Category Archives: Process Materials

Climate change due to excessive CO2 levels is one of the most serious problems mankind has ever faced. This has resulted in abrupt weather patterns such as flood and drought, which are extremely disruptive and detrimental to life, as we have been witnessing in India in recent years. Mitigating rising CO2 levels is of prime importance. In a new development, scientists at the Tata Institute of Fundamental Research, Mumbai, have developed a novel design of CO2 sorbents that show superior CO2 capture capacity and stability over conventional materials.

Novel functionalized nanomaterials for CO2 capture. Credit: Copyright Royal Society of Chemistry (RSC). Ref: Polshettiwar et al. Chemical Science, 2012, 3, 2224-2229

Novel functionalized nanomaterials for CO2 capture. Credit: Copyright Royal Society of Chemistry (RSC). Ref: Polshettiwar et al. Chemical Science, 2012, 3, 2224-2229

The immobilization of functional amines on a porous solid support can result in stable and efficient CO2 sorbent materials compared to similar liquid sorbents. A critical disadvantage however, is a drastic decrease in the textural properties of these supports (i.e., their surface area and pore volume), leading to a decrease in the CO2 capture capability.

To overcome this challenge, scientists at TIFR Mumbai, have designed novel functionalised nanomaterials that allows higher amine loading with a minimal decrease in surface area.

“Our fibrous nanosilica (KCC-1) should be a good candidate for use as a support to design efficient CO2 sorbents that would allow better capture capacity, kinetics and recylability”, says Dr Vivek Polshettiwar, the lead scientist of this study. A unique feature of KCC-1 is its high surface area, which originates from its fibrous morphology and not from its mesoporous channels (unlike in other well studied materials like SBA-15 or MCM-41). This study, published recently in the Journal of Materials Chemistry A, demonstrates the usefulness of the fibrous morphology of KCC-1 compared to conventional ordered mesoporous silica. This work is in continuation of the teams efforts to develop sustainable catalysts and sorbents.

The KCC-1-based sorbents showed several advantages over conventional silica-based sorbents, including i) high amine loading, ii) minimum reduction in surface area after functionalization and iii) more accessibility of the amine sites to enhance CO2 capture efficiency (i.e., capture capacity, kinetics and recyclability), due to the fibrous structure and high accessible surface area of KCC-1.

The demand for such efficient sorbents is on the rise since CO2 capture is one of the best solutions to mitigate the rising levels of CO2. Solid sorbents exhibit better efficiency with greater potential to overcome the shortcomings of liquid sorbents. The use of mesoporous silica materials functionalized with various amino groups is well reported. Although materials like SBA-15 and MCM-41, for example, have attracted significant attention because their large pore sizes can accommodate a variety of amine molecules and the high surface area allows for a higher loading of these functional molecules, they suffer from the disadvantages of a decrease in textural properties, thus making KCC-1 a suitable candidate for more efficient CO2 capture.

Materials researchers at North Carolina State University have developed a new technique to deposit diamond on the surface of cubic boron nitride (c-BN), integrating the two materials into a single crystalline structure.

“This could be used to create high-power devices, such as the solid state transformers needed to create the next generation ‘smart’ power grid,” says Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and lead author of a paper describing the research.

“It could also be used to create cutting tools, high-speed machining and deep sea drilling equipment,” Narayan says. “Diamond is hard, but it tends to oxidize, transforming into graphite – which is softer. A coating of c-BN would prevent oxidation. Diamond also interacts with iron, making it difficult to use with steel tools. Again, c-BN would address the problem.”

C-BN is a form of boron nitride that has a cubic crystalline structure. It has similar properties to diamond, but holds several advantages: c-BN has a higher bandgap, which is attractive for use in high-power devices; c-BN can be “doped” to give it positively- and negatively-charged layers, which means it could be used to make transistors; and it forms a stable oxide layer on its surface when exposed to oxygen, making it stable at high temperatures. Earlier this year, Narayan unveiled a faster, less expensive technique for creating c-BN.

To create the epitaxial, or single crystal, diamond/c-BN structures, the researchers begin by creating a substrate of c-BN. This is done using the new technique Narayan published earlier this year. They then use a process called pulse-laser deposition – which is done at 500 degrees Celsius and an optimized atmospheric pressure – to deposit diamond on the surface of the c-BN. The pulse-laser technique allows them to control the thickness of the diamond layer.

“This is all done in a single chamber, making the process more energy- and time-efficient,” Narayan says. “You use only solid state carbon and BN, and it’s more environmentally benign than conventional techniques.”

The researchers were also able to deposit diamond on the c-BN using the conventional chemical vapor deposition technique, which utilizes methane gas, hydrogen gas and a tungsten filament at 900 °C.

“The chemical vapor deposition approach works, but our pulsed laser deposition approach works much better, doesn’t involve toxic gases, and can be done at much lower temperatures,” Narayan says.

Narayan has co-founded a company, Q-Carbon LLC, which has licensed the technique and is working to commercialize it for multiple applications.

The Semiconductor Industry Association (SIA) this week announced worldwide sales of semiconductors reached $26.1 billion for the month of March 2016, a slight increase of 0.3 percent compared to the previous month’s total of $26.0 billion. Sales from the first quarter of 2016 were $78.3 billion, down 5.5 percent compared to the previous quarter and 5.8 lower than the first quarter of 2015. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Global semiconductor sales increased in March for the first time in five months, but soft demand, market cyclicality, and macroeconomic conditions continue to impede more robust growth,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Q1 sales lagged behind last quarter across nearly all regional markets, with the Americas showing the sharpest decline.”

Regionally, month-to-month sales increased in Japan (4.8 percent), Asia Pacific/All Other (2.3 percent), and Europe (0.1 percent), but fell in China (-1.1 percent) and the Americas (-2.8 percent). Compared to the same month last year, sales in March increased in Japan (1.8 percent) and China (1.3 percent), but decreased in Asia Pacific/All Other (-6.4 percent), Europe (-9.8 percent), and the Americas (-15.8 percent).

“Eighty-three percent of U.S. semiconductor industry sales are into markets outside the U.S., so access to overseas markets is imperative to the long-term strength of our industry,” Neuffer said. “The Trans-Pacific Partnership (TPP) is a landmark trade agreement that would tear down myriad barriers to trade with countries in the Asia-Pacific. The TPP is good for the semiconductor industry, the tech sector, the American economy, and the global economy. Congress should approve it.”

March 2016

Billions

Month-to-Month Sales                               

Market

Last Month

Current Month

% Change

Americas

5.03

4.89

-2.8%

Europe

2.66

2.67

0.1%

Japan

2.47

2.59

4.8%

China

8.02

7.93

-1.1%

Asia Pacific/All Other

7.83

8.01

2.3%

Total

26.02

26.09

0.3%

Year-to-Year Sales                          

Market

Last Year

Current Month

% Change

Americas

5.81

4.89

-15.8%

Europe

2.96

2.67

-9.8%

Japan

2.55

2.59

1.8%

China

7.83

7.93

1.3%

Asia Pacific/All Other

8.57

8.01

-6.4%

Total

27.70

26.09

-5.8%

Three-Month-Moving Average Sales

Market

Oct/Nov/Dec

Jan/Feb/Mar

% Change

Americas

5.75

4.89

-15.0%

Europe

2.77

2.67

-3.6%

Japan

2.57

2.59

0.8%

China

8.45

7.93

-6.1%

Asia Pacific/All Other

8.08

8.01

-0.8%

Total

27.62

26.09

-5.5%

Year-to-year percent change in world semiconductor revenues over the past 20 years.

Year-to-year percent change in world semiconductor revenues over the past 20 years.

Mechanics know molybdenum disulfide (MoS2) as a useful lubricant in aircraft and motorcycle engines and in the CV and universal joints of trucks and automobiles. Rice University engineering researcher Isabell Thomann knows it as a remarkably light-absorbent substance that holds promise for the development of energy-efficient optoelectronic and photocatalytic devices.

“Basically, we want to understand how much light can be confined in an atomically thin semiconductor monolayer of MoS2,” said Thomann, assistant professor of electrical and computer engineering and of materials science and nanoengineering and of chemistry. “By using simple strategies, we were able to absorb 35 to 37 percent of the incident light in the 400- to 700-nanometer wavelength range, in a layer that is only 0.7 nanometers thick.”

Thomann and Rice graduate students Shah Mohammad Bahauddin and Hossein Robatjazi have recounted their findings in a paper titled “Broadband Absorption Engineering To Enhance Light Absorption in Monolayer MoS2,” which was recently published in the American Chemical Society journal ACS Photonics. The research has many applications, including development of efficient and inexpensive photovoltaic solar panels.

“Squeezing light into these extremely thin layers and extracting the generated charge carriers is an important problem in the field of two-dimensional materials,” she said. “That’s because monolayers of 2-D materials have different electronic and catalytic properties from their bulk or multilayer counterparts.”

Thomann and her team used a combination of numerical simulations, analytical models and experimental optical characterizations. Using three-dimensional electromagnetic simulations, they found that light absorption was enhanced 5.9 times compared with using MoS2 on a sapphire substrate.

“If light absorption in these materials was perfect, we’d be able to create all sorts of energy-efficient optoelectronic and photocatalytic devices. That’s the problem we’re trying to solve,” Thomann said.

She is pleased with her lab’s progress but concedes that much work remains to be done. “The goal, of course, is 100 percent absorption, and we’re not there yet.”

The Society of Chemical Industry (SCI), America Group, announced today that Peter Trefonas, Ph.D., corporate fellow in Electronic Materials at The Dow Chemical Company, has won the 2016 SCI Perkin Medal.

This honor recognizes Trefonas’ contributions in the development of chemicals that enable microlithography for the fabrication of microelectronic circuits. His outstanding work in the creation of polymer photoresists used in the lithographic process, especially the development of antireflective coatings, enables patterning of smaller features, fitting more circuits in the same area. These advances in miniaturization enable the faster microprocessors and multitude of new electronic devices that are such a large part of daily life.

Trefonas will receive the medal at a dinner in his honor on Tuesday, September 13, 2016, at the Hilton Penn’s Landing Hotel in Philadelphia.

“Discovery, innovation, and achievement have defined the career of Dr. Trefonas,” said Fred Festa, chairman and chief executive officer of W.R. Grace & Co., and Chair of SCI America. “The SCI is pleased to recognize his remarkable success in our industry, his contributions to science, and his impact on the quality of our lives.”

“It is hard to imagine life without the smart devices we use, devices we upgrade frequently as technology improves. Peter’s advances in materials used in lithography make them possible, enabling circuit designs that are smaller and faster. Peter has been a driving force in our Electronic Materials business for decades, developing innovative technology, mentoring others and driving the organization to a high level of performance,” says A.N. Sreeram, Dow senior vice president and chief technology officer. “Peter’s selection as the recipient of the Society of Chemical Industry’s Perkin Medal is a fitting recognition of his innovative work.”

Peter Trefonas, Ph.D., is a Corporate Fellow in The Dow Chemical Company, where he works within the Dow Electronic Materials Business Group.

Trefonas made major contributions to the development of many successful products which are used in the production of integrated circuits spanning multiple device design generations, from 2 micron to 14nm node technologies. These include photoresists, antireflectant coatings, underlayers, developers, ancillary products, and environmentally safer green products. These electronic materials have had a high commercial impact, and have helped to facilitate the progress of the Information Age.

He is an inventor on 61 US patents, has over 25 additional published active U.S. patent applications, is an author of 99 journal and technical publications, and is a recent recipient of both the 2014 ACS Heroes of Chemistry Award and the 2014 SPIE Willson Award.

Trefonas earned his Ph.D. in inorganic chemistry with Prof. Robert West at the University of Wisconsin-Madison in 1985 and his Bachelor of Science in chemistry at the University of New Orleans in 1980. Originally a native of New Orleans, Trefonas has lived with his family in Medway, Massachusetts for the last 27 years.

His research career began at Monsanto Electronics Materials Company. He then co-founded a start-up company called Aspect Systems Inc., which acquired lithographic chemicals technology spun off from Monsanto. He continued in electronic materials R&D as his career moved via acquisitions by Shipley Company, Rohm and Haas Company, and Dow. Prior to graduate school, Trefonas was also the creator of several commercial computer games which were popular on early microcomputer platforms.

Two-dimensional phosphane, a material known as phosphorene, has potential application as a material for semiconducting transistors in ever faster and more powerful computers. But there’s a hitch. Many of the useful properties of this material, like its ability to conduct electrons, are anisotropic, meaning they vary depending on the orientation of the crystal. Now, a team including researchers at Rensselaer Polytechnic Institute (RPI) has developed a new method to quickly and accurately determine that orientation using the interactions between light and electrons within phosphorene and other atoms-thick crystals of black phosphorus.

Phosphorene–a single layer of phosphorous atoms–was isolated for the first time in 2014, allowing physicists to begin exploring its properties experimentally and theoretically. Vincent Meunier, head of the Rensselaer Department of Physics, Applied Physics, and Astronomy and a leader of the team that developed the new method, published his first paper on the material–confirming the structure of phosphorene–in that same year.

“This is a really interesting material because, depending on which direction you do things, you have completely different properties,” said Meunier, a member of the Rensselaer Center for Materials, Devices, and Integrated Systems (cMDIS). “But because it’s such a new material, it’s essential that we begin to understand and predict its intrinsic properties.”

Meunier and researchers at Rensselaer contributed to the theoretical modeling and prediction of the properties of phosphorene, drawing on the Rensselaer supercomputer, the Center for Computational Innovations (CCI), to perform calculations. Through the Rensselaer cMDIS, Meunier and his team are able to develop the potential of new materials such as phosphorene to serve in future generations of computers and other devices. Meunier’s research exemplifies the work being done at The New Polytechnic, addressing difficult and complex global challenges, the need for interdisciplinary and true collaboration, and the use of the latest tools and technologies, many of which are developed at Rensselaer.

In their research, which appears in ACS Nano Letters, the team initially set out to refine an existing technique for determining the orientation of the crystal. This technique, which takes advantage of Raman spectroscopy, uses a laser to measure vibrations of the atoms within the crystal as energy moves through it, caused by electron-phonon interactions. Like other interactions, electron-phonon interactions within atoms-thick crystals of black phosphorus are anisotropic and, once measured, have been used to predict the orientation of the crystal.

In reviewing their initial results from Raman spectroscopy, the team noticed several inconsistencies. To investigate further, they obtained actual images of the orientation of their sample crystals using Transmission Electron Microscopy (TEM), and then compared them with the Raman spectroscopy results. As a topographic technique, TEM offers a definitive determination of the orientation of the crystal, but isn’t as easy to obtain as the Raman results. The comparison revealed that electron-phonon interactions alone did not accurately predict the orientation of the crystal. And the reason why led the way to yet another anisotropy of phosphorene–that of interactions between photons of light and electrons in the crystal.

“In Raman you use a laser to impart energy into the material, and it starts to vibrate in ways that are intrinsic to the material, and which, in phosphorene, are anisotropic,” said Meunier. “But it turns out that if you shine the light in different directions, you get different results, because the interaction between the light and the electrons in the material–the electron-photon interaction–is also anisotropic, but in a non-commensurate way.”

Meunier said the team had reason to believe phosphorene was anisotropic with respect to electron-photon interactions, but didn’t anticipate the importance of the property.

“Usually electron-photon anisotropy doesn’t make such a big difference, but here, because we have such a particular chemistry on the surface and such a strong anisotropy, it’s one of those materials where it makes a huge difference,” Meunier said.

Although the discovery revealed a flaw in the interpretations of Raman spectra relying on electron-phonon interactions, it also revealed that electron-photon interactions alone provide an accurate determination of the orientation of the crystal.

“It turns out that it’s not so easy to use Raman vibrations to find out the direction of the crystal,” Meunier said. “But, and this is the beautiful thing, what we found is that the electron-photon interaction (which can be measured by recording the amount of light absorbed)–the interaction between the electrons and the laser–is a good predictor of the direction. Now you can really predict how the material will behave as a function of excitement with an outside stimulus.”

Researchers from the University of Illinois at Urbana-Champaign have developed a one-step, facile method to pattern graphene by using stencil mask and oxygen plasma reactive-ion etching, and subsequent polymer-free direct transfer to flexible substrates.

Graphene, a two-dimensional carbon allotrope, has received immense scientific and technological interest. Combining exceptional mechanical properties, superior carrier mobility, high thermal conductivity, hydrophobicity, and potentially low manufacturing cost, graphene provides a superior base material for next generation bioelectrical, electromechanical, optoelectronic, and thermal management applications.

“Significant progress has been made in the direct synthesis of large-area, uniform, high quality graphene films using chemical vapor deposition (CVD) with various precursors and catalyst substrates,” explained SungWoo Nam, an assistant professor of mechanical science and engineering at Illinois. “However, to date, the infrastructure requirements on post-synthesis processing–patterning and transfer–for creating interconnects, transistor channels, or device terminals have slowed the implementation of graphene in a wider range of applications.”

“In conjunction with the recent evolution of additive and subtractive manufacturing techniques such as 3D printing and computer numerical control milling, we developed a simple and scalable graphene patterning technique using a stencil mask fabricated via a laser cutter,” stated Keong Yong, a graduate student and first author of the paper, “Rapid Stencil Mask Fabrication Enabled One-Step Polymer-Free Graphene Patterning and Direct Transfer for Flexible Graphene Devices appearing in Scientific Reports.

“Our approach to patterning graphene is based on a shadow mask technique that has been employed for contact metal deposition,” Yong added. “Not only are these stencil masks easily and rapidly manufactured for iterative rapid prototyping, they are also reusable, enabling cost-effective pattern replication. And since our approach involves neither a polymeric transfer layer nor organic solvents, we are able to obtain contamination-free graphene patterns directly on various flexible substrates.”

Nam stated that this approach demonstrates a new possibility to overcome limitations imposed by existing post-synthesis processes to achieve graphene micro-patterning. Yong envisions this facile approach to graphene patterning sets forth transformative changes in “do It yourself” (DIY) graphene-based device development for broad applications including flexible circuits/devices and wearable electronics.

“This method allows rapid design iterations and pattern replications, and the polymer-free patterning technique promotes graphene of cleaner quality than other fabrication techniques,” Nam said. “We have shown that graphene can be patterned into varying geometrical shapes and sizes, and we have explored various substrates for the direct transfer of the patterned graphene.”

Tiny units of matter and chemistry that they are, atoms constitute the entire universe. Some rare atoms can store quantum information, an important phenomenon for scientists in their ongoing quest for a quantum Internet.

New research from UC Santa Barbara scientists and their Dutch colleagues exploits a system that has the potential to transfer optical quantum information to a locally stored solid-state quantum format, a requirement of quantum communication. The team’s findings appear in the journal Nature Photonics.

“Our research aims at creating a quantum analog of current fiber optic technology in which light is used to transfer classical information — bits with values zero or one — between computers,” said author Dirk Bouwmeester, a professor in UCSB’s Department of Physics. “The rare earth atoms we’re studying can store the superpositions of zero and one used in quantum computation. In addition, the light by which we communicate with these atoms can also store quantum information.”

Atoms are each composed of a nucleus typically surrounded by inner shells full of electrons and often have a partially filled outer electron shell. The optical and chemical properties of the atoms are mainly determined by the electrons in the outer shell.

Rare earth atoms such as erbium and ytterbium have the opposite composition: a partially filled inner shell surrounded by filled outer shells. This special configuration is what enables these atoms to store quantum information.

However, the unique composition of rare earth atoms leads to electronic transitions so well shielded from the surrounding atoms that optical interactions are extremely weak. Even when implanted in a host material, these atoms maintain those shielded transitions, which in principle can be addressed optically in order to store and retrieve quantum information.

Bouwmeester collaborated with John Bowers, a professor in UCSB’s Department of Electrical and Computer Engineering, and investigators at Leiden University in the Netherlands to strengthen these weak interactions by implanting ytterbium into ultra-high-quality optical storage rings on a silicon chip.

“The presence of the high-quality optical ring resonator — even if no light is injected — changes the fundamental optical properties of the embedded atoms, which leads to an order of magnitude increase in optical interaction strength with the ytterbium,” Bouwmeester said. “This increase, known as the Purcell effect, has an intricate dependence on the geometry of the optical light confinement.”

The team’s findings indicate that new samples currently under development at UCSB can enable optical communication to a single ytterbium atom inside optical circuits on a silicon chip, a phenomenon of significant interest for quantum information storage. The experiments also explore the way in which the Purcell effect enhances optical interaction with an ensemble of a few hundred rare earth atoms. The grouping itself has interesting collective properties that can also be explored for the storage of quantum information.

Key is an effect called a photon echo, the result of two distinct light pulses, the first of which causes atoms in ytterbium to become partially excited.

“The first light pulse creates a set of atoms we ‘talk’ to in a specific state and we call that state ‘in phase’ because all the atoms are created at the same time by this optical pulse,” Bouwmeester explained. “However, the individual atoms have slightly different frequencies because of residual coupling to neighboring atoms, which affects their time evolution and causes decoherence in the system.” Decoherence is the inability to keep track of how the system evolves in all its details.

“The trick is that the second light pulse changes the state of the system so that it evolves backwards, causing the atoms to return to the initial phase,” he continued. “This makes everything coherent and causes the atoms to collectively emit the light they absorbed from the first pulse.”

The strength of the photon echo contains important information about the fundamental properties of the ytterbium in the host material. “By analyzing the strength of these photon echoes, we are learning about the fundamental interactions of ytterbium with its surroundings,” Bouwmeester said. “Now we’re working on strengthening the Purcell effect by making the storage rings we use smaller and smaller.”

According to Bouwmeester, quantum computation needs to be compatible with optical communication for information to be shared and transmitted. “Our ultimate goal is to be able to communicate to a single ytterbium atom; then we can start transferring the quantum state of a single photon to a single ytterbium atom,” he added. “Coupling the quantum state of a photon to a quantum solid state is essential for the existence of a quantum Internet.”

Indium Corporation has hired Andreas Karch as Regional Technical Manager, Germany, Austria and Switzerland.

Karch provides support, including sharing process knowledge and making technical recommendations for the use of Indium Corporation’s materials, including solder paste, solder preforms, fluxes, and thermal management materials.

Karch has more than 20 years of automotive industry experience, including the advanced development of customized electronics. He is an ECQA-certified integrated design engineer and has a Six Sigma Yellow Belt. He was recently the recipient of the top 10 innovative patents for an automotive LED assembly. Karch maintains a thorough understanding of process technologies and project management skills.

Indium Corporation is a premier materials manufacturer and supplier to the global electronics, semiconductor, thin-film, thermal management, and solar markets. Products include solders and fluxes; brazes; thermal interface materials; sputtering targets; indium, gallium, germanium, and tin metals and inorganic compounds; and NanoFoil. Founded in 1934, Indium has global technical support and factories located in China, Malaysia, Singapore, South Korea, the United Kingdom, and the USA.

Polymer semiconductors, which can be processed on large-area and mechanically flexible substrates with low cost, are considered as one of the main components for future plastic electronics. However, they, especially n-type semiconducting polymers, currently lag behind inorganic counterparts in the charge carrier mobility – which characterizes how quickly charge carriers (electron) can move inside a semiconductor – and the chemical stability in ambient air.

Recently, a joint research team, consisting of Prof. Kilwon Cho and Dr. Boseok Kang with Pohang University of Science and Technology, and Prof. Yun-Hi Kim and Dr. Ran Kim with Gyungsang National University, has developed a new n-type semiconducting polymer with superior electron mobility and oxidative stability. The research outcome was published in Journal of the American Chemical Society (JACS) as a cover article and highlighted by the editors in JACS Spotlights.

The team modified a n-type conjugated polymer with semi-fluoroalkyl side chains – which are found to have several unique properties, such as hydrophobicity, rigidity, thermal stability, chemical and oxidative resistance, and the ability to self-organize. As a result, the modified polymer was shown to form a superstructure composed of polymer backbone crystals and side-chain crystals, resulting in a high degree of semicrystalline order. The team explained this phenomenon is attributed to the strong self-organization of the side chains and significantly boosts charge transport in polymer semiconductors.

Prof. Cho emphasized “We investigated the effects of semi-fluoroalkyl side chains of conjugated polymers at the molecular level and suggested a new strategy to design highly-performing polymeric materials for next-generation plastic electronics”.

This research was supported by the Center for Advanced Soft Electronics under the Global Frontier Research Program and the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning.