Category Archives: Process Materials

Researchers at North Carolina State University have created a high voltage and high frequency silicon carbide (SiC) power switch that could cost much less than similarly rated SiC power switches. The findings could lead to early applications in the power industry, especially in power converters like medium voltage drives, solid state transformers and high voltage transmissions and circuit breakers.

A new NC State high-power switch has the potential to work more efficiently and cost less than conventional solutions. Credit: Xiaoqing Song, NC State University

A new NC State high-power switch has the potential to work more efficiently and cost less than conventional solutions. Credit: Xiaoqing Song, NC State University

Wide bandgap semiconductors, such as SiC, show tremendous potential for use in medium- and high-voltage power devices because of their capability to work more efficiently at higher voltages. Currently though, their high cost impedes their widespread adoption over the prevailing workhorse and industry standard – insulated-gate bipolar transistors (IGBT) made from silicon – which generally work well but incur large energy losses when they are turned on and off.

The new SiC power switch, however, could cost approximately one-half the estimated cost of conventional high voltage SiC solutions, say Alex Huang and Xiaoqing Song, researchers at NC State’s FREEDM Systems Center, a National Science Foundation-funded engineering research center. Besides the lower cost, the high-power switch maintains the SiC device’s high efficiency and high switching speed characteristics. In other words, it doesn’t lose as much energy when it is turned on or off.

The power switch, called the FREEDM Super-Cascode, combines 12 smaller SiC power devices in series to reach a power rating of 15 kilovolts (kV) and 40 amps (A). It requires only one gate signal to turn it on and off, making it simple to implement and less complicated than IGBT series connection-based solutions. The power switch is also able to operate over a wide range of temperatures and frequencies due to its proficiency in heat dissipation, a critical factor in power devices.

“Today, there is no high voltage SiC device commercially available at voltage higher than 1.7 kV,” said Huang, Progress Energy Distinguished Professor and the founding director of the FREEDM Systems Center. “The FREEDM Super-Cascode solution paves the way for power switches to be developed in large quantities with breakdown voltages from 2.4 kV to 15 kV.”

The FREEDM Super-Cascode switch was presented by Xiaoqing Song, a Ph.D. candidate at the FREEDM Systems Center under Huang’s supervision, at the IEEE Energy Conversion Congress & Exposition (ECCE 2016) held in Milwaukee from Sept. 18-22, 2016.

A team led by Cory Dean, assistant professor of physics at Columbia University, Avik Ghosh, professor of electrical and computer engineering at the University of Virginia, and James Hone, Wang Fong-Jen Professor of Mechanical Engineering at Columbia Engineering, has directly observed–for the first time–negative refraction for electrons passing across a boundary between two regions in a conducting material. First predicted in 2007, this effect has been difficult to confirm experimentally. The researchers were able to observe the effect in graphene, demonstrating that electrons in the atomically thin material behave like light rays, which can be manipulated by such optical devices as lenses and prisms. The findings, which are published in the September 30 edition of Science, could lead to the development of new types of electron switches, based on the principles of optics rather than electronics.

Illustration of refraction through a normal optical medium versus what it would look like for a medium capable of negative refraction. Credit: Cory Dean, Columbia University

Illustration of refraction through a normal optical medium versus what it would look like for a medium capable of negative refraction. Credit: Cory Dean, Columbia University

“The ability to manipulate electrons in a conducting material like light rays opens up entirely new ways of thinking about electronics,” says Dean. “For example, the switches that make up computer chips operate by turning the entire device on or off, and this consumes significant power. Using lensing to steer an electron ‘beam’ between electrodes could be dramatically more efficient, solving one of the critical bottlenecks to achieving faster and more energy efficient electronics.”

Dean adds, “These findings could also enable new experimental probes. For example, electron lensing could enable on-chip versions of an electron microscope, with the ability to perform atomic scale imageing and diagnostics. Other components inspired by optics, such as beam splitters and interferometers, could additionally enable new studies of the quantum nature of electrons in the solid state.”

While graphene has been widely explored for supporting high electron speed, it is notoriously hard to turn off the electrons without hurting their mobility. Ghosh says, “The natural follow-up is to see if we can achieve a strong current turn-off in graphene with multiple angled junctions. If that works to our satisfaction, we’ll have on our hands a low-power, ultra-high-speed switching device for both analog (RF) and digital (CMOS) electronics, potentially mitigating many of the challenges we face with the high energy cost and thermal budget of present day electronics.”

Light changes direction – or refracts – when passing from one material to another, a process that allows us to use lenses and prisms to focus and steer light. A quantity known as the index of refraction determines the degree of bending at the boundary, and is positive for conventional materials such as glass. However, through clever engineering, it is also possible to create optical “metamaterials” with a negative index, in which the angle of refraction is also negative. “This can have unusual and dramatic consequences,” Hone notes. “Optical metamaterials are enabling exotic and important new technologies such as super lenses, which can focus beyond the diffraction limit, and optical cloaks, which make objects invisible by bending light around them.”

Electrons travelling through very pure conductors can travel in straight lines like light rays, enabling optics-like phenomena to emerge. In materials, the electron density plays a similar role to the index of refraction, and electrons refract when they pass from a region of one density to another. Moreover, current carriers in materials can either behave like they are negatively charged (electrons) or positively charged (holes), depending on whether they inhabit the conduction or the valence band. In fact, boundaries between hole-type and electron-type conductors, known as p-n junctions (“p” positive, “n” negative), form the building blocks of electrical devices such as diodes and transistors.

“Unlike in optical materials”, says Hone, “where creating a negative index metamaterial is a significant engineering challenge, negative electron refraction occurs naturally in solid state materials at any p-n junction.”

The development of two-dimensional conducting layers in high-purity semiconductors such as GaAs (Gallium arsenide) in the 1980s and 1990s allowed researchers to first demonstrate electron optics including the effects of both refraction and lensing. However, in these materials, electrons travel without scattering only at very low temperatures, limiting technological applications. Furthermore, the presence of an energy gap between the conduction and valence band scatters electrons at interfaces and prevents observation of negative refraction in semiconductor p-n junctions. In this study, the researchers’ use of graphene, a 2D material with unsurpassed performance at room temperature and no energy gap, overcame both of these limitations.

The possibility of negative refraction at graphene p-n junctions was first proposed in 2007 by theorists working at both the University of Lancaster and Columbia University. However, observation of this effect requires extremely clean devices, such that the electrons can travel ballistically, without scattering, over long distances. Over the past decade, a multidisciplinary team at Columbia – including Hone and Dean, along with Kenneth Shepard, Lau Family Professor of Electrical Engineering and professor of biomedical engineering, Abhay Pasupathy, associate professor of physics, and Philip Kim, professor of physic at the time (now at Harvard) – has worked to develop new techniques to construct extremely clean graphene devices. This effort culminated in the 2013 demonstration of ballistic transport over a length scale in excess of 20 microns. Since then, they have been attempting to develop a Veselago lens, which focuses electrons to a single point using negative refraction. But they were unable to observe such an effect and found their results puzzling.

In 2015, a group at Pohang University of Science and Technology in South Korea reported the first evidence focusing in a Veselago-type device. However, the response was weak, appearing in the signal derivative. The Columbia team decided that to fully understand why the effect was so elusive, they needed to isolate and map the flow of electrons across the junction. They utilized a well-developed technique called “magnetic focusing” to inject electrons onto the p-n junction. By measuring transmission between electrodes on opposite sides of the junction as a function of carrier density they could map the trajectory of electrons on both sides of the p-n junction as the incident angle was changed by tuning the magnetic field.

Crucial to the Columbia effort was the theoretical support provided by Ghosh’s group at the University of Virginia, who developed detailed simulation techniques to model the Columbia team’s measured response. This involved calculating the flow of electrons in graphene under the various electric and magnetic fields, accounting for multiple bounces at edges, and quantum mechanical tunneling at the junction. The theoretical analysis also shed light on why it has been so difficult to measure the predicted Veselago lensing in a robust way, and the group is developing new multi-junction device architectures based on this study. Together the experimental data and theoretical simulation gave the researchers a visual map of the refraction, and enabled them to be the first to quantitatively confirm the relationship between the incident and refracted angles (known as Snell’s Law in optics), as well as confirmation of the magnitude of the transmitted intensity as a function of angle (known as the Fresnel coefficients in optics).

“In many ways, this intensity of transmission is a more crucial parameter,” says Ghosh, “since it determines the probability that electrons actually make it past the barrier, rather than just their refracted angles. The transmission ultimately determines many of the performance metrics for devices based on these effects, such as the on-off ratio in a switch, for example.”

As a provider of process solutions for a broad range of applications, Oxford Instruments announced the development and launch of the SiC via plasma etch process using its high performance PlasmaPro100Polaris etch system. SiC is becoming an increasingly important material, particularly in the arena of high performance GaN RF devices using SiC as a substrate. A smooth via etch through the SiC is essential to enable these devices, and Oxford Instruments has developed the ideal solution for etching high quality SiC vias efficiently. Combined with a low damage GaN etch within the same hardware, the PlasmaPro100 Polaris offers a unique capability for GaN based RF device plasma etch processing requirements.

The technology developed offers several process capabilities suited to the SiC via application:

  • High SiC etch rate enabling maximum throughput
  • Smooth sidewalls for problem free post etch metallisation
  • High selectivity to underlying GaN layer giving a smooth, low damage stop onto the GaN device layers
  • Clamping of sapphire carriers using Oxford Instruments’ unique patented Electrostatic Clamp technology ensuring excellent sample temperature control and maximum yield
  • Capability of etching SiC and GaN in the same tool through advanced plasma source technology
  • High utilisation provided by long Mean Time Between Cleans (MTBC)

Dr Mark Dineen, Optoelectronics Product Manager at Oxford Instruments Plasma Technology says, “Our Applications specialists have spent significant time developing this SiC via etch process on the PlasmaPro100 Polaris etch system, enabling high selectivity and throughput amongst other benefits. These benefits will enable our customers to etch both SiC and GaN in the same tool through advanced plasma source technology.”

Oxford Instruments delivers plasma processing systems, and offers a library of over 6,000 process recipes, all backed by a global support and service network.

SEM showing smooth via etch through SiC

SEM showing smooth via etch through SiC

Brewer Science was honored by the Missouri Association of Manufacturers with a Made in Missouri Leadership Award (MMLA) for Sustainability Leadership. The award honors innovative Missouri manufacturers and leaders that are shaping the future of global manufacturing.

Brewer Science received recognition for the development and implementation of a robust and strategic environmental program, which led to a program that was certified Zero Waste to Landfill The impact of this certification reinforces Brewer Science’s commitment to the environment, both internally and externally.

“Environmental responsibility does not require an ROI – it is a simple truth and it adds value to our company, but more importantly to the global community,” said Tom Brown, Executive Director, Corporate Production and Sustainability. “Reducing the environmental footprint at Brewer Science has also had a positive impact on the region and in our approach to business by allowing us to contain costs through improved efficiencies.”

“In addition to monitoring and managing our waste, Brewer Science has continued a partnership with the community by helping stakeholders properly dispose of their waste,” said Matt Beard, Director of Integrated Management Systems. “By working with the City of Rolla, the Ozark Rivers Solid Waste Management District, the Missouri Department of Natural Resources, the Meramec Regional Planning Commission, and the Phelps County Commission, Brewer Science provides area residents with community collections that have enabled them to properly dispose of almost 811,000 pounds of waste over the past 11 years.”

Brewer Science is a developer and manufacturer of materials, processes, and equipment for the fabrication of semiconductors and microelectronic devices. With its headquarters in Rolla, Missouri, Brewer Science supports customers throughout the world with a service and distribution network in North America, Europe, and Asia. Brewer Science has earned the Zero Waste to Landfill certification from GreenCircle Certification LLC.

Brewer Science is celebrating 35 years of innovation. Founded in 1981 by Dr. Terry Brewer, the company is known as an innovator and manufacturer of leading-edge materials and processes used in the semiconductor and microelectronics industry. The company’s in-depth knowledge and expertise in materials science, chemistry, physics, optics, modeling, and process integration distinguish Brewer Science from all other material suppliers worldwide. Dr. Terry Brewer is recognized as the inventor of anti-reflective coatings (ARC materials) and is widely regarded as a prominent global industry expert in semiconductor manufacturing.

Dr. Brewer has created an environment where employees are inspired to not just create a product, but have the freedom to be completely innovative. Under his leadership, Brewer Science has grown to be respected internationally and have a global network of highly trained people providing superior products, support, and service.

The technologies invented and manufactured at Brewer Science have been critical in the development of smaller, faster, and more powerful electronic devices. This year continues to be one of celebration as Brewer Science commemorates its 35th anniversary while highlighting its many technological breakthroughs in the microelectronics and related industries worldwide.

The bill of materials (BOM) for an iPhone 7 equipped with 32 gigabytes (GB) of NAND flash memory carries $219.80 in bill of materials costs, according to a preliminary estimate from IHS Markit (Nasdaq: INFO), a source in critical information, analytics and solutions.

After $5 in basic manufacturing costs are added, Apple’s total cost to manufacture the iPhone 7 rises to $224.80. The unsubsidized price for a 32GB iPhone 7 is $649. IHS Markit has not yet performed a teardown analysis on the larger iPhone 7 Plus. This preliminary estimated total is $36.89 higher than the final analysis of the iPhone 6S published by IHS in December 2015.

“Total BOM costs for the iPhone 7 are more in line with what we have seen in teardowns of recent flagship phones from Apple’s main competitor, Samsung, in that the costs are higher than in previous iPhone teardown analyses,” said Andrew Rassweiler, senior director of cost benchmarking services for IHS Markit. “All other things being equal, Apple still makes more margin from hardware than Samsung, but materials costs are higher than in the past.”

Same shape. No jack.

While the overall shape and physical design of the iPhone 7 is similar to the iPhone 6S that preceded it, the new display has wider color gamut, including DCI-P3 as well as traditional sRGB, which improves the rendering of photos and videos. The device’s haptic engine, which provides the “click” feel for users, has also been improved for longer-duty cycles and better dynamic response. The home button is now static and mimics the MacBook in terms of a solid-state button design.

Apple has also eliminated the 3.5 millimeter headphone jack, allowing a larger battery and haptic motor. “Where there was an audio jack in the previous design, Apple replaced it with a symmetrical grill — not for speakers, but for the waterproof microphone, leaving more room for the larger battery and Taptic Engine,” Rassweiler said.

Increased base-model storage

Apple has increased the iPhone 7’s storage density. For the first time, the base model starts at 32 gigabytes (GB) – which is only the second time Apple has upgraded the base storage in the iPhone. From a cost perspective, the shift from 16GB/64GB/128GB iPhones to 32GB/128GB/256GB is a big jump. “Despite significant cost erosion in NAND flash over the last year, this increase in the overall memory cost definitely puts pressure on the bill of materials costs — and therefore margins — from Apple’s perspective,” Rassweiler said.

Intel returns

The Intel design win, and six years of absence that Intel had from the iPhone, is important to note. Even so, Intel still shares the processor business with Qualcomm. “Whereas Apple strives to have ‘one iPhone model for all carriers and markets,’ there are a number of different hardware permutations supporting various countries and carriers,” Rassweiler said. “Apple will likely look for ways to simplify the design moving forward, which means one supplier – whether Intel or Qualcomm – will likely dominate, as part of supplier and SKU streamlining.”

According to Wayne Lam, principal analyst of smartphone electronics, IHS Markit, “Largely left behind in the 4G LTE market, Intel has finally worked itself back into the iPhone, which is a huge win, but not one that is going to be financially significant in the near term for Intel.”

RF paths

Apple has also eliminated segmented antenna bands, which means the company is pushing all radio-frequency (RF) paths to the very ends of the phone – both on the top and bottom. The aluminum uni-body construction and design forces all RF paths into those two locations. Whereas other smartphones use a glass back and RF components with antennas mounted on the ample back spaces, Apple is restricted to just two physical antennas.  “This design limitation may force Apple to go back to an all-glass design again so that they can fit in 4x4MIMO LTE antennas and more features like wireless charging in the next iPhone iteration,” Lam said.

Modem moved

The baseband thin modem has been moved next to the A10 processor. Prior to the iPhone 7, the thin modem was always on the other side of the SIM card receptacle. “This is a subtle change but likely shows us where Apple wants to take this,” Lam said, “eventually putting the thin modem right on the apps processor package or even integrating it into the A-series processor.”

Officially water resistant

iPhone 7 is now officially rated as water resistant. “We also saw evidence of this water proofing design evolution in the earlier iPhone 6S, which included additional gasketing around critical connectors, as well as the use of WiFi antenna at the end of the primary speaker box,”Lam said. “Doing so pushes the antennas near the only other opening, for better reception and transmission.”

Jet-black polished case

Jet black polish is a new option on 128GB and 256GB models. “This is a new feature that produces a whole new look for the iPhone,” Lam said. “It is a lower yielding, time-intensive manufacturing step that adds cost, as well as considerable value, pushing the retail price higher for those requesting this option.”

Antenna speaker design

The antenna speaker design on the iPhone 7 came from the WiFi antenna packed into the speakers of Apple’s MacBook.  “Apple likes to reuse these unique designs throughout their product lines,” Lam said. In a first for the iPhone series, the headset speaker now doubles as a stereo speaker.

Upgraded camera

While not as groundbreaking as the two optical paths in the iPhone 7 Plus, the iPhone 7 camera has now been upgraded to optical image stabilization (OIS), for better low light performance.

Improved battery life

The battery has been increased to 1960mAhr capacity from 1715mAh in the previous iPhone 6s.  This change is consistent with Apple’s claims of improved battery life.

Solid State Technology announced today that its premier semiconductor manufacturing conference and networking event, The ConFab, will be held at the iconic Hotel del Coronado in San Diego on May 14-17, 2017. A 30% increase in attendance in 2016 with a similar uplift expected in 2017, makes the venue an ideal meeting location as The ConFab continues to expand.

    

For more than 12 years, The ConFab, an invitation-only executive conference, has been the destination for key industry influencers and decision-makers to connect and collaborate on critical issues.

“The semiconductor industry is maturing, yet opportunities abound,” said Pete Singer, Editor-in-Chief of Solid State Technology and Conference Chair of The ConFab. “The Internet of Things (IoT) is exploding, which will result in a demand for “things” such as sensors and actuators, as well as cloud computing. 5G is also coming and will be the key technology for access to the cloud.”

The ConFab is the best place to seek a deeper understanding on these and other important issues, offering a unique blend of market insights, technology forecasts and strategic assessments of the challenges and opportunities facing semiconductor manufacturers. “In changing times, it’s critical for people to get together in a relaxed setting, learn what’s new, connect with old friends, make new acquaintances and find new business opportunities,” Singer added.

Dave Mount

David Mount

Solid State Technology is also pleased to announce the addition of David J. Mount to The ConFab team as marketing and business development manager. Mount has a rich history in the semiconductor manufacturing equipment business and will be instrumental in guiding continued growth, and expanding into new high growth areas.

Mainstream semiconductor technology will remain the central focus of The ConFab, and the conference will be expanded with additional speakers, panelists, and VIP attendees that will participate from other fast growing and emerging areas. These include biomedical, automotive, IoT, MEMS, LEDs, displays, thin film batteries, photonics and advanced packaging. From both the device maker and the equipment supplier perspective, The ConFab 2017 is a must-attend networking conference for business leaders.

The ConFab conference program is guided by a stellar Advisory Board, with high level representatives from GLOBALFOUNDRIES, Texas Instruments, TSMC, Cisco, Samsung, Intel, Lam Research, KLA-Tencor, ASE, NVIDIA, the Fab Owners Association and elsewhere.

Details on the invitation-only conference are at: www.theconfab.com. For sponsorship inquiries, contact Kerry Hoffman at [email protected]. For details on attending as a guest or qualifying as a VIP, contact Sally Bixby at [email protected].

Materials with large dielectric constants — aka “high-K materials” — have recently garnered attention for their potential use within future generations of reduced-dimension semiconductor devices.

Barium strontium titanate, one such material, possesses an inherently large dielectric constant that can be altered significantly by an applied electrical field — by as much as a factor of 10. While this property has been known to exist for more than half a century and many researchers have attempted to exploit it, the technology has been limited by the low quality of the material. By semiconductor industry standards, the material is considered to be defective.

But researchers at University of California, Santa Barbara, who began exploring thin-film tunable dielectrics using sputtered material nearly two decades ago, are now trying to leverage advanced and scalable materials deposition techniques like molecular beam epitaxy (MBE) to create tunable, high-frequency integrated circuits and devices with high-quality materials that are comparable to modern semiconductor technology.

As the group reports this week in Applied Physics Letters, from AIP Publishing, by using extremely high-quality epitaxial materials they were able to greatly reduce the dielectric loss in ferroelectric tunable radio-frequency (RF) capacitors. Advances at the fundamental level, such as this one, open the door to future RF materials and devices that can be electrically reconfigured or “tuned” to adapt to changing environments.

The catch is that the deposition of complex oxides, such as barium strontium titanate, is problematic because of the high temperatures and oxygen-rich environment involved.

“Our work was made possible by recent advances in a hybrid form of MBE at UCSB that uses metal organic precursors,” explained Susanne Stemmer, a professor at the Materials Research Laboratory at UCSB.

The material’s large dielectric constants “present fabrication challenges because the inherently high capacitance density of the films requires smaller electrode dimensions and finer lithography than many typical integrated capacitor structures,” said Robert York, a professor in the Electrical & Computer Engineering department at UCSB. “Low-loss reactive devices also pose significant measurement challenges at microwave frequencies. The close collaboration of materials scientists and electrical engineers, and years of experience in device processing, was integral to the success of our work.”

Significantly, the team’s work clarifies that early work within the field that reported disappointing performances of BST-based devices was limited primarily by deposition and processing methods — not by intrinsic limitations of the underlying material itself.

“Our work also demonstrates that with suitable modifications, MBE systems — a proven technology for large-scale manufacturing of compound semiconductor materials — can be used to deposit a wide variety of high-quality materials,” Stemmer noted.

Another key discovery for the team was “exposing the susceptibility of the material to contamination by other organic materials commonly used in photolithography processes, which required some changes in the fabrication process that, in retrospect, may have factored into the low quality factors reported in the past,” York pointed out.

In terms of applications, materials capable of being altered electronically show enormous potential for adaptive or reconfigurable electronic systems — particularly high-frequency communications.

“For example, tunable capacitors using barium strontium titanate can be used to create tunable antennas for cellular communications, which allows a small antenna to be tuned over a wide frequency range or enables a phone to adapt to different surroundings for improved efficiency and battery life,” York said.

Barium strontium titanate devices can also be used to create low-cost phase-shifter devices for phased-array antennas in mobile satellite communication systems.

“In fact, some barium strontium titanate devices are already used for commercial RF electronics and the infrastructure for deposition and fabrication already exists within most semiconductor foundries, so the timeline for exploiting this advance could be relatively short compared to the typical timeline for a materials advance,” York added.

While numerous research avenues exist for further exploring the materials involved, and improving the processing and device design, one immediate next step for the team is to “demonstrate high-performance integrated circuits with films deposited directly on metal electrodes,” Stemmer said. “Integration with other commercially viable substrate materials is also of interest.”

It is the double helix, with its stable and flexible structure of genetic information, that made life on Earth possible in the first place. Now a team from the Technical University of Munich (TUM) has discovered a double helix structure in an inorganic material. The material comprising tin, iodine and phosphorus is a semiconductor with extraordinary optical and electronic properties, as well as extreme mechanical flexibility.

Flexible yet robust – this is one reason why nature codes genetic information in the form of a double helix. Scientists at TU Munich have now discovered an inorganic substance whose elements are arranged in the form of a double helix.

The substance called SnIP, comprising the elements tin (Sn), iodine (I) and phosphorus (P), is a semiconductor. However, unlike conventional inorganic semiconducting materials, it is highly flexible. The centimeter-long fibers can be arbitrarily bent without breaking.

“This property of SnIP is clearly attributable to the double helix,” says Daniela Pfister, who discovered the material and works as a researcher in the work group of Tom Nilges, Professor for Synthesis and Characterization of Innovative Materials at TU Munich. “SnIP can be easily produced on a gram scale and is, unlike gallium arsenide, which has similar electronic characteristics, far less toxic.”

Countless application possibilities

The semiconducting properties of SnIP promise a wide range of application opportunities, from energy conversion in solar cells and thermoelectric elements to photocatalysts, sensors and optoelectronic elements. By doping with other elements, the electronic characteristics of the new material can be adapted to a wide range of applications.

Due to the arrangement of atoms in the form of a double helix, the fibers, which are up to a centimeter in length can be easily split into thinner strands. The thinnest fibers to date comprise only five double helix strands and are only a few nanometers thick. That opens the door also to nanoelectronic applications.

“Especially the combination of interesting semiconductor properties and mechanical flexibility gives us great optimism regarding possible applications,” says Professor Nilges. “Compared to organic solar cells, we hope to achieve significantly higher stability from the inorganic materials. For example, SnIP remains stable up to around 500°C (930 °F).”

Just at the beginning

“Similar to carbon, where we have the three-dimensional (3D) diamond, the two dimensional graphene and the one dimensional nanotubes,” explains Professor Nilges, “we here have, alongside the 3D semiconducting material silicon and the 2D material phosphorene, for the first time a one dimensional material – with perspectives that are every bit as exciting as carbon nanotubes.”

Just as with carbon nanotubes and polymer-based printing inks, SnIP double helices can be suspended in solvents like toluene. In this way, thin layers can be produced easily and cost-effectively. “But we are only at the very beginning of the materials development stage,” says Daniela Pfister. “Every single process step still needs to be worked out.”

Since the double helix strands of SnIP come in left and right-handed variants, materials that comprise only one of the two should display special optical characteristics. This makes them highly interesting for optoelectronics applications. But, so far there is no technology available for separating the two variants.

Theoretical calculations by the researchers have shown that a whole range of further elements should form these kinds of inorganic double helices. Extensive patent protection is pending. The researchers are now working intensively on finding suitable production processes for further materials.

Interdisciplinary cooperation

An extensive interdisciplinary alliance is working on the characterization of the new material: Photoluminescence and conductivity measurements have been carried out at the Walter Schottky Institute of the TU Munich. Theoretical chemists from the University of Augsburg collaborated on the theoretical calculations. Researchers from the University of Kiel and the Max Planck Institute of Solid State Research in Stuttgart performed transmission electron microscope investigations. Mössbauer spectra and magnetic properties were measured at the University of Augsburg, while researchers of TU Cottbus contributed thermodynamics measurements.

Lomonosov MSU physicists found a way to “force” silicon nanoparticles to glow in response to radiation strongly enough to replace expensive semiconductors used in display business. According to Maxim Shcherbakov, researcher at the Department of Quantum Electronics of the Moscow State University and one of the authors of the study, the developed method considerably enhances the efficiency of nanoparticle photoluminescence.

The key term in the problem is photoluminescence — the process, when materials irradiated by visible or ultraviolet radiation start to respond with their own light, but in a different spectral range. In the study, the material glows red.

In some of the modern displays, semiconductor nanoparticles, or the so-called quantum dots, are used. In quantum dots, electrons behave completely unlike those in the bulk semiconductor, and it has long been known that quantum dots possess excellent luminescent properties. Today, for the purposes of quantum-dot based displays various semiconductors are used, i.e. CdSe, etc. These materials are toxic and expensive, and, therefore, researchers have long been scrutinizing the far cheaper and much more studied silicon. It is also suitable for such use in all respects except one — silicon nanoparticles vaguely respond to radiation, which is not appealing for optoelectronic industry.

Scientists all over the world were seeking to solve this problem since the beginning of the 1990’s, but until now no significant success has been achieved in this direction. The breakthrough idea about how to “tame” silicon originated in Sweden, at the Royal Institute of Technology, Kista. A post-doctoral researcher Sergey Dyakov (a graduate of the MSU Faculty of Physics and the first author of the paper) suggested placing an array of silicon nanoparticles in a matrix with a non-homogeneous dielectric medium and cover it with golden nanostripes.

‘The heterogeneity of the environment, as has been previously shown in other experiments, allows to increase the photoluminescence of silicon by several orders of magnitude due to the so-called quantum confinement,’ says Maxim Shcherbakov. ‘However, the efficiency of the light interaction with nanocrystals still remains insufficient. It has been proposed to enhance the efficiency by using plasmons (quasiparticle appearing from fluctuations of the electron gas in metals — ed). Plasmon lattice formed by golden nanostripes allow to “hold” light on the nanoscale, and allow a more effective interaction with nanoparticles located nearby, bringing its luminescence to an increase.’

The MSU experiments with samples of “gold-plated” matrix with silicon nanoparticles made in Sweden brilliantly confirmed the theoretical predictions – the UV irradiated silicon for the first time shone bright enough to be used it in practice.

The first author of the paper Sergey Dyakov will present the findings on The 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (September 17-22, Crete). The work was also published in the Physical Review B (“Optical properties of silicon nanocrystals covered by periodic array of gold nanowires”).