Category Archives: MEMS

Rice University integrated circuit (IC) designers are at Silicon Valley’s premier chip-design conference to unveil technology that is 10 times more reliable than current methods of producing unclonable digital fingerprints for Internet of Things (IoT) devices.

Rice’s Kaiyuan Yang and Dai Li will present their physically unclonable function (PUF) technology today at the 2019 International Solid-State Circuits Conference (ISSCC), a prestigious scientific conference known informally as the “Chip Olympics.” PUF uses a microchip’s physical imperfections to produce unique security keys that can be used to authenticate devices linked to the Internet of Things.

Considering that some experts expect Earth to pass the threshold of 1 trillion internet-connected sensors within five years, there is growing pressure to improve the security of IoT devices.

Yang and Li’s PUF provides a leap in reliability by generating two unique fingerprints for each PUF. This “zero-overhead” method uses the same PUF components to make both keys and does not require extra area and latency because of an innovative design feature that also allows their PUF to be about 15 times more energy efficient than previously published versions.

“Basically each PUF unit can work in two modes,” said Yang, assistant professor of electrical and computer engineering. “In the first mode, it creates one fingerprint, and in the other mode it gives a second fingerprint. Each one is a unique identifier, and dual keys are much better for reliability. On the off chance the device fails in the first mode, it can use the second key. The probability that it will fail in both modes is extremely small.”

As a means of authentication, PUF fingerprints have several of the same advantages as human fingerprints, he said.

“First, they are unique,” Yang said. “You don’t have to worry about two people having the same fingerprint. Second, they are bonded to the individual. You cannot change your fingerprint or copy it to someone else’s finger. And finally, a fingerprint is unclonable. There’s no way to create a new person who has the same fingerprint as someone else.”

PUF-derived encryption keys are also unique, bonded and unclonable. To understand why, it helps to understand that each transistor on a computer chip is incredibly small. More than a billion of them can be crammed onto a chip half the size of a credit card. But for all their precision, microchips are not perfect. The difference between transistors can amount to a few more atoms in one or a few less in another, but those miniscule differences are enough to produce the electronic fingerprints used to make PUF keys.

For a 128-bit key, a PUF device would send request signals to an array of PUF cells comprising several hundred transistors, allocating a one or zero to each bit based on the responses from the PUF cells. Unlike a numeric key that’s stored in a traditional digital format, PUF keys are actively created each time they’re requested, and different keys can be used by activating a different set of transistors.

Adopting PUF would allow chipmakers to inexpensively and securely generate secret keys for encryption as a standard feature on next-generation computer chips for IoT devices like “smart home” thermostats, security cameras and lightbulbs.

Encrypted lightbulbs? If that sounds like overkill, consider that unsecured IoT devices are what three young computer savants assembled by the hundreds of thousands to mount the October 2016 distributed denial-of-service attack that crippled the internet on the East Coast for most of a day.

“The general concept for IoT is to connect physical objects to the internet in order to integrate the physical and cyber worlds,” Yang said. “In most consumer IoT today, the concept isn’t fully realized because many of the devices are powered and almost all use existing IC feature sets that were developed for the mobile market.”

In contrast, the devices coming out of research labs like Yang’s are designed for IoT from the ground up. Measuring just a few millimeters in size, the latest IoT prototypes can pack a processor, flash memory, wireless transmitter, antenna, one or more sensors, batteries and more into an area the size of a grain of rice.

PUF is not a new idea for IoT security, but Yang and Li’s version of PUF is unique in terms of reliability, energy efficiency and the amount of area it would take to implement on a chip. For starters, Yang said the performance gains were measured in tests at military-grade temperatures ranging from 125 degrees Celsius to minus 55 degrees Celsius and when supply voltage dropped by up to 50 percent.

“If even one transistor behaves abnormally under varying environmental conditions, the device will produce the wrong key, and it will look like an inauthentic device,” Yang said. “For that reason, reliability, or stability, is the most important measure for PUF.”

Energy efficiency also is important for IoT, where devices can be expected to run for a decade on a single battery charge. In Yang and Li’s PUF, keys are created using a static voltage rather than by actively powering up the transistor. It’s counterintuitive that the static approach would be more energy efficient because it’s the equivalent of leaving the lights on 24/7 rather than flicking the switch to get a quick glance of the room.

“Normally, people have sleep mode activated, and when they want to create a key, they activate the transistor, switch it once and then put it to sleep again,” Yang said. “In our design, the PUF module is always on, but it takes very little power, even less than a conventional system in sleep mode.”

On-chip area — the amount of space and expense manufacturers would have to allocate to put the PUF device on a production chip — is the third metric where they outperform previously reported work. Their design occupied 2.37 square micrometers to generate one bit on prototypes produced using 65-nanometer complementary metal-oxide-semiconductor (CMOS) technology.

The research was funded by Rice University.

Electro Scientific Industries (ESI), a division of MKS Instruments, Inc. (NASDAQ:MKSI) and an innovator in laser-based manufacturing solutions for the micro-machining industry, today announced an order for its recently-released CapStone laser drilling solution for processing flexible printed circuits (FPC). The order follows an extensive on-site system evaluation at Compeq Manufacturing, Huizhou, China, where CapStone delivered exceptional throughput and performance. Similar evaluations are underway at other major manufacturers where systems have already been qualified for production.

“Our testing and evaluation process for CapStone has been rigorous and extensive,” said Cathay Wu, director, purchasing, Material Division, Compeq. “We have processed thousands of panels over the last few months with the CapStone system. We evaluated the system on a wide range of applications and material stacks, as well as numerous via types and sizes—in both panel and roll-to-roll processes—and achieved excellent yield. CapStone showed significant increases in throughput and savings in cost-per-panel, and has met or exceeded our expectations. We look forward to leveraging CapStone for a number of applications and taking advantage of its throughput and yield to stay competitive in this very demanding market.”

“Capstone offers twice the throughput of our previous-generation system while maintaining yields, increasing uptime and significantly reducing maintenance costs,” said John Williams, ESI’s vice president of marketing. “These all translate directly into greater productivity and lower cost per panel. In the simplest analysis, doubling throughput doubles return on investment and halves the payback period.”

“Since we put our first CapStone systems in the field, we have processed over a hundred thousand panels,” Williams continued. “All systems are currently qualified and running in high-volume production. Given the cost-driven nature of the printed circuit board (PCB) processing industry, and CapStone’s extraordinary value proposition, the system continues to generate significant interest and early customer adoption. We are looking forward to finalizing the placement of additional systems as the market learns what CapStone can do.”

Developed by ESI, the CapStone system is optimized to process the FPCs widely used in consumer electronics, such as smartphones and other handheld devices. Building on the proven ESI platform, CapStone’s new laser technology and control capabilities deliver breakthrough performance at twice the throughput of the previous-generation model, and with equivalent accuracy and precision in critical parameters such as via diameter and placement.

UltraSoC today announced a significant extension of its embedded analytics architecture, allowing designers and innovators to incorporate powerful data-driven features into their products. Developers in the automotive, storage and high performance computing industries can now integrate even more sophisticated hardware-based security, safety and performance tuning capabilities within their products, as well as reaping substantial time-to-market and cost benefits of using UltraSoC in the system on chip (SoC) development cycle.

The new features allow SoC designers to build on-chip monitoring and analytics systems with up to 65,000 elements, allowing seamless support for systems with many thousands of processors. Future iterations will allow even higher numbers of processors for Exascale systems. In addition to this dramatically improved scaling capability, new System Memory Buffer (SMB) IP allows the embedded analytics infrastructure to handle the high volumes of data generated by multicore systems, and to cope with “bursty” real-world traffic.

The new UltraSoC architecture is capable of monitoring effectively unlimited numbers of the internal building blocks that make up the most complex SoC products – and to analyze the impact on system-level behavior of the interactions between them. Such heterogeneous multicore chips are becoming increasingly common, particularly in enabling the artificial intelligence and machine learning technologies required in leading edge applications such as driverless cars.

Dave Ditzel, Founder and CEO of Esperanto, commented: “Esperanto’s mission is to enable the most energy-efficient high-performance computing systems for artificial intelligence, machine learning and other emerging applications. That requires us to put over a thousand RISC-V processors and AI/ML accelerators on a single chip; UltraSoC’s ability to match that level of scaling with monitoring, analytics and debug capabilities is a vital enabler for our business.”

UltraSoC CEO, Rupert Baines, said: “Our solutions are unique in the market in their ability to deal with multiple heterogeneous processors, standard and proprietary bus structures and even custom logic. This dramatic extension of our architecture takes us even further ahead of traditional solutions – both in the debug and development arena, and in allowing our customers to incorporate in-life monitoring capabilities to ensure security, functional safety and real-world performance optimization.”

UltraSoC’s system-level monitoring and analytics capabilities extend beyond the chip’s core processing components to all parts of the system – which may include thousands of IP blocks and subsystems, buses, interconnects and software. The new features within the UltraSoC architecture allow chip designers to deploy tens of thousands of monitoring and analytics modules within a single infrastructure. By providing an integrated, coherent analysis of the behavior of the system, UltraSoC significantly reduces the development burden for next-generation machine learning and artificial intelligence applications, as well as allowing the implementation of innovative product features such as hardware-based security and functional safety.

Extension of the UltraSoC architecture to encompass effectively unlimited monitoring capabilities helps developers to address the problems of systemic complexity which are among the most pressing issues faced by the electronics industry today. In addition to the sheer size of modern SoCs, machine learning and artificial intelligence algorithms are often inherently non-deterministic: because they devise their own ways of solving problems by ‘learning’, it is impossible for the system’s original designer to predict how they will behave in the final application. In-life monitoring of the chip’s behavior is therefore the only way of getting a true picture of what is going on inside the chip, and the wider system.

The complex interactions between multiple hardware blocks, firmware and software within SoCs have already made real-time in-life monitoring an indispensable tool for SoC designers. Changes in design approaches are also making system-wide monitoring more necessary than ever. Agile software development and ad hoc programming practices inherently require high-granularity visibility of the real system. Similarly, system hardware and software may not be ‘architected’ in the traditional sense: again, engineers need clear visibility of the run-time behavior of their systems.

By Maria Vetrano

As group vice president of the Analog & MEMS Group and general manager of the MEMS Sensor division at STMicroelectronics, Andrea Onetti brings nearly three decades of experience in MEMS, sensors and audio systems to his leadership role at one of the world’s most successful electronics and semiconductor manufacturers. During his keynote at FLEX and MEMS & Sensors Technical Congress 2019, February 18-21 in Monterey, Calif., Onetti will address the criticality of sensor accuracy in advancing automotive, industrial and consumer applications. SEMI’s Maria Vetrano spoke with Onetti recently to give FLEX/MSTC attendees a preview of his presentation.

SEMI: What are some promising advancements in sensors for autonomous cars?

Onetti: The avionics industry is already successfully applying sensors for autonomous operationl. Inertial navigation systems (INS) support the operation of planes during flight, both after takeoff and before landing. Unfortunately, the technology in these navigation systems is expensive and not scalable, and they are hampered by reliability limitations in an automotive environment.

Following the steady progress that we have made with MEMS inertial sensors in consumer applications, we are on the cusp of realizing greater accuracy in temperature and time – finally delivering the performance required for autonomous driving. Because we can scale in production – we’re now manufacturing more than a billion units a year – we can select the cream of this production crop for adoption in cars. Consequently, we should see Level 3 and Level 4 autonomous driving for consumers very soon.

SEMI: How are companies using sensors to monitor and track their assets in industrial applications?

Onetti: Predictive maintenance and asset tracking are the two main verticals in Smart Industry. The adoption of multiple sensors for condition monitoring is helping to detect the faulty operation of equipment and to detect early signs of issues that are otherwise difficult to capture.

Ultrasonic microphones can detect leaks in a pipe at an early stage, accelerometers with high bandwidth can act as micrometers, and accurate temperature sensors can catch overheating.

Similarly, in asset tracking, we use temperature monitoring in combination with inertial sensors to detect problems during the transport of goods. Shock sensors with extremely high full scale (up to 8000g) can tell whether a lightweight envelop has been dropped. Pressure sensors can switch off a radio system when a cargo plane takes off and can mute smart trackers in compliance with flight regulations. We really can do almost anything!

A full slate of ST sensors and microcontroller units (MCUs) enable WEG’s small but powerful motor sensor, which listens to a motor, feels its pain, and shares that information with engineers, operators and others to diagnose problems before they happen. Image courtesy of STMicroelectronics.

High-accuracy motion, environmental and proximity sensors are crucial to VR/AR. Image courtesy of STMicroelectronics.

SEMI: How will sensors advance user experiences in consumer electronics, such as VR/AR systems?

Onetti: Virtual reality (VR) and augmented reality (AR) are great examples of promising consumer technologies that will become pervasive as performance of inertial sensors improves. First, we need super accuracy in time and temperature to provide the right experience to users. To achieve this level of accuracy, we need a major step forward in performance, and that includes power consumption and miniaturization. Fortunately, we are constantly making progress in the high-accuracy motion, environmental and proximity sensors that are critical to these systems. While the scale is vastly different between VR/AR and automotive, the requirements for AR/VR systems are pretty similar to those that will enable autonomous cars.

A growing variety of sensors (environmental, microphone, proximity, motion) – combined with a sensor hub in an MCU – are central to VR controllers (above) and VR head mounted displays (below). Images courtesy of STMicroelectronics.

SEMI: We don’t hear much about the criticality of higher accuracy in sensors. Why is improving accuracy in sensors especially important – and what role do calibration routines play in achieving higher accuracy?

Onetti: A sensor is more than just the performance of the relevant function. It is also the intrinsic accuracy that it brings. This accuracy is tuned by calibration, which is typically an expensive process done at the end of product manufacturing or – better still – during earlier stages of manufacturing.

Today more applications require sensors with higher accuracy, which necessitates investing more time in calibration, leading to higher cost.

MEMS technology can help by offering solutions with intrinsic higher accuracy, which reduces the cost of calibration for product manufacturers. This naturally delivers major benefits to OEMs and, ultimately, their customers.

SEMI: What would you like FLEX and MSTC attendees to take away from your presentation?

Onetti: As attendees explore the wide variety of available sensor solutions for their end products, I would ask them to prioritize the role of accuracy in sensor selection – because improved accuracy means higher quality data, and higher quality data means better decisions with reduced need for data processing.

While designers understand the role of calibration routines in qualifying individual components for specific applications, it is the continuous evolution of MEMS technology that offers the best possibility of breakthrough reductions in time and cost of these calibration routines. This makes MEMS sensors more attractive and affordable than similar sensor components based on different technologies.

Source: SEMI Blog

By Mike Russo

For public policy lovers, civic-minded, engaged U.S. citizens, and people around the world interested in the U.S. President’s positions and priorities, the annual State of the Union address (SOTU) is “must-see TV.” This year, the anticipation and expectations were different than with past presidents. Trump is the first U.S. president who has used social media to the extreme that he has. Indeed, his Twitter feed is the most followed in history.

President Trump’s prolific Twitter feed has had an interesting impact on the SOTU. U.S. citizens and people from around the world already know President Trump’s positions on issues, his policy priorities and what gets him excited. There is an ongoing, direct line to the President’s thoughts throughout each and every day. In the past we looked to the SOTU for insights into what the sitting president is really thinking and his future policy priorities. Now, there isn’t much we don’t already know.

One looming question this year was whether President Trump would reach out in a conciliatory manner to help bridge the political divide and lay the groundwork to enable some public policy wins and avoid another government shutdown. While there were moments of conciliation, the President made it clear he would not move on areas that are most contentious with the other side of the aisle.

For example, the President unequivocally reiterated his intent to build “the wall.” While the message plays well to his base, it is, in effect, a frontal assault and challenge to Democrats. It’s hard to image that his staunch stance will help move the two parties to work together on substantive policy issues. It may also mean that the “wall” issue will occupy lawmakers time for the foreseeable future, sidelining debate on other important issues.

The best hope is that a bipartisan bill finds its way to the President’s desk that he can sign and use to “declare victory.” However, many political observers believe the likelihood of the President declaring a national security emergency is rising as a maneuver to ensure funding for “the wall” and avoid a shutdown. While such a declaration would most likely face a court challenge, the President could claim that his decision was a move of last resort and leverage the moment to position Democrats as obstructionists to his base. The scenario does not bode well for the bipartisan support necessary to address other issues.

What does this mean for our industry? Were there any points raised in the SOTU that would signal a change in what we are facing regarding trade, tariffs, export controls and immigration? Were any new issues or ideas raised that could help lift the global economy? In short, no. On one hand, the President cited his good relationship with the president of China, but on the other doubled down on his attacks on China, seeming to stand firm to bolster his position at the table as the U.S. and China trade talks continue.

What do these dynamics mean for SEMI Global Advocacy? In 2018 we were heavily engaged in efforts to prevent regulations that would inhibit our members’ ability to develop and deploy technologies and maintain global market access. We advanced our global advocacy model, leveraging our regional presence around the world. Many of the potential issues we faced emanated from the U.S., including those focused on controlling technology development, limiting trade and enhancing export controls. We also intensified our efforts to address industry talent pipeline issues.

In 2019, our public policy focus will be to continue to push back on tariffs, engage members to inform the rule-making process for export controls and to attempt to influence the immigration debate as it pertains to access to talent. In addition, while the U.S. R&D tax credit was made permanent through the tax cut in 2017, some of the provisions may have unintended consequences and will need to be modified. How the law is enacted will affect how businesses can deduct qualified research and development and other expenses from their taxable income, so we anticipate activity on the tax front as well.

It will also be a big year for SEMI on the workforce developmentfront. SEMI will continue to grow its existing High Tech U (HTU), university and mentor programs. In addition, SEMI will be positioning itself as the global leader in addressing issues related to the talent pipeline by approaching the problem with a full-spectrum, holistic approach that is intended to better address more immediate needs in attracting, training and retaining qualified talent. We’ll also focus on improving the industry image and exciting students at a younger age by providing experiential learning activities throughout a defined educational pathway. Stay tuned on this front as the full program unfolds.

In general, we will continue to build our relationships and stature as a leading voice for our members and the end-to-end semiconductor supply chain in the areas of “Talent, Trade, Tax and Technology” (SEMI’s “4 Ts”) and to ensure free and fair trade, access to markets, supply chain growth, IP protections and enhanced efforts to improve cybersecurity.

Mike Russo is VP of Global Industry Advocacy at SEMI. 

Source: SEMI Blog

STMicroelectronics, (NYSE: STM) has integrated machine-learning technology into its advanced inertial sensors to improve activity-tracking performance and battery life in mobiles and wearables.

The LSM6DSOX iNEMO sensor contains a machine-learning core to classify motion data based on known patterns. Relieving this first stage of activity tracking from the main processor saves energy and accelerates motion-based apps such as fitness logging, wellness monitoring, personal navigation, and fall detection.

“Machine learning is already used for fast and efficient pattern recognition in social media, financial modelling, or autonomous driving,” said Andrea Onetti, Analog, MEMS and Sensors Group Vice President, STMicroelectronics. “The LSM6DSOX motion sensor integrates machine-learning capabilities to enhance activity tracking in smartphones and wearables.”

Devices equipped with ST’s LSM6DSOX can deliver a convenient and responsive “always-on” user experience without trading battery runtime. The sensor also has more internal memory than conventional sensors, and a state-of-the-art high-speed I3C digital interface, allowing longer periods between interactions with the main controller and shorter connection times for extra energy savings.

The sensor is easy to integrate with popular mobile platforms such as Android and iOS, simplifying use in smart devices for consumer, medical, and industrial markets.

The LSM6DSOX is in full production and available now, priced from $2.50 for orders of 1000 pieces.

Further technical information:

The LSM6DSOX contains a 3D MEMS accelerometer and 3D MEMS gyroscope, and tracks complex movements using the machine-learning core at low typical current consumption of just 0.55mA to minimize load on the battery.

The machine-learning core works in conjunction with the sensor’s integrated finite-state machine logic to handle motion pattern recognition or vibration detection. Customers creating activity-tracking products with the LSM6DSOX can train the core for decision-tree based classification using Weka, an open-source PC-based application, to generate settings and limits from sample data such as acceleration, speed, and magnetic angle that characterize the types of movements to be detected.

Support for free-fall, wakeup, 6D/4D orientation, click and double-click interrupts allows a wide variety of applications such as user-interface management and laptop protection in addition to activity tracking. Auxiliary outputs and configuration options also simplify use in optical image stabilization (OIS).

Leveraging respective leadership technologies in sensors and IoT connectivity, Integrated Device Technology, Inc. (IDT) and Telink Semiconductor are announcing a partnership to create connected and integrated sensor platforms for IoT applications. These platforms enable a wide variety of IoT use cases, such as environmental sensing, health and fitness monitoring, connected smart buildings, as well as asset identification, position and location tracking.

IDT plans to release the new Bluetooth Low Energy 5 module featuring Telink’s 32-bit microcontroller core with better power-balanced performance for battery-operated devices. The Bluetooth module has an integrated 2.4GHz RF transceiver supporting the IEEE802.15.4 multi-standard wireless protocol along with audio support.

“We are excited about Telink’s technology and how it will augment our existing sensor technology and connectivity platform,” said Sailesh Chittipeddi, IDT’s executive vice president for global operations and chief technology officer. “With this partnership, we will be able to address markets together that we weren’t fully capable of with our standalone solutions.”

“IDT’s integrated sensors and applications combined with Telink’s third generation, ultra-low power connectivity ICs – specifically designed to enable cost sensitive applications – give high-performance options without compromise to connected sensing product designers,” said Jim Wargnier, global VP of sales for Telink Semiconductor. “We look forward to pushing the boundaries with IDT on this exciting platform.”

By Maria Vetrano

With over 25 years of experience in the technology industry, Sri Peruvemba, CMO of CLEARink Displays, is a longtime advocate of electronic display technology. During his presentation at FLEX and MEMS & Sensors Technical Congress 2019, February 18-21 in Monterey, Calif., Peruvemba will explain recent innovations in electronic paper (ePaper) that will open new applications to reflective displays for the first time.

SEMI: ePaper has been around for more than a decade. How has it evolved for wearables and mobile devices?

Peruvemba: ePaper in its current form provides a reflective display that is low power and sunlight-readable to applications such as eReaders and electronic shelf labels (ESLs), both of which are in mass production. There is a much larger opportunity, however, for reflective displays that offer color and video atop the traditional benefits of ePaper. Now possible through electrophoretic total internal reflection (eTIR) – which we have termed ePaper 2.0 – is a low-power technology that allows devices to work for days instead of hours. eTIR offers sunlight readability as well as full color and video-level switching speeds, which satisfies the diverse requirements of wearables and mobile devices.

New electrophoretic total internal reflection (eTIR) display technology uses the charged particles in a fluid to modulate the total internal reflected light from the optical structures incorporated into its novel reflector film. Image courtesy of CLEARink Displays.

SEMI: How do you define a “reflective display?”

Peruvemba: A display that reflects external light to its advantage is a reflective display. This includes the display that uses ambient light rather than a backlight and one that uses the sun rather than fights it.

SEMI: Where is there a larger opportunity for reflective displays that offer color and video over the traditional benefits of ePaper?

Peruvemba: While most of us are familiar with ePaper in applications such as eReaders and wearables that need sunlight readability, there is an untapped market in the wearables space for applications that require internet browsing and color, even video, displays. ESLs are a good example. Retailers are no longer content to show prices. They also want to show specials, display color ads, and run video and animation to enhance product differentiation. Displays in tablets, digital signage and automotive are additional targets.

SEMI: How large is the opportunity?

Peruvemba: The electronic display industry has been trying to build reflective displays that are low-power color and video for many years but without success. Hence, the opportunity is in the tens of billions of U.S. dollars in outdoor signs, automotive displays, tablets, wearables, shelf labels and dozens of others products.

SEMI: What will it take for manufacturers to migrate from LCD or OLED to eTIR?

Peruvemba: The good news is that implementation is pretty much the same as with the LCD or OLED displays currently in use. The interfaces, connections and form factors remain form-, fit-, function-compatible. Only the software/waveforms and drive voltages will change/reduce. This allows the manufacture of our tech., ePaper 2.0, on the old LCD lines that are already in use. You can literally go back and forth between ePaper 2.0 and LCD on a day-to-day basis. This differs from other eTIR implementations, which require new dedicated manufacturing lines that cost tens to hundreds of millions of dollars.

SEMI: Are there other emerging markets that are particularly well-matched to eTIR?

Peruvemba: Tablet devices designed for long use on a single charge, mobile devices including wearables for outdoor applications, Internet of Things (IoT) devices that need high ambient readability, and very low-power and unobtrusive displays in home or office settings represent other emerging markets.

SEMI: What technical obstacles have hindered ePaper in certain markets – and how do you overcome those obstacles?

Peruvemba: Bringing a display technology to market is not only about solving technical and process hurdles. It is also about finding the right one percent of the applications that your technology can uniquely address. Success requires developing the ecosystem of subcomponent suppliers and peripheral technology providers (like touch and front lights). Partnering with the display fabs that can mass-produce your technology is another important step.

With most emerging technologies, the pursuit of the right customer is the bigger challenge, but for us it has been getting the product into production. Fortunately, we already have customers that have invested in the company and have committed to product volume, so they get early access to our technology.

SEMI: What would you like FLEX and MSTC attendees to take away from your presentation?

Peruvemba: Now just months away from deploying our eTIR technology as ePaper 2.0, we welcome partnership inquiries as we seek to implement eTIR across a range of previously unserved and underserved display markets.

Sri Peruvemba will present ePaper 2.0 — Creating New Markets at FLEX/MSTC on Tuesday, February 19 at 2:45 pm

Register today to connect with him at the event. To learn more about CLEARink Displays, click here.

MSTC FLEX 2019 is organized by MEMS & Sensors Industry Group (MSIG) and FlexTech.

Leti, an institute of CEA-Tech, has developed a novel retinal-projection concept for augmented reality (AR) uses based on a combination of integrated optics and holography. The lens-free optical system uses disruptive technologies to overcome the limitations of existing AR glasses, such as limited field-of-view and bulky optical systems.

TVs and smartphones that project digital images emit light all around them, as quasi-isotropic sources. Because the images are projected generally over the air without directivity, many viewers see the same image. In typical AR glasses, images are transmitted close to the eyes (high directivity) by a microdisplay that includes an optical system and an optical combiner.

These microdisplays create a small near-to-eye image, which is transformed by the optical system, enabling the user to see it despite the short focusing distance. The combiner superimposes the digital image to the viewers’ vision of the real environment.

CEA-Leti’s innovation is a transparent retinal-projection device that projects various light waves to the eyes from a glass surface. Images are formed in the retina by the interference of light waves, which eliminates the need for optical systems or combiners. The light propagating in the air doesn’t form an image until it interferes precisely in the retina.

CEA-Leti presented its results Feb. 6 at SPIE Photonics West 2019 in a paper titled “Integrated Optical Network Design for a Retinal Projection Concept Based on Single-Mode Si3N4 Waveguides at 532 nm”.

The project focused on the design and numerical simulations of integrated Si3N4 optical components and the optical circuit at λ = 532 nm. It required building blocks for designing an optical integrated circuit capable of creating an array of emissive points. Starting with single-mode waveguides to efficiently transport light around the circuit, many other components were designed to manipulate light in different locations. Components for extracting the light, such as diffraction gratings, were also designed and simulated. The team minimized losses of different parts of the circuit, such as waveguide-bending areas, to increase energy efficiency of the system.

CEA-Leti’s integration of the device and its use of a holographic layer also allow creation of compact AR glasses with a larger field-of-view than existing systems, while the transparent retinal projection device allows ambient light to pass through the device for enhanced AR applications.

“Combining integrated optics and holography is a new research area for the scientific community developing display applications,” said Basile Meynard, a Ph.D. student and lead author of the paper. “It is also a way to imagine a display device that works more as a data transfer system than as an imaging system.”

The novel approach will require further development before it reaches the commercialization stage. In the medium to long term, the retinal projection concept is expected to support more compact and higher virtual-image quality applications similar to existing AR glasses.

This research project builds on CEA-Leti’s many years of development of micro-displays for near-to-eye displays, such as organic LED technologies (OLED) and liquid crystal devices (LCD). More recently, the institute has made significant strides in the field of inorganic LED display manufacturing.

“Our teams are continuously looking for potential disruptive technologies that could pave the way to new families of display devices down the road,” said Christophe Martinez, optical senior scientist and project leader in Leti. “The investigation on retinal displays is part of this exploration of future optical solutions.”

SEMI, the global industry association serving the electronics manufacturing supply chain, today announced the appointment of John Chong, vice president of product and business development at MEMS manufacturer Kionix, as Governing Council chair of the SEMI-MEMS & Sensors Industry Group (SEMI-MSIG), a SEMI Strategic Association Partner. The Council provides guidance and oversight for SEMI-MSIG’s strategic direction and initiatives.

As chairman, Dr. Chong, a member of the SEMI-MSIG Governing Council since 2015, will work to advance the interests of the MEMS and sensors community globally and drive its expansion. Spurred by surging growth in smartphones, smart speakers, autonomous cars, and fitness and healthcare wearables, the global market for MEMS and sensors is expected to double in the next five years, reaching $100 billion by 2023, according to Yole Développement, a market research firm.

“John’s technical expertise and industry insights have been great assets to SEMI-MSIG,” said Michael Ciesinski, vice president of Technology Communities at SEMI. “We are pleased that he will now focus his leadership on programs designed to deepen industry collaboration, drive innovation, and seize the tremendous market opportunity that lies ahead. Further, as we make this leadership transition, SEMI gratefully acknowledges the many contributions of our past chair, Dave Kirsch, vice president and general manager of EV Group.”

Among other achievements, Kirsch led the successful integration of MSIG with SEMI in 2016.

Dr. Chong brings to the chair rich industry experience. He leads Kionix’s growing portfolio of sensors and oversees its Software and Solutions Development Center. Before joining Kionix in 2006, Dr. Chong led the development of optical MEMS at Calient Networks. He holds multiple patents and has spoken extensively at industry conferences about the role of sensors in the Internet of Things (IoT). Dr. Chong earned his B.S. and Ph.D. in electrical engineering at Cornell University, where he worked on novel techniques for the design and manufacturing of Microfludic MEMS.

“I am excited by the central role MEMS and sensors will play in the age of IoT, artificial intelligence (AI), and autonomous agents,” Dr. Chong said. “With collaboration and coordination within the industry critical to its prosperity, SEMI-MSIG is key in providing the vision, resources and platform necessary to enable innovation and get business done.”

SEMI has also appointed Becky Oh, president and CEO of PNI Sensors, as SEMI-MSIG vice-chair. During her 20 years at PNI Sensors, Oh has held a range of senior-level positions, from operations to technical business development, and spearheaded the company’s entrance into the IoT market. She received an M.S. degree in Electrical Engineering from Cornell University and a B.S. degree in Electrical Engineering and Computer Science from MIT.