin-orbit materials

Multiferroics are materials whose atoms exhibit more than one “collective state.” In ferromagnets, for example, the magnetic moments of all the iron atoms in the material are aligned to generate a permanent magnet. In ferroelectric materials, on the other hand, the positive and negative charges of atoms are offset, creating electric dipoles that align throughout the material and create a permanent electric moment.

MESO is based on a multiferroic material consisting of bismuth, iron and oxygen (BiFeO3) that is both magnetic and ferroelectric. Its key advantage, Ramesh said, is that these two states – magnetic and ferroelectric – are linked or coupled, so that changing one affects the other. By manipulating the electric field, you can change the magnetic state, which is critical to MESO.

The key breakthrough came with the rapid development of topological materials with spin-orbit effect, which allow for the state of the multiferroic to be read out efficiently. In MESO devices, an electric field alters or flips the dipole electric field throughout the material, which alters or flips the electron spins that generate the magnetic field. This capability comes from spin-orbit coupling, a quantum effect in materials, which produces a current determined by electron spin direction.

In another paper that appeared earlier this month in Science Advances, UC Berkeley and Intel experimentally demonstrated voltage-controlled magnetic switching using the magneto-electric material bismuth-iron-oxide (BiFeO3), a key requirement for MESO.

“We are looking for revolutionary and not evolutionary approaches for computing in the beyond-CMOS era,” Young said. “MESO is built around low-voltage interconnects and low-voltage magneto-electrics, and brings innovation in quantum materials to computing.”

GLOBALFOUNDRIES today announced its advanced silicon germanium (SiGe) offering, 9HP, is now available for prototyping on the company’s 300mm wafer manufacturing platform. The move signifies the strong growth in data center and high-speed wired/wireless applications that can leverage the scale advantages of a 300mm manufacturing footprint. By tapping into GF’s 300mm manufacturing expertise, clients can take advantage of increased production efficiency and reproducibility for high-speed applications such as optical networks, 5G millimeter-wave wireless communications and automotive radar.

GF is the industry leader in the manufacturing of high-performance SiGe solutions on its 200mm production line in Burlington, Vermont. The migration of 9HP, a 90nm SiGe process, to 300mm wafers manufactured at GF’s Fab 10 facility in East Fishkill, N.Y., continues this leadership and establishes a 300mm foothold for further roadmap development, ensuring continued technology performance enhancements and scaling.

“The increasing complexity and performance demands of high-bandwidth communication systems have created the need for higher performance silicon solutions,” said Christine Dunbar, vice president of RF business unit at GF. “GF’s 9HP is specifically designed to provide outstanding performance, and in 300mm manufacturing will support our client’s requirements for high-speed wired and wireless components that will shape future data communications.”

GF’s 9HP extends a rich history of high-performance SiGe BiCMOS technologies designed to support the massive growth in extremely high data rates at microwave and millimeter-wave frequencies for the next generation of wireless networks and communications infrastructure, such asterabit-level optical networks, 5G mmWave and satellite communications (SATCOM) and instrumentation and defense systems. The technology offers superior low-current/high-frequency performance with improved heterojunction bipolar transistor (HBT) performance and up to a 35 percent increase in maximum oscillation frequency (Fmax) to 370GHz compared to its predecessors, SiGe 8XP and 8HP.

Client prototyping of 9HP on 300mm at Fab 10 in East Fishkill, N.Y. on multi-project wafers (MPWs) is underway now, with qualified process and design kits scheduled in 2Q 2019.

As new methods have become available for understanding and manipulating matter at its most fundamental levels, researchers working in the interdisciplinary field of materials science have been increasingly successful in synthesizing new kinds of materials. Often the goal of researchers in the field is to design materials that incorporate properties that can be useful for performing specific functions. Such materials can, for example, be more chemically stable or resistant to physical breakage, have advantageous electromagnetic characteristics, or react in predictable ways to specific environmental conditions.

Artist’s rendering of organic molecules adsorbing on a silicon surface. Credit: Image: Aaron Beller

Dr. Ralf Tonner and his research group at the University of Marburg are addressing the challenge of designing functional materials in an unusual way — by applying approaches based on computational chemistry. Using computing resources at the High-Performance Computing Center Stuttgart (HLRS), one of three German national supercomputing centers that make up the Gauss Centre for Supercomputing, Tonner models phenomena that happen at the atomic and subatomic scale to understand how factors such as molecular structure, electronic properties, chemical bonding, and interactions among atoms affect a material’s behavior.

“When you study how, for example, a molecule adsorbs on a surface,” Tonner explains, “other scientists will often describe that phenomenon with methods from physics, solid state theory, or band structures. We think it can also be very helpful to ask, how would a chemist look at what’s happening here?” From this perspective, Tonner is interested in exploring whether understanding chemical reactions — how atoms bond together into molecules and react when brought into contact with one another — can offer new and useful insights.

In a new publication in WIREs Computational Molecular Science, Tonner and his collaborator Lisa Pecher highlight the ability of computational chemistry approaches using high-performance computing to reveal interesting phenomena that occur between organic molecules and surfaces. They also demonstrate more generally how these interactions can be understood with respect to the molecular and solid state world. The knowledge they gained could be useful in designing patterned surfaces, a goal of scientists working on the next generation of more powerful, more efficient semiconductors.

Bringing computation to chemistry

Atoms bond together to form molecules and compounds when they approach one another and then trade or share electrons orbiting around their nuclei. The specific atoms involved, the physical shapes that the molecules take, their energetic properties, and how they interact with other nearby molecules are all properties that give a compound its unique properties. Such characteristics can determine whether compounds are likely to remain stable, or whether stresses such as changes in temperature or pressure could affect their reactivity.

Tonner uses a computational approach called density functional theory (DFT) to explore such characteristics at the quantum scale; that is, at the scale where Newtonian mechanics becomes replaced by the much stranger world of quantum mechanics (at distances of less than 100 nanometers). DFT uses information about variations in the density of electrons within a molecule — a quantity that can also be experimentally measured using a widely used technology called x-ray diffraction — to derive the energy of the system. This, in turn, enables the researchers to infer interactions among nuclei as well as interactions between electrons and nuclei, factors that are critical to understanding chemical bonds and reactions.

DFT can provide useful, though static, information about the energy profiles of the compounds they study. To gain a better understanding of how systems of molecules actually behave when interacting with a surface, Tonner’s group also uses high-performance computing at HLRS to perform molecular dynamics simulations. Here, the scientists look at how the system of molecules develops over time, at the level of atoms and electrons and at time scales of picoseconds (one picosecond is one trillionth of a second).

Such calculations typically use 2,000-3,000 computing cores, running on a problem for a week, and Tonner has been budgeted approximately 30 million CPU hours at HLRS for the current two-year funding cycle.

“Increasing computing power has made it possible for computational chemistry and quantum chemistry to describe real molecular systems. Just 15-20 years ago, people could only look at small molecules and had to make rather strong approximations,” Tonner explains. “In the last few years, the computational chemistry and solid state theory communities have solved the problem of parallelizing their codes to operate efficiently on high-performance computing systems. As supercomputers get bigger, we anticipate being able to develop increasingly realistic models for experimental systems in materials science.”

Toward light-based semiconductors

One area in which Tonner is currently using computational chemistry is to study ways to improve silicon for use in new kinds of semiconductors. This problem has gained urgency in recent years, as it has become clear that the microelectronics industry is reaching the limits of its ability to improve semiconductors using silicon alone.

As Tonner and experimental colleagues report in a recent paper in the Beilstein Journal of Organic Chemisty, functionalizing silicon with compounds such as gallium phosphide (GaP) or gallium arsenide (GaAs) could enable the design of new kinds of semiconductors. This research, based in a field called silicon photonics, posits that such new materials would make it possible to use light instead of electrons for signal transport, supporting the development of improved electronic devices.

“To do this,” Tonner explains, “we really need to understand how the interfaces between silicon and these organic compounds look and behave. The reaction between these two material classes needs to proceed in a very controlled manner so that the interface is as perfect as possible. With computational chemistry we can look at the elemental details of these interactions and processes.”

For example, to cover a slab of silicon, liquid precursor molecules for the constituent atoms of gallium arsenide are placed in a bubbler, where they are then brought into the gas phase. These precursor molecules are composed of the atoms required for the new material (gallium, arsenic) and ions or molecules called ligands to stabilize them in the liquid and gas phase. These ligands are subsequently lost in the deposition process and when silicon is placed in the system, the precursor molecules are adsorbed onto the solid silicon surface. After adsorption and loss of the ligands, gallium and arsenide atoms attach to the silicon, forming a GaAs film.

How atoms are arranged when they adsorb to a surface is determined by chemical bonding. The strength of these bonds and the density with which the GaAs precursor molecules are adsorbed is affected not only by the distance between them and the silicon surface but also by interactions among the precursor molecules themselves. In one type of interaction, called Pauli repulsion, clouds of electrons overlap and repel each other, causing the available energy for bonding to decline. In another, called attractive dispersion interaction, changes in the electronic positions in one atom cause electrons to be redistributed in other atoms, bringing the electron movements into harmony and lowering the energy of the total system.

Previously, it had been suggested that repulsive relationships among atoms is the most important factor in “steering” atoms into place when they adsorb on a surface. By using density functional theory and looking at intriguing features of how electrons are distributed, the researchers determined that the ability of atoms to steer other atoms into place on the surface can also result from attractive dispersive interactions.

Gaining a better understanding of these fundamental interactions should help designers of optically active semiconductors to improve adsorption of the precursor molecules onto silicon. This, in turn, would make it possible to combine light signal conduction with silicon based microelectonics, bringing together the best of both worlds in optical and electronic conduction.

For Tonner, using first principles methods in chemistry for materials science applications holds great promise. “Theory today is very often taken as a complement to experimental investigation,” he says. “Although experimentation is extremely important, our ultimate goal is for theory to be predictive in ways that enable us to make the first steps in first principles-inspired materials design. I see this as a long term goal.”

A team of researchers from Siberian Federal University (SFU) obtained thin copper/gold and iron/palladium films and studied the reactions that take place in them upon heating. Knowing these processes, scientists will be able to improve the properties of materials currently used in microelectronics. The article of the scientists was published in the Journal of Solid State Chemistry.

Materials based on thin metal films are widely used in microelectronics (e.g. copper and gold – in the manufacture of electrical contacts). Nanomaterials based on iron and palladium have unique magnetic properties and potentially can be used for high-density magnetic recording of information. One of the main factors that affects the properties of thin film materials is alteration of the phase composition as a result of chemical reactions and atomic structure realignment. The work of the researchers covers solid phase reactions in two-layer thin metal films – copper/gold (Cu/Au) and iro/palladium (Fe/Pl).

The scientists obtained the Cu/Au and Fe/Pd films in SFU common use center. To do so, they used the method of electron-beam deposition in high vacuum, i.e. evaporated the alloy using a beam of electrons and then deposited it on a carrying base as a thin layer. The thickness of the layer could be regulated. After obtaining the films the scientists made an experiment to study the course of chemical reactions in the interface region of the initial elements. For the reactions to take place, materials had to be heated to high temperatures which was done directly in the column of a transmission electron microscope. The team used a special sample holder that allowed for controlled heating of each sample from room temperature to 1,000 °. Along with the heating, the team registered electron diffraction images and measured the temperature. Thus, the scientists managed to combine the initiation of the reaction and the registration of changes in a solid-phase reaction within one experiment and to secure high data precision.

“We’ve established the value of the long-range order parameter and the temperature of the order-disorder transition in atomically ordered phases formed in the course of the reaction. The atoms of such phases form ordered structures of certain shapes. We also suggested a mechanism for the formation of such ordered structures. For instance, in the case of the Cu/Au system we demonstrated how mutual diffusion of copper and gold on the initial stages of the reaction leads to the refinement of grains of the initial materials and the formation of Cu-Au solid solution nanocrystallites within the material. Later on, a new ordered structure occurs and starts to grow on the basis of these components,” explains Evgeny Moiseenko, a co-author of the work, candidate of physics and mathematics, and a research assistant at SFU.

The work of the scientists will help identify the features of the studied thin film systems that may be used in the design of microelectronic devices.

Applied Materials, Inc. today announced plans for the Materials Engineering Technology Accelerator (META Center), a major expansion of the company’s R&D capabilities aimed at creating new ways for Applied and its customers to drive innovation as classic Moore’s Law scaling becomes more challenging.

The primary goal of the META Center is to speed customer availability of new chipmaking materials and process technologies that enable breakthroughs in semiconductor performance, power and cost. The new center will complement and extend the capabilities of Applied’s Maydan Technology Center in Silicon Valley.

The META Center will be a hub for innovation, delivering on a call to action by Applied CEO Gary Dickerson for increased collaboration and speed across the technology ecosystem.

“Realizing the full potential of Artificial Intelligence and Big Data will require significant improvements in performance, power consumption and cost both at the edge and in the cloud,” said Gary Dickerson, president and CEO of Applied Materials. “The industry needs new computing architectures and chips enabled by innovative materials and scaling approaches. The META Center creates a new platform for working with customers to accelerate innovation from materials to systems.”

Scheduled to open in 2019, the META Center will be a first-of-its kind facility, spanning 24,000 square feet of cleanroom. It will be furnished with a broad suite of Applied’s most advanced process systems along with complementary technologies needed for new chip materials and structures to be piloted for high-volume production at customer sites.

To be located at the State University of New York Polytechnic Institute (SUNY Poly) campus in Albany, New York, the META Center will be created under agreements to be entered into with New York State, The Research Foundation for The State University of New York and SUNY Poly, that have been approved by the Empire State Development Board of Directors and are subject to further approval by The New York State Public Authorities Control Board.

“SUNY Poly provides an ideal combination of infrastructure, capabilities and talent in a thriving academic and entrepreneurial setting with deep roots in the semiconductor industry,” said Steve Ghanayem, senior vice president of New Markets and Alliances at Applied Materials. “The technology ecosystem will benefit from the acceleration of materials innovation through collaboration at the META Center.”

According to Samsung R&D, “We value our collaboration with Applied Materials on process development. The industry needs new innovations beyond traditional device scaling including the exploration of new materials. We are very pleased to see Applied Materials’ effort to expand its advanced R&D capabilities to provide added resources to customers and accelerate chip development.”

“TSMC welcomes closer collaboration with critical suppliers like Applied Materials in both equipment and materials,” said J.K. Lin, TSMC’s Vice President of Information Technology and Risk Management & Materials Management. “Working together to accelerate the industry’s innovation and address high-growth opportunities is very much in the spirit of TSMC’s Grand Alliance, the largest ecosystem in the semiconductor industry.”

“IBM and Applied Materials have a long history of collaboration in materials engineering to advance semiconductor industry breakthroughs,” said Dr. Mukesh V. Khare, IBM Research Vice President. “AI is one of the biggest opportunities of our time and will require innovations across materials, devices and architectures. We are pleased to see Applied expanding its capabilities to support the industry through the AI journey with its new META Center in Albany, New York.”

“As complexity increases and costs rise, traditional device scaling is slowing for the latest technology nodes,” said Tom Caulfield, CEO GLOBALFOUNDRIES. “It’s great to see Applied Materials investing in a broad range of advanced R&D capabilities to bring new and new combinations of materials into chip manufacturing, and I look forward to our continued collaborative efforts as we develop more differentiated solutions for our clients.”

“Delivering the improvements in performance and efficiency that allow Arm partners to continue to advance compute will mean overcoming the challenges presented by scaling transistors and interconnect in the deep nanometer process nodes,” said Greg Yeric, fellow, Arm. “There are many novel ideas being explored in this area, but the timeline from concept to production needs to be accelerated, and the expansion of Applied Materials’ R&D capabilities will help enable this research to advance at a faster pace.”

“Applied Materials is the world leader in semiconductor process and tools,” said Kurt Busch, CEO of Syntiant Corp. “We strongly value our relationship with Applied Materials and look forward to the benefits their latest technology will bring to breakthrough edge device machine learning products.”

Cabot Microelectronics Corporation (Nasdaq: CCMP), today announced that it has completed its previously announced acquisition of KMG Chemicals, Inc.  As a result of the acquisition, KMG has become a wholly owned subsidiary of Cabot Microelectronics.  Under the terms of the definitive agreement, each share of KMG common stock was converted into the right to receive $55.65 in cash and 0.2000 of a share of Cabot Microelectronics common stock, without interest and with cash paid in lieu of any fractional shares.

The acquisition will extend and strengthen Cabot Microelectronics’ position as one of the leading suppliers of consumable materials to the semiconductor industry.  Additionally, the combined company will be a leading global provider of performance products and services for improving pipeline operations and optimizing throughput.  The transaction is expected to be significantly accretive to Cabot Microelectronics’ free cash flow and adjusted earnings per share in year one, excluding any acquisition-related costs.

“I am pleased to announce that we have completed the KMG transaction.  We welcome KMG’s employees to our team and look forward to our journey together towards becoming the premier global provider of semiconductor and specialty materials.  We believe that our employees, customers and shareholders will benefit from this transaction as we become a stronger company, focused on providing high-performing and innovative solutions to our customers,” said David Li, President and CEO of Cabot Microelectronics.  “KMG’s industry-leading electronic materials business will expand our CMP product offerings with high-purity solutions used throughout the semiconductor manufacturing process.  We are also excited about the addition of KMG’s performance materials businesses to our portfolio which will allow us to expand our participation into new markets including the attractive, high-growth pipeline performance segment.”

In connection with the acquisition, Cabot Microelectronics borrowed $1.065 billion under a new senior secured term loan facility, the proceeds of which were used to finance in part the cash portion of the merger consideration, to repay KMG’s existing indebtedness and to pay fees and expenses related to the acquisition.  Cabot Microelectronics issued approximately 3.2 million shares of common stock to holders of KMG common stock for the stock portion of the merger consideration.

In optics, the era of glass lenses may be waning.

In recent years, physicists and engineers have been designing, constructing and testing different types of ultrathin materials that could replace the thick glass lenses used today in cameras and imaging systems. Critically, these engineered lenses — known as metalenses — are not made of glass. Instead, they consist of materials constructed at the nanoscale into arrays of columns or fin-like structures. These formations can interact with incoming light, directing it toward a single focal point for imaging purposes.

But even though metalenses are much thinner than glass lenses, they still rely on “high aspect ratio” structures, in which the column or fin-like structures are much taller than they are wide, making them prone to collapsing and falling over. Furthermore, these structures have always been near the wavelength of light they’re interacting with in thickness — until now.

Four ultrathin metalenses developed by University of Washington researchers and visualized under a microscope. Credit: Liu et al., Nano Letters, 2018

In a paper published Oct. 8 in the journal Nano Letters, a team from the University of Washington and the National Tsing Hua University in Taiwan announced that it has constructed functional metalenses that are one-tenth to one-half the thickness of the wavelengths of light that they focus. Their metalenses, which were constructed out of layered 2D materials, were as thin as 190 nanometers — less than 1/100,000ths of an inch thick.

“This is the first time that someone has shown that it is possible to create a metalens out of 2D materials,” said senior and co-corresponding author Arka Majumdar, a UW assistant professor of physics and of electrical and computer engineering.

Their design principles can be used for the creation of metalenses with more complex, tunable features, added Majumdar, who is also a faculty researcher with the UW’s Molecular Engineering & Sciences Institute.

Majumdar’s team has been studying the design principles of metalenses for years, and previously constructed metalenses for full-color imaging. But the challenge in this project was to overcome an inherent design limitation in metalenses: in order for a metalens material to interact with light and achieve optimal imaging quality, the material had to be roughly the same thickness as the light’s wavelength in that material. In mathematical terms, this restriction ensures that a full zero to two-pi phase shift range is achievable, which guarantees that any optical element can be designed. For example, a metalens for a 500-nanometer lightwave — which in the visual spectrum is green light — would need to be about 500 nanometers in thickness, though this thickness can decrease as the refractive index of the material increases.

Majumdar and his team were able to synthesize functional metalenses that were much thinner than this theoretical limit — one-tenth to one-half the wavelength. First, they constructed the metalens out of sheets of layered 2D materials. The team used widely studied 2D materials such as hexagonal boron nitride and molybdenum disulfide. A single atomic layer of these materials provides a very small phase shift, unsuitable for efficient lensing. So the team used multiple layers to increase the thickness, although the thickness remained too small to reach a full two-pi phase shift.

“We had to start by figuring out what type of design would yield the best performance given the incomplete phase,” said co-author Jiajiu Zheng, a doctoral student in electrical and computer engineering.

To make up for the shortfall, the team employed mathematical models that were originally formulated for liquid-crystal optics. These, in conjunction with the metalens structural elements, allowed the researchers to achieve high efficiency even if the whole phase shift is not covered. They tested the metalens’ efficacy by using it to capture different test images, including of the Mona Lisa and a block letter W. The team also demonstrated how stretching the metalens could tune the focal length of the lens.

In addition to achieving a wholly new approach to metalens design at record-thin levels, the team believes that its experiments show the promise of making new devices for imaging and optics entirely out of 2D materials.

“These results open up an entirely new platform for studying the properties of 2D materials, as well as constructing fully functional nanophotonic devices made entirely from these materials,” said Majumdar.

Additionally, these materials can be easily transferred on any substrate, including flexible materials, paving a way towards flexible photonics.

Scientists at Nagoya Institute of Technology (NITech) and collaborating universities in Japan have gained new insights into the mechanisms behind degradation of a semiconductor material that is used in electronic devices. By highlighting the specific science behind how the material degrades, they are making way for potential discoveries that may prevent the performance degradation of the material.

The study was published in the Journal of Applied Physics in September of 2018. The scientists used Silicon Carbide (SiC) material for the experiment. SiC is becoming a more popular alternative to standard semiconductor materials for electronic devices. The study is based on a specific type of SiC material that is characteristic for its structure, or 4H-SiC. This material was exposed to both photoluminescence as well as various temperatures as a means to create specific kinds of deformations that lead to the degradation of SiC-based devices. The scientists were able to observe how these deformations actually take place on an atomic level.

“We quantified the speed at which electric charge particles move in regions of 4H-SiC material where the atomic structure has been defected. This will usher discoveries of ways to suppress degradation of SiC-based devices such as power electronic systems,” states Dr. Masashi Kato, an associate professor at the Frontier Research Institute for Materials Science in NITech.

In order to better understand the actual mechanism behind atomic deformation that lead to degradations, the researchers used photoluminescence to induce movement of electric charge particles and measured the speeds at which that took place. They looked for specific factors that may limit particle movement, including the material that was used.

They also tested the effects of increasing temperature, specifically looking to see if higher temperatures will increase or decrease rate of deformation.

According to Dr. Kato, the presence of a particular kind of atomic deformation that causes the material degrade is particularly problematic for SiC-based power devices. “While a particular SiC-based device is in operation, the atoms of the material deform, which leads to degradation. The process by which these atoms deform is not clear yet. What is known, however, is that movement of electric charge within the material as well as areas where the material has become defect already contribute to the aforementioned atomic deformation,” he states.

So far similar experiments have been conducted in the past by other researchers, the results that have been reported are not consistent. Here, the result of experiments with photoluminescence indicates that the carrier recombination in single Shockley stacking faults (1SSFs) and at partial dislocations (PDs) is faster than that in regions without 1SSFs in 4H-SiC. Such fast recombination will induce the degradation of the device with 1SSFs. In addition, 1SSF expansion velocity also increases with temperature increase.

As such, they pave the way for research that will revolve around the slowing of SiC-based devices degradation. This, in turn, could potentially result in higher quality and more durable devices.

Along those lines, the authors state that their future research endeavors will focus on finding out ways to prevent SiC-based devices from degrading as well as creating devices that will not wear down over time.

Exagan, an innovator of gallium nitride (GaN) semiconductor technology enabling smaller and more efficient electrical converters, is extending its market reach by introducing new G-FET™ power transistors and G-DRIVE™ intelligent, fast-switching devices with enhanced power capabilities for automotive and server applications. With the products’ drain-source on resistance (RDSon) capabilities ranging from 30 milliohms to 65 milliohms, these new releases provide enhanced performance and power efficiency for diverse applications including electric vehicles (EV), industrial equipment and data servers.

At this week’s Electronica trade show in Munich, Exagan is demonstrating the implementation of its products for kilowatt-range applications using topologies such as totem-pole PFC to achieve high conversion efficiency as well as improved power density.

Power supplies for the fast-growing server market are one of the first power applications to benefit from Exagan’s GaN solutions. Global servershipments increased 20.7 percent year over year to 2.7 million units in the first quarter of 2018, according to the research firm International Data Corporation.

Another sector to benefit from these enhanced products is automotive power electronics, where Exagan’s solutions provide robust performance and simplify design-in at the system level. During the Automotive Conference at Electronica, Exagan’s President and CEO Frédéric Dupont is giving a presentation entitled “From Evolution to Revolution: Disrupting Automotive Power Conversion with GaN” that explains how small, lightweight and highly cost-effective power solutions made with GaN can be applied in EVs.

“Our G-FET and G-DRIVE product lines offer the most comprehensive portfolio of easily integrated GaN solutions for an extensive range of applications spanning consumer, server and automotive markets,” said Exagan’s chief executive Dupont. “To work closely with our customers, we recently opened application centers in France and Taiwan focused on delivering the most competitive GaN-based solutions for current and emerging power-conversion needs.”

The new GaN product solutions announced today prove Exagan’s ability to provide multiple products using an established 200-mm CMOS manufacturing process while maintaining full control of Exagan’s proprietary GaN technology. Engineering samples of Exagan’s newest GaN solutions with associated evaluation boards are available.

Researchers at Linköping University, Sweden, are working to develop a method to convert water and carbon dioxide to the renewable energy of the future, using the energy from the sun and graphene applied to the surface of cubic silicon carbide. They have now taken an important step towards this goal, and developed a method that makes it possible to produce graphene with several layers in a tightly controlled process.

Jianwu Sun at Linköping University inspecting the growth reactor for growth of cubic silicon carbide. Credit: Thor Balkhed/LiU

The research group has also shown that graphene acts as a superconductor in certain conditions. Their results have been published in the scientific journals Carbon and Nano Letters.

Carbon, oxygen and hydrogen. These are the three elements you would get if you took apart molecules of carbon dioxide and water. The same elements are the building blocks of chemical substances that we use for fuel, such as ethanol and methane. The conversion of carbon dioxide and water to renewable fuel, if possible, would provide an alternative to fossil fuels, and contribute to reducing our emission of carbon dioxide to the atmosphere. Jianwu Sun, senior lecturer at Linköping University, is trying to find a way to do just that.

The first step is to develop the material they plan to use. Researchers at Linköping University have previously developed a world-leading method to produce cubic silicon carbide, which consists of silicon and carbon. The cubic form has the ability to capture energy from the sun and create charge carriers. This is, however, not sufficient. Graphene, one of the thinnest materials ever produced, plays a key role in the project. The material comprises a single layer of carbon atoms bound to each other in a hexagonal lattice. Graphene has a high ability to conduct an electric current, a property that would be useful for solar energy conversion. It also has several unique properties, and possible uses of graphene are being extensively studied all over the world.

In recent years, the researchers have attempted to improve the process by which graphene grows on a surface in order to control the properties of the graphene. Their recent progress is described in an article in the scientific journal Carbon.

“It is relatively easy to grow one layer of graphene on silicon carbide. But it’s a greater challenge to grow large-area uniform graphene that consists of several layers on top of each other. We have now shown that it is possible to grow uniform graphene that consists of up to four layers in a controlled manner”, says Jianwu Sun, of the Department of Physics, Chemistry and Biology at Linköping University.

One of the difficulties posed by multilayer graphene is that the surface becomes uneven when different numbers of layers grow at different locations. The edge when one layer ends has the form of a tiny, nanoscale, staircase. For the researchers, who want large flat areas, these steps are a problem. It is particularly problematic when steps collect in one location, like a wrongly built staircase in which several steps have been united to form one large step. The researchers have now found a way to remove these united large steps by growing the graphene at a carefully controlled temperature. Furthermore, the researchers have shown that their method makes it possible to control how many layers the graphene will contain. This is the first key step in an ongoing research project whose goal is to make fuel from water and carbon dioxide.

In a closely related article in the journal Nano Letters, the researchers describe investigations into the electronic properties of multilayer graphene grown on cubic silicon carbide.

“We discovered that multilayer graphene has extremely promising electrical properties that enable the material to be used as a superconductor, a material that conducts electrical current with zero electrical resistance. This special property arises solely when the graphene layers are arranged in a special way relative to each other”, says Jianwu Sun.

Theoretical calculations had predicted that multilayer graphene would have superconductive properties, provided that the layers are arranged in a particular way. In the new study, the researchers demonstrate experimentally for the first time that this is the case. Superconducting materials are used in, among other things, superconducting magnets – extremely powerful magnets found in magnet resonance cameras for medical investigations, and in particle accelerators for research. There are many potential areas of application for superconductors, such as electrical supply lines with zero energy loss, and high-speed trains that float on a magnetic field. Their use is currently limited by the inability to produce superconductors that function at room temperature: currently available superconductors function only at extremely low temperatures.