Category Archives: MEMS

The 2018 Symposia on VLSI Technology & Circuits will deliver a unique perspective into the technological ecosystem of converging industry trends – machine learning, IoT, artificial intelligence, wearable/implantable biomedical applications, big data, and cloud computing – the emerging technologies needed for ‘smart living.’ In a weeklong conference packed with technical presentations, a demonstration session, panel discussions, focus sessions, short courses, and a new “Friday Forum” on machine learning, the microelectronics industry’s premiere international conference covers technology, circuits, and systems with a range and scope unlike any other conference.

Built around the theme of “Technology, Circuits & Systems for Smart Living,” the Symposia programintegrates advanced technology developments, innovative circuit design, and the applications that they enable as part of our global society’s adoption of smart, connected devices and systems that change the way humans interact with each other.

Plenary Sessions (June 19):
The Symposia will open with two technology plenary sessions, including “Memory Technology: The Core to Enable Future Computing Systems” by Scott DeBoer, executive VP for technology development, Micron; and “Revolutionizing Cancer Genomic Medicine by Artificial Intelligence & Supercomputing with Big Data” by Satoru Miyano, director of the Human Genome Center, Institute of Medical Science at University of Tokyo.

The following Circuits plenary sessions include “Hardware-Enabled Artificial Intelligence” by Dr. Bill Dally, chief scientist & senior VP, Nvidia; and “Semiconductor Technologies Accelerate Our Future Vision: ‘ANSHIN Platform'” by Tsuneo Komatsuzaki, advisor, SECOM.

Focus Sessions (June 19, 20 & 21):
As part of the Symposia’s ongoing program integration, a series of joint focus sessions will be held to present contributed papers from the Technology and Circuits Symposia on June 20 and 21. Topics will include: “Heterogeneous System Integration,” “Power Devices & Circuits,” “New Devices & Systems for AI,” and “Design & Technology Co-Optimization (DTCO) in Advanced CMOS Technology.”

On June 19, the Technology focus sessions will include: Back-End Compatible Devices & Advanced Thermal Management and Sensors and Devices for IoT, Medicine, & Smart Living.” The Circuits focus sessions, held on June 21, include “Machine Learning Circuits & SoCs,” and “Advanced Wireline Techniques.”

Evening Panel Sessions (June 18 & 19):
A joint panel discussion, bringing together leading experts from Technology & Circuits programs will be held June 18 to answer the question, “Is the CPU Dying or Dead? Are Accelerators the Future of Computation?”

As Moore’s Law slows down and processor architecture innovations move away from single thread performance, the future of computing seems to be moving away from the general purpose CPU. Is the era of the CPU over? Will future CPUs simply coordinate activity among accelerators and other specialized processing units? The panel will examine future computing workloads as well as the innovative technology and circuit solutions that enable them, from moving computation closer to memory, and developing bio-inspired systems.

The Technology evening panel session panel discussion, held on June 19 will examine “Storage Class Memories: Who Cares? DRAM is Scaling Fine, NAND Stacking is Great.” Memory – DRAM and NAND scaling – though difficult, has persisted due to rapid innovations and continued engineering. Although there are new economic and fundamental challenges posed to continued memory scaling, a new class of memories – Storage Class memories, appears to bridge the latency gap that exists in the memory hierarchy and promises to improve system performance. Now the real question becomes – who really cares now? System architects, DRAM/NAND manufacturers? End users? The panel will discuss the challenges and opportunities of storage class memories in the environment where DRAM and NAND scaling continue.

The question to be addressed by the Circuits evening panel session, also held on June 19, is “What’s The Next Big Thing After Smartphones?” Although smartphones have driven the industry for more than a decade, the pace of innovation is slowing, and market saturation is occurring. What will be the next big thing? The Internet of Things? Automotive electronics? Virtual reality? Something else? A set of panelists with diverse expertise will discuss the possibilities.

Thursday Luncheon (June 21):
Continuing the Symposia’s tradition of thought-provoking presentations centered around the conference theme is the Thursday luncheon talk, entitled “The Hardware of The Mind, from Turing to Today,” by Grady Booch, chief scientist for software engineering at IBM Research. As scientists continue to the computing power of the human mind, they strive to bridge the gap between the physicality of silicon and the exquisite wonder of the brain. This presentation examines the journey of the hardware of the mind – from the Iliad, to da Vinci, to Edison, to Turing, to today – including an examination of how the growing understanding of the brain transforms the engineering of silicon, and how the laws of physics as well as the laws of humanity constrain that journey.

Full Day Short Courses (June 18):
The Technology Short Course – “Device & Integration Technologies for Sub-5nm CMOS & the Next Wave of Computing” will cover a range of topics, including CMOS technology beyond the 5nm node, MOL/BEOL interconnects, atomic-level analysis for FinFET & Nanowire design, 3D integration for image sensors, neuromorphic AI hardware, memory technologies for AI/machine learning, and sensors & analog devices for next generation computing.

The first Circuits Short Course – “Designing for the Next Wave of Cloud Computing” will address advanced computer architectures, GPU applications and FPGA acceleration, the evolution of memory and in-memory computation, and advanced packaging, power delivery and cooling for cloud computing, as well as the impact of quantum computing.

The second Circuits Short Course – “Bio-Sensors, Circuits & Systems for Wearable & Implantable Medical Devices” will cover circuits and systems for mobile healthcare, analog front-ends for bio-sensors, digital phenotyping using wearable sensors, bi-directional neural interfacing, body-area networking and body-coupled communications, ultrasound-on-a-chip, as well as a CMOS-based implantable retinal prosthesis.

Demonstration Session (June 18):
Following a successful launch last year in Kyoto, the popular demonstration session will again be part of the Symposia program, providing participants an opportunity for in-depth interaction with authors of selected papers from both Technology and Circuits sessions. These demonstrations will illustrate technological concepts and analyses through table-top presentations that show device characterization, chip operational results, and potential applications for circuit-level innovations.

Friday Forum (June 22):
New to the Symposia program this year will be the Friday Forum – a full-day series of presentations focusing on how technology and circuit designers engage in and drive the future of AI/machine learning systems, a subject area that continues to evolve as an impactful driver of the integrated systems that are part of the Symposia’s “Smart Living” theme. “Machine Learning Today & Tomorrow: A Technology, Circuits & Systems View” will provide the foundations and performance metrics for machine learning systems, an examination of advanced and emerging circuit architectures for next-generation systems, as well as highlighting tools and datasets for benchmarking and evaluating service-oriented architecture (SoA) machine learning systems.

The annual Symposium on VLSI Technology & Circuits will be held at the Hilton Hawaiian Village in Honolulu, Hawaii from June 18-22, 2018, with Short Courses held on June 18 and a special Friday Forum dedicated to machine learning/AI topics on June 22. The two conferences have been held together since 1987, providing an opportunity for the world’s top device technologists, circuit and system designers to exchange leading edge research on microelectronics technology, with alternating venues between Hawaii and Japan. A single registration enables participants to attend both Symposia.

By Jamie Girard, Sr. Director, Public Policy, SEMI

Although many months past due, Congress on March 23 finalized the federal spending for the remainder of fiscal year (FY) 2018, only hours before a what would have been the third government shutdown of the year. Congressional spending has been allocated in fits and starts since the end of FY 2017 last September, with patchwork deals keeping things running amid pervasive uncertainty. While this clearly isn’t an ideal way to fund the federal government, the end result will make many in the business of research and development pleased with the addition of more resources for science and innovation.

There was grave concern over the future of federal spending with the release of the president’s FY 2018 budget, which would have cut the National Science Foundation (NSF) budget by 11 percent and National Institutes of Standards & Technology (NIST) spending by 30 percent. Relief came with early drafts from Congress that whittled those cuts down to between 2-9 percent. But the real boost was a February bipartisan Congressional agreement that lifted self-imposed spending caps and introduced a generous dose of non-defense discretionary spending, increasing NSF spending 3.9 percent over the previous year and the NIST budget an astounding 25.9 percent over FY 2017 levels.

SEMI applauds this much-needed support for basic research and development (R&D) at these agencies after their budgets were cut or flat-funded for multiple cycles. It is well understood that federal R&D funding is critical to U.S. competitiveness and future economic prosperity. With the stakes that high, full funding of R&D programs at the NSF and NIST should be a bipartisan national priority backed by a strong and united community of stakeholders and advocates in the business, professional, research, and education communities.

With the work for FY 2018 completed, Congress will now turn to FY 2019 spending – already behind schedule due to the belated completion of the previous year’s budget. With 2018 an election year, Congress will likely begin work on the FY 2019 budget in short order, but probably won’t complete its work prior to the November elections.  SEMI will continue to work with lawmakers to support the R&D budgets at the agencies and their important basic science research. If you’d like to know how you can be more involved with SEMI’s public policy work, please contact Jamie Girard, Sr. Director, Public Policy at [email protected].

Case Western Reserve University researchers achieve cat-like ‘hearing’ with device 10,000,000,000,000 times smaller than human eardrum

CLEVELAND-Researchers at Case Western Reserve University are developing atomically thin “drumheads” able to receive and transmit signals across a radio frequency range far greater than what we can hear with the human ear.

But the drumhead is tens of trillions times (10 followed by 12 zeros) smaller in volume and 100,000 times thinner than the human eardrum.

The advances will likely contribute to making the next generation of ultralow-power communications and sensory devices smaller and with greater detection and tuning ranges.

“Sensing and communication are key to a connected world,” said Philip Feng, an associate professor of electrical engineering and computer science and corresponding author on a paper about the work published March 30 in the journal Science Advances. “In recent decades, we have been connected with highly miniaturized devices and systems, and we have been pursuing ever-shrinking sizes for those devices.”

The challenge with miniaturization: Also achieving a broader dynamic range of detection, for small signals, such as sound, vibration, and radio waves.

“In the end, we need transducers that can handle signals without losing or compromising information at both the ‘signal ceiling’ (the highest level of an undistorted signal) and the ‘noise floor’ (the lowest detectable level),” Feng said.

While this work was not geared toward specific devices currently on the market, researchers said, it was focused on measurements, limits and scaling which would be important for essentially all transducers.

Those transducers may be developed over the next decade, but for now, Feng and his team have already demonstrated the capability of their key components-the atomic layer drumheads or resonators-at the smallest scale yet.

The work represents the highest reported dynamic range for vibrating transducers of their type. To date, that range had only been attained by much larger transducers operating at much lower frequencies-like the human eardrum, for example.

“What we’ve done here is to show that some ultimately miniaturized, atomically thin electromechanical drumhead resonators can offer remarkably broad dynamic range, up to ~110dB, at radio frequencies (RF) up to over 120MHz,” Feng said. “These dynamic ranges at RF are comparable to the broad dynamic range of human hearing capability in the audio bands.”

New dynamic standard

Feng said the key to all sensory systems-from naturally occurring sensory functions in animals to sophisticated devices in engineering-is that desired dynamic range.

Dynamic range is the ratio between the signal ceiling over the noise floor and is usually measured in decibels (dB).

Human eardrums normally have dynamic range of about 60 to 100dB in the range of 10Hz to 10kHz, and our hearing quickly decreases outside this frequency range. Other animals, such as the common house cat or beluga whale (see illustration), can have comparable or even wider dynamic ranges in higher frequency bands.

The vibrating nanoscale drumheads developed by Feng and his team are made of atomic layers of semiconductor crystals (single-, bi-, tri-, and four-layer MoS2 flakes, with thickness of 0.7, 1.4, 2.1, and 2.8 nanometers), with diameters only about 1 micron.

They construct them by exfoliating individual atomic layers from the bulk semiconductor crystal and using a combination of nanofabrication and micromanipulation techniques to suspend the atomic layers over micro-cavities pre-defined on a silicon wafer, and then making electrical contacts to the devices.

Further, these atomically thin RF resonators being tested at Case Western Reserve show excellent frequency “tunability,” meaning their tones can be manipulated by stretching the drumhead membranes using electrostatic forces, similar to the sound tuning in much larger musical instruments in an orchestra, Feng said.

The study also reveals that these incredibly small drumheads only need picoWatt (pW, 10^-12 Watt) up to nanoWatt (nW, 10^-9 Watt) level of RF power to sustain their high frequency oscillations.

“Not only having surprisingly large dynamic range with such tiny volume and mass, they are also energy-efficient and very ‘quiet’ devices”, Feng said, “We ‘listen’ to them very carefully and ‘talk’ to them very gently.”

Plastics are excellent insulators, meaning they can efficiently trap heat – a quality that can be an advantage in something like a coffee cup sleeve. But this insulating property is less desirable in products such as plastic casings for laptops and mobile phones, which can overheat, in part because the coverings trap the heat that the devices produce.

Now a team of engineers at MIT has developed a polymer thermal conductor — a plastic material that, however counterintuitively, works as a heat conductor, dissipating heat rather than insulating it. The new polymers, which are lightweight and flexible, can conduct 10 times as much heat as most commercially used polymers.

Researchers at MIT have designed a new way to engineer a polymer structure at the molecular level, via chemical vapor deposition. This allows for rigid, ordered chains, versus the messy, 'spaghetti-like strands' that normally make up a polymer. This chain-like structure enables heat transport both along and across chains. Credit: MIT News Office / Chelsea Turner

Researchers at MIT have designed a new way to engineer a polymer structure at the molecular level, via chemical vapor deposition. This allows for rigid, ordered chains, versus the messy, ‘spaghetti-like strands’ that normally make up a polymer. This chain-like structure enables heat transport both along and across chains. Credit: MIT News Office / Chelsea Turner

“Traditional polymers are both electrically and thermally insulating. The discovery and development of electrically conductive polymers has led to novel electronic applications such as flexible displays and wearable biosensors,” says Yanfei Xu, a postdoc in MIT’s Department of Mechanical Engineering. “Our polymer can thermally conduct and remove heat much more efficiently. We believe polymers could be made into next-generation heat conductors for advanced thermal management applications, such as a self-cooling alternative to existing electronics casings.”

Xu and a team of postdocs, graduate students, and faculty, have published their results today in Science Advances. The team includes Xiaoxue Wang, who contributed equally to the research with Xu, along with Jiawei Zhou, Bai Song, Elizabeth Lee, and Samuel Huberman; Zhang Jiang, physicist at Argonne National Laboratory; Karen Gleason, associate provost of MIT and the Alexander I. Michael Kasser Professor of Chemical Engineering; and Gang Chen, head of MIT’s Department of Mechanical Engineering and the Carl Richard Soderberg Professor of Power Engineering.

Stretching spaghetti

If you were to zoom in on the microstructure of an average polymer, it wouldn’t be difficult to see why the material traps heat so easily. At the microscopic level, polymers are made from long chains of monomers, or molecular units, linked end to end. These chains are often tangled in a spaghetti-like ball. Heat carriers have a hard time moving through this disorderly mess and tend to get trapped within the polymeric snarls and knots.

And yet, researchers have attempted to turn these natural thermal insulators into conductors. For electronics, polymers would offer a unique combination of properties, as they are lightweight, flexible, and chemically inert. Polymers are also electrically insulating, meaning they do not conduct electricity, and can therefore be used to prevent devices such as laptops and mobile phones from short-circuiting in their users’ hands.

Several groups have engineered polymer conductors in recent years, including Chen’s group, which in 2010 invented a method to create “ultradrawn nanofibers” from a standard sample of polyethylene. The technique stretched the messy, disordered polymers into ultrathin, ordered chains — much like untangling a string of holiday lights. Chen found that the resulting chains enabled heat to skip easily along and through the material, and that the polymer conducted 300 times as much heat compared with ordinary plastics.

But the insulator-turned-conductor could only dissipate heat in one direction, along the length of each polymer chain. Heat couldn’t travel between polymer chains, due to weak Van der Waals forces — a phenomenon that essentially attracts two or more molecules close to each other. Xu wondered whether a polymer material could be made to scatter heat away, in all directions.

Xu conceived of the current study as an attempt to engineer polymers with high thermal conductivity, by simultaneously engineering intramolecular and intermolecular forces — a method that she hoped would enable efficient heat transport along and between polymer chains.

The team ultimately produced a heat-conducting polymer known as polythiophene, a type of conjugated polymer that is commonly used in many electronic devices.

Hints of heat in all directions

Xu, Chen, and members of Chen’s lab teamed up with Gleason and her lab members to develop a new way to engineer a polymer conductor using oxidative chemical vapor deposition (oCVD), whereby two vapors are directed into a chamber and onto a substrate, where they interact and form a film. “Our reaction was able to create rigid chains of polymers, rather than the twisted, spaghetti-like strands in normal polymers.” Xu says.

In this case, Wang flowed the oxidant into a chamber, along with a vapor of monomers – individual molecular units that, when oxidized, form into the chains known as polymers.

“We grew the polymers on silicon/glass substrates, onto which the oxidant and monomers are adsorbed and reacted, leveraging the unique self-templated growth mechanism of CVD technology,” Wang says.

Wang produced relatively large-scale samples, each measuring 2 square centimeters – about the size of a thumbprint.

“Because this sample is used so ubiquitously, as in solar cells, organic field-effect transistors, and organic light-emitting diodes, if this material can be made to be thermally conductive, it can dissipate heat in all organic electronics,” Xu says.

The team measured each sample’s thermal conductivity using time-domain thermal reflectance — a technique in which they shoot a laser onto the material to heat up its surface and then monitor the drop in its surface temperature by measuring the material’s reflectance as the heat spreads into the material.

“The temporal profile of the decay of surface temperature is related to the speed of heat spreading, from which we were able to compute the thermal conductivity,” Zhou says.

On average, the polymer samples were able to conduct heat at about 2 watts per meter per kelvin – about 10 times faster than what conventional polymers can achieve. At Argonne National Laboratory, Jiang and Xu found that polymer samples appeared nearly isotropic, or uniform. This suggests that the material’s properties, such as its thermal conductivity, should also be nearly uniform. Following this reasoning, the team predicted that the material should conduct heat equally well in all directions, increasing its heat-dissipating potential.

Going forward, the team will continue exploring the fundamental physics behind polymer conductivity, as well as ways to enable the material to be used in electronics and other products, such as casings for batteries, and films for printed circuit boards.

“We can directly and conformally coat this material onto silicon wafers and different electronic devices” Xu says. “If we can understand how thermal transport [works] in these disordered structures, maybe we can also push for higher thermal conductivity. Then we can help to resolve this widespread overheating problem, and provide better thermal management.”

More than Moore (MtM) wafer demand reached almost 45 million 8-inch eq wafers in 2017. The wafer demand is expected to reach more than 66 million 8-inch eq. wafers by 2023, with an almost 10% CAGR between 2017 and 2023. According to Yole Développement (Yole)’s definition, the MtM applications include MEMS & sensors, CIS , and power, along with RF devices.

For the first time, the market research and strategy consulting company Yole announces a global technology & market analysis dedicated to the MtM industry. The Wafer Starts for More Than Moore Applications report is the first part of a valuable series that will be released all year long.

“Yole’s analysts are part of the powerful semiconductor community”, explains Emilie Jolivet, Director, Semiconductor and Software at Yole. “Their daily interactions with leading companies allow them to collect a large amount of relevant data and cross their vision of market segments’ evolution and technology breakthroughs. Wafer Starts for More Than Moore Applications report is the first opportunity to get an overview of the MtM industry based on a 20-year expertise.”

“Numerous megatrend market drivers will contribute to MtM devices’ growth”, confirms Amandine Pizzagalli, Technology & Market Analyst, Semiconductor Manufacturing at Yole. “The megatrends are covering the following market segments: 5G including wireless infrastructure & mobile, mobile with additional functionalities, voice processing, smart automotive, AR/VR and AI.”

What is the status of the MtM wafer demand? Which market drivers will contribute to the growth of MtM devices? Which semiconductor substrate materials and wafer diameter dominate the MtM industry today? What are Yole’s expectations for the next 5 years? The analysts propose you a comprehensive analysis of the MtM wafer demand market.

Driven by the increasing deployment of renewable energy sources , and industrial motor drives, as well as the growing EV/HEVs industry, power devices’ wafer market size will grow at an almost 13% CAGR from 2017 to 2023. In 2017, it accounted for more than 60% of overall MtM wafer starts. According to Yole’s analysts, it will continue dominating the MtM industry.

In parallel, 5G, a hot topic today, will likely be a huge part of the MtM evolution, bringing any service to any user anywhere, but also requiring new antennas, along with filtering functionality. These stringent requirements will lead to increasing demand for RF components like RF filters, PAs , and LNAs to ensure access to tomorrow’s radio network.

Meanwhile, the demand for advanced mobile applications that integrate more functionalities will require aggregating more and more devices such as fingerprint sensors, ambient light sensors, 3D sensing, microphones, and inertial MEMS devices. This will, in the near future, contribute to strong wafer growth in the MEMS & sensors wafer market. Additionally, smart automobiles have reached a new level of complexity requiring the development and integration of new sensors. As such, Yole expects smart automobiles to drive consistent growth of CIS and sensor wafer production over the next five years, fueled by the expanding integration of high-value sensing modules like radar, imaging, and LiDAR. Although automotive will be mainly supported by these growth areas, classical MEMS & sensors such as MEMS pressure sensors and inertial MEMS will still continue growing at a reasonable rate, supporting the standard automotive world.

Yole’s investigations are based on numerous discussions with leading semiconductor players. Applied Materials Inc. is part of them. Amandine Pizzagalli recently had the opportunity to debate with Mike Rosa, Head of Marketing, 200mm Equipment Products Group (EPG) at Applied Materials. During this discussion, both exchanged their vision of the MtM industry and its evolution.

“Today, while many of these technologies exist on 200mm and below wafer sizes much of this business falls within the purview of the 200mm Equipment Product Group”, explains Mike Rosa from Applied Materials. “With the exception of Power Bipolar-CMOS-DMOS (BCD) and some Discretes, 2.5D Interposer, CMOS Image Sensors and some Photonics devices in the market – all other technologies in the MtM segment are manufactured on 200mm and 150mm wafer sizes today. So, to support our customers on current and future wafer size requirements, we work across the company to share the domain knowledge acquired, for example in the 200mm group on MEMS or Discrete Power, with the 300mm group in order to ensure continuity of technology development onto the larger wafer sizes.”

The full interview is available on i-micronews.com, semiconductor manufacturing news or click Here.

In terms of wafer size, the MtM wafer market is dominated by the 6-inch wafer format, followed by the 8-inch size, which is mostly supported by power device applications. However, though 6-inch will continue increasing in the next few years, its share will decrease compared to 8-inch. “We expect 8-inch wafer diameter to progress significantly and surpass the 6-inch wafer size by 2023”, explains Amandine Pizzagalli from Yole. And she adds: “This transition will be driven first by power and MEMS & sensor applications, where the vast majority will convert their components from 6-inch to 8-inch over the next five years due to increasing volume production.”

Nevertheless, 12-inch will represent the fastest growth from 2017 to 2023, with a 15% CAGR. The 12-inch wafer demand should also grow from 3.3 million units in 2017 to 7.5 million in 2023, mainly fueled by BSI CIS (Including 3D stacked BSI, 3D hybrid BSI).

On the other side, 4-inch wafer diameter is in large demand today for MtM applications driven by RF SAW filter products. However, 4-inch’s adoption will decrease due to the transition from 4-inch to 6-inch for these applications. Yole still sees some MtM products manufactured in wafer sizes below 4-inch, i.e. 3-inch and 2-inch wafer formats. However, these represent a very small volume, and the analysts expect such sizes to die out, aside from small volumes still used for producing MEMS, power, and RF SAW devices.

The Wafer Starts for More Than Moore Applications report is the first research performed by Yole’s analysts, gathering all the wafer starts markets for MtM applications. Yole’s market forecast methodology is based on both top bottom and a bottom up approach with dozens of interviews of companies across the entire semiconductor value chain. With this report, the company proposes an assessment of the wafers market for MEMS & Sensors, CIS, power and RF devices. This analysis reveals the market metrics at wafer market level for the whole MtM industry from 2017-2023. It evaluates market developments in terms of market size, substrate sizes/formats, and by MtM application.

Yole’s report also discloses the competitive landscape with key players in technology development and manufacturing. A detailed analysis of the key market drivers that will shape the MtM market in the future are also part of this technology & market report.

A novel invention by a team of researchers from the National University of Singapore (NUS) holds promise for a faster and cheaper way to diagnose diseases with high accuracy. Professor Zhang Yong from the Department of Biomedical Engineering at the NUS Faculty of Engineering and his team have developed a tiny microfluidic chip that could effectively detect minute amounts of biomolecules without the need for complex lab equipment.

Diseases diagnostics involves detection and quantification of nano-sized bio-particles such as DNA, proteins, viruses, and exosomes (extracellular vesicles). Typically, detection of biomolecules such as proteins are performed using colorimetric assays or fluorescent labelling with a secondary antibody for detection, and requires complex optical detection equipment such as fluorescent microscopy or spectrophotometry.

One alternative to reduce cost and complexity of disease detection is the adoption of label-free techniques, which are gaining traction in recent times. However, this approach requires precision engineering of nano-features (in a detection chip), complex optical setups, novel nano-probes (such as graphene oxide, carbon nanotubes, and gold nanorods) or additional amplification steps such as aggregation of nanoparticles to achieve sensitive detection of biomarkers.

“Our invention is an example of disruptive diagnostics. This tiny biochip can sensitively detect proteins and nano-sized polymer vesicles with a concentration as low as 10ng/mL (150 pM) and 3.75μg/mL respectively. It also has a very small footprint, weighing only 500 mg and is 6mm³ in size. Detection can be performed using standard laboratory microscopes, making this approach highly attractive for use in point-of-care diagnostics,” explained Prof Zhang.

His team, comprising Dr Kerwin Kwek Zeming and two NUS PhD students Mr Thoriq Salafi and Ms Swati Shikha, published their findings in scientific journal Nature Communications on 28 March 2018.

Novel approach for disease diagnosis

This novel fluorescent label-free approach uses the lateral shifts in the position of the microbead substrate in pillar arrays, for quantifying the biomolecules, based on the change in surface forces and size, without the need of any external equipment. Due to the usage of lateral displacement, the nano-biomolecules can be detected in real-time and the detection is significantly faster in comparison to fluorescent label based detection.

“These techniques can also be extended to many other types of nano-biomolecules, including nucleic acid and virus detection. To complement this chip technology, we are also developing a portable smartphone-based accessory and microfluidic pump to make the whole detection platform portable for outside laboratory disease diagnostics. We hope to further develop this technology for commercialisation,” said Prof Zhang.

Combined sales for optoelectronics, sensors and actuators, and discrete semiconductors (known collectively as O-S-D) increased 11% in 2017—more than 1.5 times the average annual growth rate in the past 20 years—to reach an eighth consecutive record-high level of $75.3 billion, according to IC Insights’ new 2018 O-S-D Report—A Market Analysis and Forecast for Optoelectronics, Sensors/Actuators, and Discretes. Total O-S-D sales growth is expected to ease back in 2018 but still rise by an above average rate of 8% in 2018 to $81.1 billion, based on the five-year forecast of the new 375-page annual report, which became available this week.

In 2017, optoelectronics sales recovered from a rare decline of 4% in 2016, rising 9% to $36.9 billion, while the sensors/actuators market segment registered its second year in a row of 16% growth with revenues climbing to $13.8 billion, and discretes strengthened significantly, increasing 12% to $24.6 billion.  The new O-S-D Report forecast shows optoelectronics sales growing 8% in 2018, sensors/actuators rising 10%, and discretes growing 5% this year (Figure 1).

Figure 1

Figure 1

Between 2017 and 2022, sales in optoelectronics are projected to increase by a compound annual growth rate (CAGR) of 7.3% to $52.4 billion, while sensors/actuators revenues are expected to expand by a CAGR of 8.9% to $21.2 billion, and the discretes segment is seen as rising by an annual rate of 3.1% to $28.7 billion in the final year of the report’s forecast.  In the five-year forecast period, O-S-D growth will continue to be driven by strong demand for laser transmitters in optical networks and CMOS image sensors in embedded cameras, image recognition, machine vision, and automotive applications as well as the proliferation of other sensors and actuators in intelligent control systems and connections to the Internet of Things (IoT).  Power discretes (transistors and other devices) are expected to get a steady lift from the growth in mobile and battery-operated systems as well as good-to-modest global economic growth in most of the forecast years through 2022, the report says.

Combined sales of O-S-D products accounted for about 17% of the world’s $444.7 billion in total semiconductor sales compared to less than 15% in 2007 and under 13% in 1997.  Since the mid-1990s, total O-S-D sales growth has outpaced the much larger IC market segment because of strong and relatively steady increases in optoelectronics and sensors. However, this trend was reversed recently mostly due to a 77% surge in sales of DRAMs and 54% jump in NAND flash memory in 2017.

The 2017 increase for total O-S-D sales was the highest growth rate in the market group since the 37% surge in the strong 2010 recovery year from the 2009 semiconductor downturn.  In addition, 2017 was the first year since 2011 when all three O-S-D market segments reached individual record-high sales, says IC Insights’ new report.  The 2018 O-S-D Report also shows that sales of sensor and actuator products made with microelectromechanical systems (MEMS) technology grew 18% in 2017 to a record-high $11.5 billion.

Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable our computers–and all optic communication devices–to run 100 times faster through terahertz microchips.

Until now, two major challenges stood in the way of creating the terahertz microchip: overheating and scalability.

However, in a paper published this week in Laser and Photonics Review, Dr. Levy, head of HU’s Nano-Opto Group and HU emeritus professor Joseph Shappir have shown proof of concept for an optic technology that integrates the speed of optic (light) communications with the reliability–and manufacturing scalability–of electronics.

Optic communications encompass all technologies that use light and transmit through fiber optic cables, such as the internet, email, text messages, phone calls, the cloud and data centers, among others. Optic communications are super fast but in microchips they become unreliable and difficult to replicate in large quanitites.

Now, by using a Metal-Oxide-Nitride-Oxide-Silicon (MONOS) structure, Levy and his team have come up with a new integrated circuit that uses flash memory technology–the kind used in flash drives and discs-on-key–in microchips. If successful, this technology will enable standard 8-16 gigahertz computers to run 100 times faster and will bring all optic devices closer to the holy grail of communications: the terahertz chip.

As Dr. Uriel Levy shared, “this discovery could help fill the ‘THz gap’ and create new and more powerful wireless devices that could transmit data at significantly higher speeds than currently possible. In the world of hi-tech advances, this is game-changing technology,”

Meir Grajower, the leading HU PhD student on the project, added, “It will now be possible to manufacture any optical device with the precision and cost-effectiveness of flash technology”.

Coming soon to a chip near you…

Scientists from Australia and China have drawn on the durable power of gold to demonstrate a new type of high-capacity optical disk that can hold data securely for more than 600 years.

The technology could offer a more cost-efficient and sustainable solution to the global data storage problem while enabling the critical pivot from Big Data to Long Data, opening up new realms of scientific discovery.

The recent explosion of Big Data and cloud storage has led to a parallel explosion in power-hungry data centres. These centres not only use up colossal amounts of energy – consuming about 3 per cent of the world’s electricity supply – but largely rely on hard disk drives that have limited capacity (up to 2TB per disk) and lifespans (up to two years).

Now scientists from RMIT University in Melbourne, Australia, and Wuhan Institute of Technology, China, have used gold nanomaterials to demonstrate a next-generation optical disk with up to 10TB capacity – a storage leap of 400 per cent – and a six-century lifespan.

The technology could radically improve the energy efficiency of data centres – using 1000 times less power than a hard disk centre – by requiring far less cooling and doing away with the energy-intensive task of data migration every two years. Optical disks are also inherently far more secure than hard disks.

Lead investigator, RMIT University’s Distinguished Professor Min Gu, said the research paves the way for the development of optical data centres to address both the world’s data storage challenge and support the coming Long Data revolution.

“All the data we’re generating in the Big Data era – over 2.5 quintillion bytes a day – has to be stored somewhere, but our current storage technologies were developed in different times,” Gu said.

“While optical technology can expand capacity, the most advanced optical disks developed so far have only 50-year lifespans.

“Our technique can create an optical disk with the largest capacity of any optical technology developed to date and our tests have shown it will last over half a millennium.

“While there is further work needed to optimise the technology – and we’re keen to partner with industrial collaborators to drive the research forward – we know this technique is suitable for mass production of optical disks so the potential is staggering.”

The world is shifting from Big Data towards Long Data, which enables new insights to be discovered through the mining of massive datasets that capture changes in the real world over decades and centuries.

Lead author, Senior Research Fellow Dr Qiming Zhang from RMIT’s School of Science, said the new technology could expand horizons for research by helping to advance the rise of Long Data.

“Long Data offers an unprecedented opportunity for new discoveries in almost every field – from astrophysics to biology, social science to business – but we can’t unlock that potential without addressing the storage challenge,” Zhang said.

“For example, to study the mutation of just one human family tree, 8 terabytes of data is required to analyse the genomes across 10 generations. In astronomy, the Square Kilometre Array (SKA) radio telescope produces 576 petabytes of raw data per hour.

“Meanwhile the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to ‘map’ the human brain is handling data measured in yottabytes, or one trillion terabytes.

“These enormous amounts of data have to last over generations to be meaningful. Developing storage devices with both high capacity and long lifespan is essential, so we can realise the impact that research using Long Data can make in the world.”

The novel technique behind the technology – developed over five years – combines gold nanomaterials with a hybrid glass material that has outstanding mechanical strength.

The research progresses earlier groundbreaking work by Gu and his team that smashed through the seemingly unbreakable optical limit of blu-ray and enabled data to be stored across the full spectrum of visible light rays.

How it works

The researchers have demonstrated optical long data memory in a novel nanoplasmonic hybrid glass matrix, different to the conventional materials used in optical discs.

Glass is a highly durable material that can last up to 1000 years and can be used to hold data, but has limited storage capacity because of its inflexibility.

The team combined glass with an organic material, halving its lifespan but radically increasing capacity.

To create the nanoplasmonic hybrid glass matrix, gold nanorods were incorporated into a hybrid glass composite, known as organic modified ceramic.

The researchers chose gold because like glass, it is robust and highly durable. Gold nanoparticles allow information to be recorded in five dimensions – the three dimensions in space plus colour and polarisation.

The technique relies on a sol-gel process, which uses chemical precursors to produce ceramics and glasses with better purity and homogeneity than conventional processes.

 

Magnolia Optical Technology, Inc. announced that it is working with the Defense Advanced Research Projects Agency (DARPA) under the Phase II SBIR Program for Development of High-Performance Thin-Film Solar Cells for Portable Power Applications (Contract No D15PC00222).

Photovoltaic devices can provide a portable source of electrical power for a wide variety of defense and commercial applications, including mobile power for dismounted soldiers, unmanned aerial vehicles, and remote sensors.

“The goal of the current program is to develop high-efficiency GaAs-based solar cells that maintain their performance over changing environmental conditions, and that are thinner and thus more cost-effective to produce,” said Dr. Roger Welser, Magnolia’s Chief Technical Officer. “By combining thin III-V absorbers with advanced light-trapping structures, single-junction GaAs-based devices provide a means to deliver high efficiency performance over a wide range of operating conditions at a fraction of the cost of the multi-junction structures typically employed for space power. In addition, the incorporation of nano-enhanced III-V absorbers provides a pathway to extend infrared absorption and increase the photovoltaic power conversion efficiency of cost-effective thin-film solar cells.”

Dr. Ashok Sood, President of Magnolia stated “changes in the solar spectrum can dramatically degrade the performance of traditional multi-junction devices – changes that occur naturally throughout the day, from season to season, and from location to location as sunlight passes through the earth’s atmosphere. Moreover, multi-junction III-V cells require thick, complex epitaxial layers and are therefore inherently expensive to manufacture. The technology under development as part of this DARPA-funded program addresses these key weaknesses in the established high-performance photovoltaic technology. The photovoltaic market is a rapidly growing segment of the energy industry with a wide range of commercial and defense applications.”

Magnolia specializes in developing optical technologies for defense and commercial applications. Based in Woburn, MA, Magnolia develops both thin film and nanostructure-based technologies that cover the ultraviolet, visible, and infrared part of the spectrum. These technologies are developed for use in advanced military sensors and other commercial applications including solar cells.