Category Archives: Materials

SkyWater Technology Foundry, the industry’s most advanced U.S.- based and U.S.-owned Trusted Foundry, today announced that Tom Legere has been appointed as Senior Vice President of Operations. In this role Legere will focus on evolving and enhancing SkyWater’s operations as they drive world-class foundry efficiency and customer support in support of the company’s long-term growth objectives.

“I’m extremely excited to have Tom join us at SkyWater as we accelerate our technology foundry transformation and work to blend best-in-class operational efficiency with a highly differentiated technology portfolio.” said Thomas Sonderman, President, SkyWater Technology Foundry. “Tom brings a unique set of operations leadership experiences across the semiconductor industry and the industry segments we serve. This deep understanding of our customers will be critical as we look to scale our business in 2019 and beyond.”

Legere brings an ideal combination of leadership and operational talent to the SkyWater executive team with extensive industry experience in aerospace and defense, life sciences, security, MEMS, renewable energy and semiconductors. He has led both mature and start-up organizations with extensive implementation experience in Design for Manufacturability (DFM), lean and six sigma principles, supply chain management and customer engagement. Over the last three decades Legere has held senior operational roles at a diverse range of companies, most notably Aurora Semiconductor, Sonavation, eSolar, SVTC, Cypress Semiconductor and Atmel.

Added Legere, “SkyWater brings a truly differentiated proposition to semiconductor industry, blending innovative advanced technology development with the ability to manufacture at scale. I’m excited to join the team as we look to further scale the business with an operationally efficient, customer-first approach.”

Praxair, Inc., a wholly-owned subsidiary of Linde plc (NYSE:LIN; FWB:LIN) today announced it has signed a long-term agreement to supply ultra-high purity nitrogen to Samsung’s world-class semiconductor facility in Hwaseong, South Korea. This is the fifth plant Praxair will build at this site to help enable Samsung to meet increased global semiconductor demand.

The plant will supply Samsung’s facility with high purity nitrogen and is expected to start up in late 2019. Additionally, the company will install multiple purifiers and a new pipeline system to support the project.

“Praxair has been a reliable partner to Samsung for over four decades,” said B.S. Sung, president of Praxair Korea. “We are proud to continue to support their growth as global demand for electronics intensifies. This project increases our density in the region and positions us for future expansion.”

Earlier this year, Praxair announced two other long-term agreements with Samsung affiliates in South Korea, one to supply another of Samsung Electronics’ world-scale semiconductor plant in Pyeongtaek and a second to supply Samsung Electro-Mechanics’ facility in Busan.

A team of scientists has created the world’s most powerful electromagnetic pulses in the terahertz range to control in fine detail how a data-storage material switches physical form. This discovery could help find a way to scale down memory devices, eventually revolutionizing how computers handle information.

Compact discs might be falling out of fashion, but they may have inspired the next generation of computer nanotechnology. A glass layer in CDs consists of a phase-change material that can be encoded with information when light pulses cause crystals in small regions of the layer to either grow or melt.

Phase-change materials triggered by electrical impulses — rather than light — would offer new memory technologies with more stable and faster operation than that possible in many current types of memory devices. In addition, downscaling memory sites in phase-change materials could increase memory density. But this remains challenging because of the difficulty of controlling the crystal growth — crystallization — and melting — amorphization — processes.

Addressing this issue in an article in Physical Review Letters, a team of scientists led by Kyoto University observed nanometer-scale growth of individual crystals in a phase-change material composed of germanium, antimony and tellurium — or GST — after applying high-powered terahertz pulses as a trigger.

“One reason crystallization and amorphization of GST under an electric field are difficult to control is the heat diffusion effects in the micrometer scale associated with electrical inputs, which also contribute to the crystallization,” explains group leader Hideki Hirori. “Fortunately, terahertz technologies have matured to the point where we can use short pulses to generate strong electric fields while suppressing heating effects.”

Hirori and his coworkers developed a terahertz pulse generator that delivered ultra-short and highly intense terahertz pulses across a pair of gold antennas. These pulses created an electric field in the GST sample comparable to that of an electrically switched device. Importantly, this approach greatly reduced the heat diffusion because of the extremely short duration of terahertz pulses — around 1 picosecond, or 10?12 s — enabling fine control over the rate and direction of GST crystallization. A region of crystallization grew in a straight line between the gold antennas in the direction of the field, at a few nanometers per pulse.

When the team tracked stepwise changes in crystallization while increasing the number of terahertz pulses, they were surprised to find that after a certain point, crystal conductivity rapidly sped up instead of rising in line with the increase in terahertz strength. The researchers hypothesize that electrons jumping between states in the crystal added an unexpected source of heat to the system, boosting crystallization.

Hirori explains: “Our experiment reveals how nanoscale and direction-controlled growth of crystals in GST can be achieved. We also identified a phenomenon which should assist in the design of new devices and ultimately realize the fast and stable digital information handling potential that this material promises.”

When two atomically thin two-dimensional layers are stacked on top of each other and one layer is made to rotate against the second layer, they begin to produce patterns — the familiar moiré patterns — that neither layer can generate on its own and that facilitate the passage of light and electrons, allowing for materials that exhibit unusual phenomena. For example, when two graphene layers are overlaid and the angle between them is 1.1 degrees, the material becomes a superconductor.

“It’s a bit like driving past a vineyard and looking out the window at the vineyard rows. Every now and then, you see no rows because you’re looking directly along a row,” said Nathaniel Gabor, an associate professor in the Department of Physics and Astronomy at the University of California, Riverside. “This is akin to what happens when two atomic layers are stacked on top of each other. At certain angles of twist, everything is energetically allowed. It adds up just right to allow for interesting possibilities of energy transfer.”

This is the future of new materials being synthesized by twisting and stacking atomically thin layers, and is still in the “alchemy” stage, Gabor added. To bring it all under one roof, he and physicist Justin C. W. Song of Nanyang Technological University, Singapore, have proposed this field of research be called “electron quantum metamaterials” and have just published a perspective article in Nature Nanotechnology.

“We highlight the potential of engineering synthetic periodic arrays with feature sizes below the wavelength of an electron. Such engineering allows the electrons to be manipulated in unusual ways, resulting in a new range of synthetic quantum metamaterials with unconventional responses,” Gabor said.

Metamaterials are a class of material engineered to produce properties that do not occur naturally. Examples include optical cloaking devices and super-lenses akin to the Fresnel lens that lighthouses use. Nature, too, has adopted such techniques – for example, in the unique coloring of butterfly wings – to manipulate photons as they move through nanoscale structures.

“Unlike photons that scarcely interact with each other, however, electrons in subwavelength structured metamaterials are charged, and they strongly interact,” Gabor said. “The result is an enormous variety of emergent phenomena and radically new classes of interacting quantum metamaterials.”

Gabor and Song were invited by Nature Nanotechnology to write a review paper. But the pair chose to delve deeper and lay out the fundamental physics that may explain much of the research in electron quantum metamaterials. They wrote a perspective paper instead that envisions the current status of the field and discusses its future.

“Researchers, including in our own labs, were exploring a variety of metamaterials but no one had given the field even a name,” said Gabor, who directs the Quantum Materials Optoelectronics lab at UCR. “That was our intent in writing the perspective. We are the first to codify the underlying physics. In a way, we are expressing the periodic table of this new and exciting field. It has been a herculean task to codify all the work that has been done so far and to present a unifying picture. The ideas and experiments have matured, and the literature shows there has been rapid progress in creating quantum materials for electrons. It was time to rein it all in under one umbrella and offer a road map to researchers for categorizing future work.”

In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. They write that one of the most promising aspects of the new field occurs when electrons in subwavelength-structure samples interact to exhibit unexpected emergent behavior.

“The behavior of superconductivity in twisted bilayer graphene that emerged was a surprise,” Gabor said. “It shows, remarkably, how electron interactions and subwavelength features could be made to work together in quantum metamaterials to produce radically new phenomena. It is examples like this that paint an exciting future for electronic metamaterials. Thus far, we have only set the stage for a lot of new work to come.”

Gabor, a recipient of a Cottrell Scholar Award and a Canadian Institute for Advanced Research Azrieli Global Scholar Award, was supported by the Air Force Office of Scientific Research Young Investigator Program and a National Science Foundation Division of Materials Research CAREER award.

SEMI announced today that it has signed a new agreement with the U.S. Air Force Research Laboratory (AFRL) to expand the Nano-Bio Materials Consortium’s (NBMC) work in advancing human monitoring technology innovations for telemedicine and digital health. The program is designed to include $20 million in direct federal funding and $41 million overall in the next six years with additional contributions from state and industry sources. The grant guarantees $7 million of government funds for the first year’s launch of the renewed program.

Drawing on elements of nano-technology and biological research, nano-bio technology is at the core of the expanding field of human performance monitoring and augmentation (HPM/A). Human performance monitoring systems focus on using wearables and table-top devices that monitor blood pressure and glucose, the heart and brain, and other key features of human health to assess physical performance, identify anomalies and help prevent disease.

The expanded NBMC program will focus on research topics such as individual or mission customization, non-intrusive electronics, effects of extreme environments, new material integration (nano-materials, textiles, etc.), and regulatory considerations. Activities will consist of competitively bid research and development (R&D) projects, workshops, conferences, webinars, and extensive gap analysis exercises to determine market needs.

“SEMI is eager to renew NBMC programs and begin working with AFRL, commercial organizations, and universities to identify technology needs, fund research and development, and execute this public/private collaboration,” said Melissa Grupen-Shemansky, Ph.D, NBMC executive director and SEMI CTO. “The NBMC’s continued work will give SEMI members a first-hand understanding of how medical technology innovations will be shaped by advanced electronics and provide the platform for collaboration on R&D projects leading to new products and enabling personalized medicine.”

“Since its inception, NBMC has enabled new industrial and academic communities to engage and team up with AFRL and our mission to deliver new and innovative human monitoring capabilities to the airmen,” said Jeremy W. Ward, Ph.D., NBMC Government Program Manager. “We are eager to continue fostering and growing this community of innovators and to focus R&D on emerging nano-bio materials and technologies for human monitoring to enable solutions for the future monitoring and diagnostic needs of the United States Air Force’s Aeromedical En Route Care mission.”

AFRL awarded the cooperative agreement to SEMI after reviewing competitive responses to a Request for Information followed by a Request for Proposals. Twelve organizations joined SEMI to write the comprehensive proposal: Binghamton University, Brewer Science, Cambridge Display Technology, Dublin City University, GE, Lockheed Martin, Molex, NextFlex, Qualcomm Life Sciences, UCLA Medical School, UES, and the University of Arizona. SEMI and its FlexTech Group have been collaborating with AFRL and its Materials and Manufacturing Directorate to manage NBMC since its launch in 2013.

A team of scientists from Siberian Federal University (SibFU) together with foreign colleagues described the structural and physical properties of a group of two-dimensional materials based on polycyclic molecules called circulenes. The possibility of flexible design and variable properties of these materials make them suitable for nanoelectronics. The results are published in the Journal of Physical Chemistry C.

Circulenes are organic molecules that consist of several hydrocarbon cycles forming a flower-like structure. Their high stability, symmetricity, and optical properties make them of special interest for nanoelectronics especially for solar cells and organic LEDs. The most stable and most studied tetraoxa[8]circulene molecule could be potentially polymerized into graphene-like nanoribbons and sheets. The authors have published the results of simulations proving this possibility. They also described properties and structure of the proposed materials.

“Having only one building block – a tetraoxa[8]circulene molecule – one can create a material with properties similar to those of silicon (a semiconductor traditionally used in electronics) or graphene (a semimetal) depending on the synthesis parameters. However, the proposed materials have some advantages. The charge carrier mobility is about 10 times higher compared to silicon, therefore, one could expect higher conductivity,” says the main author of the study Artem Kuklin, research associate at the department of theoretical physics of Siberian Federal University.

Having the equilibrium geometries and tested their stability, the scientists discovered several stable tetraoxa[8]circulene-based polymers. The difference between them lied in the type of coupling between the molecules resulting in different properties. The polymers demonstrate high charge carrier mobility. This property was analyzed by fitting of energy zones near bandgap – a parameter represented by separation of empty and occupied electronic states. The mechanical properties exhibit that the new materials 1.5-3 times more stretchable than graphene. The authors also emphasized existence of topological states in one of the polymers caused by spin-orbit coupling, which is not typical for light elements-based materials. The materials possessed such kind of properties are insulators in the bulk but can conduct electricity on the surface (edges).

“The proposed nanostructures possess useful properties and may be used in various fields, from the production of ionic sieves to elements of nanoelectronic devices. Further we plan to develop this topic and modify our compounds with metal adatoms to study their magnetic and catalytic properties. We would also like to find a research group that could synthesize these materials,” concludes Artem Kuklin.

Two-dimensional magnetism has long intrigued and motivated researchers for its potential to unleash new states of matter and utility in nano-devices.

In part the excitement is driven by predictions that the magnetic moments of electrons – known as “spins” – would no longer be able to align in perfectly clean systems. This enhancement in the strengths of the excitations could unleash numerous new states of mater, and enable novel forms of quantum computing.

A key challenge has been the successful fabrication of perfectly clean systems and their incorporation with other materials. However, for more than a decade, materials known as “van der Waals” crystals, held together by friction, have been used to isolate single-atom-thick layers leading to numerous new physical effects and applications.

Recently this class has been expanded to include magnetic materials, and it may offer one of the most ambitious platforms yet in scientific efforts to investigate and manipulate phases of matter at the nanoscale, researchers from Boston College, the University of Tennessee, and Seoul National University, write in the latest edition of the journal Nature.

Two-dimensional magnetism, the subject of theoretical explorations and experimentation for the past 80 years, is enjoying a resurgence thanks to a group of materials and compounds that are relatively plentiful and easy to manipulate, according to Boston College Associate Professor of Physics Kenneth Burch, a first author of the article “‘Magnetism in two-dimensional van der Waals materials.”

The most oft-cited example of these materials is graphene, a crystal constructed in uniform, atom-thick layers. A procedure as simple as applying a piece of scotch tape to the crystal can remove a single layer, providing a thin, uniform section to serve as a platform to create novel materials with a range of physical properties open to manipulation.

“What’s amazing about these 2-D materials is they’re so flexible,” said Burch. “Because they are so flexible, they give you this huge array of possibilities. You can make combinations you could not dream of before. You can just try them. You don’t have to spend this huge amount of time and money and machinery trying to grow them. A student working with tape puts them together. That adds up to this exciting opportunity people dreamed of for a long time, to be able to engineer these new phases of matter.”

At that single layer, researchers have focused on spin, what Burch refers to as the “magnetic moment” of an electron. While the charge of an electron can be used to send two signals – either “off” or “on”, results represented as either zero or one – spin excitations offer multiple points of control and measurement, an exponential expansion of the potential to signal, store or transmit information in the tiniest of spaces.

“One of the big efforts now is to try to switch the way we do computations,” said Burch. “Now we record whether the charge of the electron is there or it isn’t. Since every electron has a magnetic moment, you can potentially store information using the relative directions of those moments, which is more like a compass with multiple points. You don’t just get a one and a zero, you get all the values in between.”

Potential applications lie in the areas of new “quantum” computers, sensing technologies, semiconductors, or high-temperature superconductors.

“The point of our perspective is that there has been a huge emphasis on devices and trying to pursue these 2-D materials to make these new devices, which is extremely promising,” said Burch. “But what we point out is magnetic 2D atomic crystals can also realize the dream of engineering these new phases – superconducting, or magnetic or topological phases of matter, that is really the most exciting part. It is not just fundamentally interesting to realize these theorems that have been around for 40 years. These new phases would have applications in various forms of computing, whether in spintronics, producing high temperature superconductors, magnetic and optical sensors and in topological quantum computing.”

Burch and his colleagues – the University of Tennessee’s David Mandrus and Seoul National University’s Je-Geun Park – outline four major directions for research into magnetic van der Waals materials:

  • Discovering new materials with specific functionality. New materials with isotropic or complex magnetic interactions, could play significant roles in the development of new supercondcutors.
  • These new materials can also lead to a deeper understanding of fundamental issues in condensed matter physics, serving as unique platforms for experimentation.
  • The materials will be tested for the potential to become unique devices, capable of delivering novel applications. The two-dimensional structure of these materials makes them more receptive to external signals.
  • These materials possess quantum and topological phases that could potentially lead to exotic states, such as quantum spin liquids, “skyrmions,” or new iterations of superconductivity.

Germano Iannacchione, a National Science Foundation (NSF) program officer who oversees grants to Burch and other materials scientists, said the co-authors offer the broader community of scientists ideas that can serve to guide a dynamic field pushing beyond boundaries in materials research.

“Magnetism in 2D van Der Waals materials has grown into a vibrant field of study,” said Iannacchione. “Its investigators have matured from highly focused researchers to statesmen shepherding a field, broadening applications into as many channels as possible. The review captures the multiplicative aspect of steady, focused, and sometimes risky research that opens vast new frontiers, with tremendous potential for applications in quantum computing and spintronics.”

In a paper published in NANO, researchers from the School of Microelectronics in Tianjin University have discovered a two-step sputtering and subsequent annealing treatment method to prepare vertically aligned WO3-CuO core-shell nanorod arrays which can detect toxic NH3 gas.

A schematic illustration of the gas sensor device based on the hybrid nanorod arrays. The real time resistance versus time of the vertically aligned WO3-CuO core-shell nanorod arrays-based gas sensor to varied concentrations of NH3 decreasing from 500 ppm to 50 ppm at 150 ?. The resistance of the WO3-CuO hybrid increases upon exposure to NH3, consistent with p-type semiconductor behavior. The response of the hybrid sample increasing with increasing NH3 concentration at 150. The response and recovery times range from 10 to 15 s for all NH3 concentrations. Credit: Author

Over the years, WO3 has received considerable attention among the numerous transition metal oxides as a wide band-gap n-type semiconductor in various gas detection, such as NOx, H2S, H2, and NH3. CuO has the unique property of being intrinsically p-type. In the last decade, p-n heterojunction sensors composed of an n-type metal oxide and CuO were reported to have a good sensitivity to reducing gases owing to the interface between n-metal oxide and CuO. Much effort has been focused on the WO3-based nanocomposites, since the synergetic enhancement and heterojunction effects attributes to the enhanced gas sensing properties. However, gas sensors based on 1D WO3-CuO composite structures are limited. Additionally, the template or catalyst was usually necessary to synthesize WO3-based nanorod arrays, including using chemical vapor deposition, electrochemical anodization and hydrothermal approaches.

Among toxic gases causing adverse impact on living organisms, NH3 is one of the most hazardous substances. It is necessary to build up ultrasensitive NH3 gas sensors with short response and recovery time. Metal oxides have been widely used in gas sensor applications. In order to obtain great sensing performances of metal oxide sensors, 1D metal oxide nanostructures and 1D heterojunction composite nanostructures have been investigated due to their large surface area, size-dependent properties, and the nano-heterojunction effects. Vertically aligned ordered 1D arrays effectively avoid the dense stacking of rod monomers, especially, resulting in novel physicochemical characteristics, such as higher gas response and shorter gas recovery.

Here, vertically aligned WO3-CuO core-shell nanorod arrays are synthesized using a non-catalytic two-step annealing process of sputtered metal film on silicon wafer. The growth mechanism of the vertically aligned nanorod arrays are discussed. The NH3 sensing behaviors of the WO3-CuO core-shell arrays at different temperatures are reported. A possible NH3sensing mechanism for the hybrid is proposed.

In the quest for abundant, renewable alternatives to fossil fuels, scientists have sought to harvest the sun’s energy through “water splitting,” an artificial photosynthesis technique that uses sunlight to generate hydrogen fuel from water. But water-splitting devices have yet to live up to their potential because there still isn’t a design for materials with the right mix of optical, electronic, and chemical properties needed for them to work efficiently.

The HPEV cell’s extra back outlet allows the current to be split into two, so that one part of the current contributes to solar fuels generation, and the rest can be extracted as electrical power. Credit: Credit: Berkeley Lab, JCAP

Now researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the Joint Center for Artificial Photosynthesis (JCAP), a DOE Energy Innovation Hub, have come up with a new recipe for renewable fuels that could bypass the limitations in current materials: an artificial photosynthesis device called a “hybrid photoelectrochemical and voltaic (HPEV) cell” that turns sunlight and water into not just one, but two types of energy – hydrogen fuel and electricity. The paper describing this work was published on Oct. 29 in Nature Materials.

Finding a way out for electrons

Most water-splitting devices are made of a stack of light-absorbing materials. Depending on its makeup, each layer absorbs different parts or “wavelengths” of the solar spectrum, ranging from less-energetic wavelengths of infrared light to more-energetic wavelengths of visible or ultraviolet light.

When each layer absorbs light it builds an electrical voltage. These individual voltages combine into one voltage large enough to split water into oxygen and hydrogen fuel. But according to Gideon Segev, a postdoctoral researcher at JCAP in Berkeley Lab’s Chemical Sciences Division and the study’s lead author, the problem with this configuration is that even though silicon solar cells can generate electricity very close to their limit, their high-performance potential is compromised when they are part of a water-splitting device.

The current passing through the device is limited by other materials in the stack that don’t perform as well as silicon, and as a result, the system produces much less current than it could – and the less current it generates, the less solar fuel it can produce.

“It’s like always running a car in first gear,” said Segev. “This is energy that you could harvest, but because silicon isn’t acting at its maximum power point, most of the excited electrons in the silicon have nowhere to go, so they lose their energy before they are utilized to do useful work.”

Getting out of first gear

So Segev and his co-authors – Jeffrey W. Beeman, a JCAP researcher in Berkeley Lab’s Chemical Sciences Division, and former Berkeley Lab and JCAP researchers Jeffery Greenblatt, who now heads the Bay Area-based technology consultancy Emerging Futures LLC, and Ian Sharp, now a professor of experimental semiconductor physics at the Technical University of Munich in Germany – proposed a surprisingly simple solution to a complex problem.

“We thought, ‘What if we just let the electrons out?'” said Segev.

In water-splitting devices, the front surface is usually dedicated to solar fuels production, and the back surface serves as an electrical outlet. To work around the conventional system’s limitations, they added an additional electrical contact to the silicon component’s back surface, resulting in an HPEV device with two contacts in the back instead of just one. The extra back outlet would allow the current to be split into two, so that one part of the current contributes to solar fuels generation, and the rest can be extracted as electrical power.

When what you see is what you get

After running a simulation to predict whether the HPEC would function as designed, they made a prototype to test their theory. “And to our surprise, it worked!” Segev said. “In science, you’re never really sure if everything’s going to work even if your computer simulations say they will. But that’s also what makes it fun. It was great to see our experiments validate our simulations’ predictions.”

According to their calculations, a conventional solar hydrogen generator based on a combination of silicon and bismuth vanadate, a material that is widely studied for solar water splitting, would generate hydrogen at a solar to hydrogen efficiency of 6.8 percent. In other words, out of all of the incident solar energy striking the surface of a cell, 6.8 percent will be stored in the form of hydrogen fuel, and all the rest is lost.

In contrast, the HPEV cells harvest leftover electrons that do not contribute to fuel generation. These residual electrons are instead used to generate electrical power, resulting in a dramatic increase in the overall solar energy conversion efficiency, said Segev. For example, according to the same calculations, the same 6.8 percent of the solar energy can be stored as hydrogen fuel in an HPEV cell made of bismuth vanadate and silicon, and another 13.4 percent of the solar energy can be converted to electricity. This enables a combined efficiency of 20.2 percent, three times better than conventional solar hydrogen cells.

The researchers plan to continue their collaboration so they can look into using the HPEV concept for other applications such as reducing carbon dioxide emissions. “This was truly a group effort where people with a lot of experience were able to contribute,” added Segev. “After a year and a half of working together on a pretty tedious process, it was great to see our experiments finally come together.”

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $122.7 billion during the third quarter of 2018, an increase of 4.1 percent over the previous quarter and 13.8 percent more than the third quarter of 2017. Global sales for the month of September 2018 reached $40.9 billion, an uptick of 2.0 percent over last month’s total and 13.8 percent more than sales from June 2017. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Three-quarters of the way through 2018, the global semiconductor industry is on pace to post its highest-ever annual sales, comfortably topping last year’s record total of $412 billion,” said John Neuffer, president and CEO, Semiconductor Industry Association. “While year-to-year growth has tapered in recent months, September marked the global industry’s highest-ever monthly sales, and Q3 was its top-grossing quarter on record. Year-to-year sales in September were up across every major product category and regional market, with sales into China and the Americas continuing to lead the way.”

Regionally, sales increased compared to September 2017 in China (26.3 percent), the Americas (15.1 percent), Europe (8.8 percent), Japan (7.2 percent), and Asia Pacific/All Other (2.4 percent). Sales were up compared to last month in the Americas (6.0 percent), China (1.8 percent), and Europe (1.2 percent), but down slightly in Asia Pacific/All Other (-0.1 percent) and Japan (-0.6 percent).

For comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, consider purchasing the WSTS Subscription Package. For detailed data on the global and U.S. semiconductor industry and market, consider purchasing the 2018 SIA Databook.

September 2018
Billions
Month-to-Month Sales
Market Last Month Current Month % Change
Americas 8.68 9.20 6.0%
Europe 3.53 3.57 1.2%
Japan 3.39 3.37 -0.6%
China 14.10 14.35 1.8%
Asia Pacific/All Other 10.43 10.42 -0.1%
Total 40.12 40.91 2.0%
Year-to-Year Sales
Market Last Year Current Month % Change
Americas 7.99 9.20 15.1%
Europe 3.28 3.57 8.8%
Japan 3.14 3.37 7.2%
China 11.36 14.35 26.3%
Asia Pacific/All Other 10.18 10.42 2.4%
Total 35.95 40.91 13.8%
Three-Month-Moving Average Sales
Market Apr/May/Jun Jul/Aug/Sept % Change
Americas 8.34 9.20 10.2%
Europe 3.67 3.57 -2.7%
Japan 3.39 3.37 -0.8%
China 13.59 14.35 5.6%
Asia Pacific/All Other 10.32 10.42 1.0%
Total 39.31 40.91 4.1%