Category Archives: Process Materials

A powdery mix of metal nanocrystals wrapped in single-layer sheets of carbon atoms, developed at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), shows promise for safely storing hydrogen for use with fuel cells for passenger vehicles and other uses. And now, a new study provides insight into the atomic details of the crystals’ ultrathin coating and how it serves as selective shielding while enhancing their performance in hydrogen storage.

The study, led by Berkeley Lab researchers, drew upon a range of Lab expertise and capabilities to synthesize and coat the magnesium crystals, which measure only 3-4 nanometers (billionths of a meter) across; study their nanoscale chemical composition with X-rays; and develop computer simulations and supporting theories to better understand how the crystals and their carbon coating function together.

The science team’s findings could help researchers understand how similar coatings could also enhance the performance and stability of other materials that show promise for hydrogen storage applications. The research project is one of several efforts within a multi-lab R&D effort known as the Hydrogen Materials — Advanced Research Consortium (HyMARC) established as part of the Energy Materials Network by the U.S. Department of Energy’s Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

Reduced graphene oxide (or rGO), which resembles the more famous graphene (an extended sheet of carbon, only one atom thick, arrayed in a honeycomb pattern), has nanoscale holes that permit hydrogen to pass through while keeping larger molecules at bay.

This carbon wrapping was intended to prevent the magnesium — which is used as a hydrogen storage material — from reacting with its environment, including oxygen, water vapor and carbon dioxide. Such exposures could produce a thick coating of oxidation that would prevent the incoming hydrogen from accessing the magnesium surfaces.

But the latest study suggests that an atomically thin layer of oxidation did form on the crystals during their preparation. And, even more surprisingly, this oxide layer doesn’t seem to degrade the material’s performance.

“Previously, we thought the material was very well-protected,” said Liwen Wan, a postdoctoral researcher at Berkeley Lab’s Molecular Foundry, a DOE Nanoscale Science Research Center, who served as the study’s lead author. The study was published in the Nano Letters journal. “From our detailed analysis, we saw some evidence of oxidation.”

Wan added, “Most people would suspect that the oxide layer is bad news for hydrogen storage, which it turns out may not be true in this case. Without this oxide layer, the reduced graphene oxide would have a fairly weak interaction with the magnesium, but with the oxide layer the carbon-magnesium binding seems to be stronger.

“That’s a benefit that ultimately enhances the protection provided by the carbon coating,” she noted. “There doesn’t seem to be any downside.”

David Prendergast, director of the Molecular Foundry’s Theory Facility and a participant in the study, noted that the current generation of hydrogen-fueled vehicles power their fuel cell engines using compressed hydrogen gas. “This requires bulky, heavy cylindrical tanks that limit the driving efficiency of such cars,” he said, and the nanocrystals offer one possibility for eliminating these bulky tanks by storing hydrogen within other materials.

The study also helped to show that the thin oxide layer doesn’t necessarily hinder the rate at which this material can take up hydrogen, which is important when you need to refuel quickly. This finding was also unexpected based on the conventional understanding of the blocking role oxidation typically plays in these hydrogen-storage materials.

That means the wrapped nanocrystals, in a fuel storage and supply context, would chemically absorb pumped-in hydrogen gas at a much higher density than possible in a compressed hydrogen gas fuel tank at the same pressures.

The models that Wan developed to explain the experimental data suggest that the oxidation layer that forms around the crystals is atomically thin and is stable over time, suggesting that the oxidation does not progress.

The analysis was based, in part, around experiments performed at Berkeley Lab’s Advanced Light Source (ALS), an X-ray source called a synchrotron that was earlier used to explore how the nanocrystals interact with hydrogen gas in real time.

Wan said that a key to the study was interpreting the ALS X-ray data by simulating X-ray measurements for hypothetical atomic models of the oxidized layer, and then selecting those models that best fit the data. “From that we know what the material actually looks like,” she said.

While many simulations are based around very pure materials with clean surfaces, Wan said, in this case the simulations were intended to be more representative of the real-world imperfections of the nanocrystals.

A next step, in both experiments and simulations, is to use materials that are more ideal for real-world hydrogen storage applications, Wan said, such as complex metal hydrides (hydrogen-metal compounds) that would also be wrapped in a protective sheet of graphene.

“By going to complex metal hydrides, you get intrinsically higher hydrogen storage capacity and our goal is to enable hydrogen uptake and release at reasonable temperatures and pressures,” Wan said.

Some of these complex metal hydride materials are fairly time-consuming to simulate, and the research team plans to use the supercomputers at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC) for this work.

“Now that we have a good understanding of magnesium nanocrystals, we know that we can transfer this capability to look at other materials to speed up the discovery process,” Wan said.

Entegris Inc. (NASDAQ: ENTG), a specialty materials provider, today announced the expansion of its Taiwan Technology Center for Research and Development (TTC) in Hsinchu, Taiwan.  The expansion adds a new Microcontamination Control Lab (MCL) that focuses on filtration media development and is home to the company’s relocated Asia Applications and Development Labs (AADL) for trace metal, organic contaminant, and nanoparticle analysis. This addition to the Center’s existing R&D, formulation scale-up, and pilot production capabilities also creates a single, off-site collaboration location for our customers’ specialty chemical, CMP and liquid filtration needs.

Key facts for the $8.5 million USD investment:

  • Class 1000 cleanroom
  • 5x increase in lab space
  • Facility renovations and equipment upgrades

“Interactions and dependencies between process materials and equipment are at a critical evolution point as device scaling continues to be a leading driver for efficient construction of today’s devices. Bringing the industry’s brightest minds together in a state-of-the-art facility enhances Entegris’ unique ability to meet these needs,” offered Entegris Chief Operations Officer, Todd Edlund. “By expanding the MCL facility, we bring together core-competencies in liquid filtration, specialty chemicals, and CMP to create more holistic analytical services and technology development solutions designed to meet our customer’s Logic, DRAM, and 3D NAND device manufacturing challenges.”

For more information on the new TTC and upgraded MCL lab, please visit the Entegris product display area, booth #176, during SEMICON Taiwan, Sept. 13-15, 2017, at the Taipei Nangang Exhibition Center.

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined effect makes it possible to change the magnetic ordering of materials using electric fields.

This offers particular potential for novel data storage devices: multiferroic materials can be used to create nanoscale magnetic storage media that can be deciphered and modified using electric fields.

Magnetic media of this kind would consume very little power and operate at very high speeds. They could also be used in spintronics – a new form of electronics that uses electrons’ spin as well as electrical charge.

Spiral magnetic ordering

Bismuth ferrite is a multiferroic material that exhibits electric and magnetic properties even at room temperature. While its electrical properties have been studied in depth, there was no suitable method for representing magnetic ordering on the nanometer scale until now.

The group led by Georg-H.-Endress Professor Patrick Maletinsky, from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics, has developed quantum sensors based on diamonds with nitrogen vacancy centers. This allowed them, in collaboration with colleagues at the University of Montpellier and the University Paris-Saclay in France, to depict and study the magnetic ordering of a thin bismuth ferrite film for the first time, as they report in Nature.

Knowing how the electron spins behave and how the magnetic field is ordered is of crucial importance for the future application of multiferroic materials as data storage.

The scientists were able to show that bismuth ferrite exhibits spiral magnetic ordering, with two superimposed electron spins (shown in red and blue in the image) adopting opposing orientations and rotating in space, whereas it was previously assumed that this rotation took place within a plane. According to the researchers, the quantum sensors now show that a slight tilt in these opposing spins leads to spatial rotation with a slight twist.

“Our diamond quantum sensors allow not only qualitative but also quantitative analysis. This meant we were able to obtain a detailed picture of the spin configuration in multiferroics for the first time,” explains Patrick Maletinsky. “We are confident that this will pave the way for advances in research into these promising materials.”

Vacancies with special properties

The quantum sensors they used consist of two tiny monocrystalline diamonds, whose crystal lattices have a vacancy and a nitrogen atom in two neighboring positions. These nitrogen vacancy centers contain orbiting electrons whose spins respond very sensitively to external electric and magnetic fields, allowing the fields to be imaged at a resolution of just a few nanometers.

Scientists at the University of Montpellier took the magnetic measurements using the quantum sensors produced in Basel. The samples were supplied by experts from the CNRS/Thales laboratory at University Paris-Saclay, who are leading lights in the field of bismuth ferrite research.

Quantum sensors for the market

The quantum sensors used in the research are suitable for studying a wide range of materials, as they provide precisely detailed qualitative and quantitative data both at room temperature and at temperatures close to absolute zero.

In order to make them available to other research groups, Patrick Maletinsky founded the start-up Qnami in 2016 in collaboration with Dr. Mathieu Munsch. Qnami produces the diamond sensors and provides application advice to its customers from research and industry.

Researchers from North Carolina State University are rolling out a new manufacturing process and chip design for silicon carbide (SiC) power devices, which can be used to more efficiently regulate power in technologies that use electronics. The process – called PRESiCE – was developed with support from the PowerAmerica Institute funded by the Department of Energy to make it easier for companies to enter the SiC marketplace and develop new products.

“PRESiCE will allow more companies to get into the SiC market, because they won’t have to initially develop their own design and manufacturing process for power devices – an expensive, time-consuming engineering effort,” says Jay Baliga, Distinguished University Professor of Electrical and Computer Engineering at NC State and lead author of a paper on PRESiCE that will be presented later this month. “The companies can instead use the PRESiCE technology to develop their own products. That’s good for the companies, good for consumers, and good for U.S. manufacturing.”

Power devices consist of a diode and transistor, and are used to regulate the flow of power in electrical devices. For decades, electronics have used silicon-based power devices. In recent years, however, some companies have begun using SiC power devices, which have two key advantages.

First, SiC power devices are more efficient, because SiC transistors lose less power. Conventional silicon transistors lose 10 percent of their energy to waste heat. SiC transistors lose only 7 percent. This is not only more efficient, but means that product designers need to do less to address cooling for the devices.

Second, SiC devices can also switch at a higher frequency. That means electronics incorporating SiC devices can have smaller capacitors and inductors – allowing designers to create smaller, lighter electronic products.

But there’s a problem.

Up to this point, companies that have developed manufacturing processes for creating SiC power devices have kept their processes proprietary – making it difficult for other companies to get into the field. This has limited the participation of other companies and kept the cost of SiC devices high.

The NC State researchers developed PRESiCE to address this bottleneck, with the goal of lowering the barrier of entry to the field for companies and increasing innovation.

The PRESiCE team worked with a Texas-based foundry called X-Fab to implement the manufacturing process and have now qualified it – showing that it has the high yield and tight statistical distribution of electrical properties for SiC power devices necessary to make them attractive to industry.

“If more companies get involved in manufacturing SiC power devices, it will increase the volume of production at the foundry, significantly driving down costs,” Baliga says.

Right now, SiC devices cost about five times more than silicon power devices.

“Our goal is to get it down to 1.5 times the cost of silicon devices,” Baliga says. “Hopefully that will begin the ‘virtuous cycle’: lower cost will lead to higher use; higher use leads to greater production volume; greater production volume further reduces cost, and so on. And consumers are getting a better, more energy-efficient product.”

The researchers have already licensed the PRESiCE process and chip design to one company, and are in talks with several others.

“I conceived the development of wide bandgap semiconductor (SiC) power devices in 1979 and have been promoting the technology for more than three decades,” Baliga says. “Now, I feel privileged to have created PRESiCE as the nation’s technology for manufacturing SiC power devices to generate high-paying jobs in the U.S. We’re optimistic that our technology can expedite the commercialization of SiC devices and contribute to a competitive manufacturing sector here in the U.S.,” Baliga says.

The paper, “PRESiCE: PRocess Engineered for manufacturing SiC Electronic-devices,” will be presented at the International Conference on Silicon Carbide and Related Materials, being held Sept. 17-22 in Washington, D.C. The paper is co-authored by W. Sung, now at State University of New York Polytechnic Institute; K. Han and J. Harmon, who are Ph.D. students at NC State; and A. Tucker and S. Syed, who are undergraduates at NC State.

SiFive, the first fabless provider of customized, open-source-enabled semiconductors, today announced that UltraSoC will provide debug and trace technology for the SiFive Freedom platform, based on the RISC-V open source processor specification as part of the DesignShare initiative. UltraSoC’s embedded analytics IP will be available through the recently announced SiFive DesignShare ecosystem that gives any company, inventor or maker the ability to harness the power of custom silicon. UltraSoC’s debug and trace functionality will enable users of the Freedom platform to access a wide variety of tools and interfaces to use in their developments.

The DesignShare concept enables an entirely new range of applications. Companies like SiFive, UltraSoC and other ecosystem partners have developed efficient, pre-integrated solutions to lower the upfront engineering costs required to bring a custom chip design based on the SiFive Freedom platform to realization. The partnership between SiFive, originator of the industry’s first open-source chip platform, and UltraSoC, the industry leader in vendor-neutral on-chip debug and analytics tools, significantly strengthens the ecosystem surrounding RISC-V, the open source processor specification which is often dubbed “the Linux of the semiconductor industry.”

“SiFive was founded with the mission to disrupt the semiconductor industry by leveling the playing field for anyone who wants to develop custom silicon,” said Naveed Sherwani, CEO of SiFive. “The DesignShare ecosystem enables aspiring system designers with the tools they need when designing their SoC. We’re thrilled to welcome UltraSoC to the DesignShare ecosystem and look forward to seeing the innovations our collaboration brings to the market.”

UltraSoC’s IP simplifies the development of systems on chip (SoCs) and provides embedded analytics features that enable chip makers to cut development costs significantly and increase the profitability of their projects. The company has taken a leading role in producing a specification for RISC-V processor trace functionality, which UltraSoC and SiFive intend to work together with the RISC-V Foundation to incorporate fully into the RISC-V standard. Trace is a fundamental requirement for developers working with any processor architecture, allowing engineers to view the behavior of their programs in detail, isolating bugs and identifying areas for improvement. UltraSoC and SiFive IP fully supports this recently released trace specification.

“UltraSoC is committed to increasing the number of silicon design starts, and our participation in DesignShare with SiFive is a natural extension of that work,” said Rupert Baines, CEO of UltraSoC. “We are committed to driving the acceleration of the democratization of the semiconductor industry, both through our membership in the RISC-V Foundation and via individual partnerships like this one with SiFive. Making UltraSoC’s IP available through the DesignShare model will enable chipmakers everywhere to leverage the benefits of open source hardware and introduces new innovative designs to the market.”

Rick O’Connor, executive director of the RISC-V Foundation, commented: “The idea behind the open source movement is that one doesn’t have to design everything from scratch. The idea behind DesignShare is to help speed the development of new silicon designs by reducing the barriers of cost, process and integration that have traditionally held back innovation in the semiconductor industry. SiFive, UltraSoC and the other companies that are making their IP available through DesignShare are fundamentally enabling this revolution in an otherwise stagnant industry.”

SiFive was founded by the inventors of RISC-V – Andrew Waterman, Yunsup Lee and Krste Asanovic – with a mission to democratize access to custom silicon. In its first six months of availability, more than 1,000 HiFive1 software development boards have been purchased and delivered to developers in over 40 countries. Additionally, the company has engaged with multiple customers across its IP and SoC products, started shipping the industry’s first RISC-V SoC in November 2016 and announced the availability of its Coreplex RISC-V based IP earlier this month. SiFive’s innovative “study, evaluate, buy” licensing model dramatically simplifies the IP licensing process, and removes traditional road blocks that have limited access to customized, leading edge silicon.

UltraSoC allows designers to create an on-chip infrastructure that non-intrusively monitors a chip’s behavior – both hardware and software. In development, engineers can use this IP to gain an intimate understanding of the interactions between on-chip processor blocks, custom logic, and system software. The company joined the RISC-V Foundation in 2016, with a mission to provide the RISC-V community with secure, independent on-chip development and debug capabilities; earlier in 2017 it offered its RISC-V processor trace specification for adoption by the RISC-V Foundation as part of the open source specification.

Researchers examining the flow of electricity through semiconductors have uncovered another reason these materials seem to lose their ability to carry a charge as they become more densely “doped.” Their results, which may help engineers design faster semiconductors in the future, are published online in the journal ACS Nano.

Semiconductors are found in just about every piece of modern electronics, from computers to televisions to your cell phone. They fall somewhere between metals, which conduct electricity very well, and insulators like glass that don’t conduct electricity at all. This moderate conduction property is what allows semiconductors to perform as switches and transistors in electronics.

The most common material for semiconductors is silicon, which is mined from the earth and then refined and purified. But pure silicon doesn’t conduct electricity, so the material is purposely and precisely adulterated by the addition of other substances known as dopants. Boron and phosphorus ions are common dopants added to silicon-based semiconductors that allow them to conduct electricity.

But the amount of dopant added to a semiconductor matters – too little dopant and the semiconductor won’t be able to conduct electricity. Too much dopant and the semiconductor becomes more like a non-conductive insulator.

“There’s a sweet spot when it comes to doping where the right amount allows for the efficient conduction of electricity, but after a certain point, adding more dopants slows down the flow,” says Preston Snee, associate professor of chemistry at the University of Illinois at Chicago and corresponding author on the paper.

“For a long time scientists thought that the reason efficient conduction of electricity dropped off with the addition of more dopants was because these dopants caused the flowing electrons to be deflected away, but we found that there’s also another way too many dopants impede the flow of electricity.”

Snee, UIC chemistry student Asra Hassan, and their colleagues wanted to get a closer look at what happens when electricity flows through a semiconductor.

Using the Advanced Photon Source Argonne National Laboratory, they were able to capture X-ray images of what happens at the atomic level inside a semiconductor. They used tiny chips of cadmium sulfide for their semiconductor “base” and doped them with copper ions. Instead of wiring the tiny chips for electricity, they generated a flow of electrons through the semiconductors by shooting them with a powerful blue laser beam. At the same time, they took very high energy X-ray photos of the semiconductors at millionths of a microsecond apart – which showed what was happening at the atomic level in real time as electrons flowed through the doped semiconductors.

They found that when electrons were flowing through, the copper ions transiently formed bonds with the cadmium sulfate semiconductor base, which is detrimental to conduction.

“This has never been seen before,” said Hassan. “Electrons are still bouncing off dopants, which we knew already, but we now know of this other process that contributes to impeding flow of electricity in over-doped semiconductors.”

The bonding of the dopant ions to the semiconductor base material “causes the current to get stuck at the dopants, which we don’t want in our electronics, especially if we want them to be fast and efficient,” she said. “However, now that we know this is happening inside the material, we can design smarter systems that minimize this effect, which we call ‘charge carrier modulation of dopant bonding’.”

By Dave Anderson, president, SEMI Americas

The SEMI Strategic Materials Conference (SMC) is the industry’s premier event devoted to technology and business drivers of materials in the electronics supply chain. Slated for September 18-20 in San Jose, Calif., the 18th annual SMC “offers a unique chance to network and discover opportunities in and around the industry in a year where dramatic growth has returned to the semiconductor market,” observes SMC 2017 co-chair Mark Thirsk of Linx Consulting, who will provide opening remarks at the conference.

SMC features three distinguished keynote speakers: AMD’s CTO, Mark Papermaster, will discuss “The Future of Semiconductors: Moore’s Law Plus.”  Next, Lam Research’s CTO, Dave Hemker, will present “The Next Level: Is it Time for Equipment and Materials Suppliers to Collaborate More?” describing how the current market environment is having a rippling effect across the supply chain. “As the continuation of Moore’s Law becomes ever-more challenging, closer, earlier collaboration between materials suppliers, equipment makers, and semiconductor manufacturers becomes necessary,” says Hemker.   SMIC’s Sunny Hui, senior VP of Marketing, will kick off day two telling the audience how to “Collaborate to Win in China.”

The first day’s agenda features “Economic and Market Trends: The Consolidation Game (M&A), China, 200mm & More,” with speakers from Applied Materials, Credit Suisse, Linx Consulting, and SEMI China.

Detailing Heterogeneous Integration for Performance and Scaling, UCLA’s Subramanian S. Iyer will describe how adapting silicon-inspired processing, integration, and materials to advanced packaging constructs may be the key to perpetuating Moore’s Law.

The Future of Materials Market in China will focus on the state of China’s semiconductor materials industry, government policies, growth opportunities for suppliers, and best practices for companies operating in this expanding environment.  Hear from Dow Chemical, Konfoong Materials International (KFMI) and SMIC.

More than twenty program sessions will explore the developments driving industry growth and enabling innovative new materials for today’s evolving electronics industry. The conference agenda also includes:

  • Process Challenges at 5nm & Beyond: Insights from ARM, Samsung, and TSMC.
  • Universities − Innovation Drivers: Viewpoints from Stanford University, University of California Berkeley, and University of Chicago.
  • Materials Supply Chain Challenges in Adjacent Industries: Perspectives from Linde Group, PARC (Xerox), and Pixelligent Technologies
  • Heterogeneous Integration − Design to New Materials & Packaging: Insights from ASE Group, imec, and UCLA

SMC 2017 will close with an Executive Panel discussion addressing emerging material challenges for each participant’s company and the segment within which it operates. Executives from Intel, Tokyo Electron, TSMC and Versum Materials will share their views on how the industry can collectively address challenges through focused R&D investment, collaboration throughout the vertical supply chain, and the application of innovative business strategies to ensure a win-win for all companies across the extended supply chain.

I hope to see you at the SEMI Strategic Materials Conference this month. Learn more and register here.

Note: The SEMI Strategic Material Conference (SMC) is organized by the Chemical and Gas Manufacturers Group, a SEMI not-for-profit Special Interest Group comprised of leading manufacturers, producers, packagers, and distributors of chemicals and gases used in the electronics industry.

 

The modern world relies on portable electronic devices such as smartphones, tablets, laptops, cameras or camcorders. Many of these devices are powered by lithium-ion batteries, which could be smaller, lighter, safer and more efficient if the liquid electrolytes they contain were replaced by solids. A promising candidate for a solid-state electrolyte is a new class of materials based on lithium compounds, presented by physicists from Switzerland and Poland.

Commercially available lithium-ion batteries consist of two electrodes connected by a liquid electrolyte. This electrolyte makes it difficult for engineers to reduce the size and weight of the battery, in addition, it is subjected to leakage; the lithium in the exposed electrodes then comes into contact with oxygen in the air and undergoes self-ignition. Boeing’s troubles, which for many months caused a full grounding of Dreamliner flights, are a spectacular example of the problems brought about by the use of modern lithium-ion batteries.

Laboratories have been searching for solid materials capable of replacing liquid electrolytes for years. The most popular candidates include compounds in which lithium ions are surrounded by sulphur or oxygen ions. However, in the journal Advanced Energy Materials, a Swiss-Polish team of scientists has presented a new class of ionic compounds where the charge carriers are lithium ions moving in an environment of amine (NH2) and tetrahydroborate (BH4) ions. The experimental part of the research project was carried out at Empa, the Swiss Federal Laboratories for Materials Science and Technology in Dübendorf, and at the University of Geneva (UG). The person responsible for the theoretical description of the mechanisms leading to the exceptionally high ionic conductivity of the new material was Prof. Zbigniew Lodziana from the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Cracow.

“We were dealing with lithium amide-borohydride, a substance previously regarded as not being too good an ionic conductor. This compound is made by milling two constituents in a ratio of 1 to 3. To date, nobody has ever tested what happens to ionic conductivity when the proportions between these constituents are changed. We were the first to do so and suddenly it turned out that by reducing the number of NH2 groups to a certain limit we could significantly improve the conductivity. It increases so much that it becomes comparable to the conductivity of liquid electrolytes!” says Prof. Lodziana.

The several dozen-fold boost in ionic conductivity of the new material – the effect of a change in the proportion of its constituents – opens up a new, unexplored direction in the search for a candidate for a solid-state electrolyte. Previously, throughout the world, the focus was almost exclusively on changes in the composition of the chemical substance. It has now become apparent that, at the stage of production of the compound, a key role can be played by the proportions themselves of the ingredients used to manufacture them.

“Our lithium amide-borohydride is a representative of a promising new class of solid-state electrolyte materials. However, it will be some time before batteries built on such compounds come into use. For example, there should be no chemical reactions between the electrolyte and the electrodes leading to their degradation. This problem is still waiting for an optimal solution”, comments Prof. Lodziana.

The research prospects are promising. The scientists from Empa, UG and IFJ PAN did not confine themselves to just characterizing the physico-chemical properties of the new material. The compound was used as an electrolyte in a typical Li4Ti5O12 half-cell. The half-cell performed well, in tests of running down and recharging 400 times it proved to be stable. Promising steps have also been taken towards resolving another important issue. The lithium amide-borohydride described in the publication exhibited excellent ionic conductivity only at about 40 °C. In the most recent experiments this has already been lowered to below room temperature.

Theoretically, however, the new material remains a challenge. Hitherto models have been constructed for substances in which the lithium ions move in an atomic environment. In the new material, ions move among light molecules that adjust their orientation to ease the lithium movement.

“In the proposed model, the excellent ionic conductivity is a consequence of the specific construction of the crystalline lattice of the tested material. This network in fact consists of two sub-lattices. It turns out that the lithium ions are present here in the elementary cells of only one sub-lattice. However, the diffusion barrier between the sub-lattices is low. Under appropriate conditions, the ions thus travel to the second, empty sub-lattice, where they can move quite freely,” explains Prof. Lodziana.

The theoretical description presented here explains only some of the observed features of the new material. The mechanisms responsible for its high conductivity are certainly more complex. Their better understanding should significantly accelerate the search for optimal compounds for a solid-state electrolyte and consequently shorten the process of commercialization of new power sources that are most likely to revolutionize portable electronics.

FlexTech, a SEMI strategic association partner, will host a one-day Flexible Hybrid Electronics and Sensors Automotive Industry workshop in Detroit, Michigan on September 13, 2017 to explore how FHE adds functionality, decreases weight and impacts design. Automotive and electronics industry leaders will gather to discuss the market demands and challenges with automotive technology and present disruptive changes brought by flexible hybrid electronics (FHE) and sensors.

The forum will breakdown the topic into four key areas: OEM applications; market analysis and forecasts; challenges to integration; and solutions for Tier 2 and Tier 3 suppliers. Speakers include representatives from SBD Automotive, Fiat-Chrysler Group LLC, Velodyne LiDAR, Lumitex, Alpha Micron, NextFlex, Auburn University, Universal Instruments, Interlink Electronics, Georgia Institute of Technology, DuPont Photovoltaics & Advanced Materials and more.

“This forum is an excellent opportunity to discover the possibilities of flexible electronic systems incorporating advanced semiconductors, MEMS, and sensors, which will provide lightweight, sensor networks that conform, curve, and possibly more.  New automotive applications in this area will enable wholly new approaches for the in-cabin driving experience,” said Dr. Melissa Grupen-Shemansky, CTO for Flexible Electronics & Advanced Packaging at SEMI | FlexTech.

Company tours to Ford and a networking dinner are scheduled for September 12, 2017. For more information on the forum and how to register visit the event websiteat www.semi/org/en/FHE-forum-summary.

Advanced Semiconductor Engineering, Inc (TAIEX: 2311, NYSE: ASX), a semiconductor assembly and test service provider, announced that its K7 manufacturing facility in Kaohsiung has received the Green Factory Label from the Industrial Development Bureau, Ministry of Economic Affairs, Taiwan. K7 is the sixth factory following K3, K5, K11, K12 and K15, at the ASE Kaohsiung Nantze campus to receive the label.

ASE is fully committed to corporate sustainability through actions that produce tangible results and meet our goal of co-existence with the environment. In 2009, ASE Kaohsiung green building plans were drawn up to combine nature with technology, and provide a green factory environment optimized for living, productivity and the ecology. The ASE K7 building has incorporated green innovation, eco-friendly designs, energy and water conservation, waste reduction, low carbon and various environmental benchmarks to achieve the green factory label.

‘Sustainability has always been at the core of ASE’s corporate philosophy,’ said KC Chou, senior vice president, ASE. ‘In 2014, ASE Kaohsiung implemented the EEWH-RN system and adopted ‘clean production’. Beginning with sustainable product design and production, green management, social responsibility to innovation; these four facets helped reduce resource consumption, reduce waste, lower impacts to the environment and other improvements that aim to strike a balance between economic and environmental sustainability. Our Kaohsiung facilities are constantly challenged to establish energy reduction goals and each department regularly proposes diverse programs to lower carbon footprints. This year, K7 is also working towards achieving the EEWH-RN diamond grade. At ASE, we will continuously raise the bar on our sustainability performance,’ he concluded.

About ASE Sustainability Actions and Results

ASE K7

  • Green innovation. The use of DI water to replace acetic acid reduced the usage of organic acid by 14,400 liters.
  • Green material usage. The use of boron-free developing agent reduced boron-containing agent usage by 1,830 liters and boron-containing liquid waste by 2,015 metric tons per year. The use of lead-free solder paste reduced usage of lead paste by 1,500 kg per year.
  • Energy efficient manufacturing process. Improvements made to the adsorption dryer reduced energy usage by 278,495 kWh per year.
  • Water efficiency. The use of chamber piping to control water flow resulted in water savings of 314.52 tons per year. Employing UF and RO systems further reduced wastewater discharge volume by 15,600 tons.
  • Lower carbon emissions. Converting the fixed frequency of chilled water pumps and cooling water pumps to variable frequency enabled us to reduce 625 tons of CO2 equivalent per year. Energy efficiency lights are installed throughout the factory premises, further reducing 793 tons of CO2 equivalent per year.
  • Waste reduction. Establishing a central chemical delivery system helped reduce the use of 1,208 chemical barrels per year. We also reduced photoresist coating usage by 14,400 liters per year. Gold and copper reuse amounted to 474.45 kg per year. Wafer cassette reuse amounted to 39,795 pieces per year.

Building certifications as of August 31, 2017

  • LEED rating:Kaohsiung K12, K21, K22, K23, K26;Chung Li Buildings K and L;Shanghai Headquarters
  • EEWH rating:Kaohsiung K3, K4, K5, K7, K11, K12, K14B(water recycling facility), K15, K16, K21, K26;Chung Li Building A
  • Green Factory Label:Kaohsiung K3, K5, K7, K11, K12, K15
  • In progress: The construction of our new K24 building in Kaohsiung has taken into consideration of ‘low carbon footprint building’ methodologies from the transportation of materials, equipment, type of material used, renovation, dismantling and the entire building’s life cycle.