Category Archives: MEMS

By Emir Demircan, Senior Manager Advocacy and Public Policy, SEMI Europe

Electronic manufacturing is becoming cool to today’s youth. STEM skills are hot in the global job market – though the number of females pursuing a STEM education continues to lag. Work-based learning is key to mastering new technologies. And the electronics industry needs a global talent pipeline more than ever.

These were key highlights from a SEMI Member Forum in December that brought together industry representatives and students in Dresden to weigh in on job-skills challenges facing the electronics manufacturers and solutions for the industry to consider. Here are the takeaways:

1) Electronics is much more than manufacturing

For many years, working in the manufacturing industry was not an appealing prospect for millennials. This picture is certainly changing. The pivotal role of electronics manufacturing in helping solve grand societal challenges in areas such as the environment, healthcare and urban mobility is reaffirmed by countries around the world. Electronics is the lifeblood of game-changing technologies such as autonomous driving, AI, IoT, and VR/AR, enticing more young employees into careers in research, design, technology development, production, cyber security and international business, and in disciplines ranging from engineering and data analytics to software development and cyber security.

What’s more, the drudgery of many factory jobs is disappearing thanks to automation, digitization and robotization. According to CEDEFOP, the European Centre for the Development of Vocational Training, low-skilled jobs in electro-engineering and machine operations/assembly in the European Union (EU) is projected to decrease 6.98 percent and 2.03 percent, respectively, between 2015 and 2025.

In parallel, the industry will need more high-skilled workers. For instance, within the same period, CEDEFOP forecasts a 12.51 percent increase in jobs for EU researchers and engineers. Soft skills will see high demand too. As the electronics industry continues to globalize and drive the integration of vertical technologies, workers proficient in communicating in an international environment, leading multicultural teams, developing tailor-made solutions and making data-driven decisions will see higher demand.

2) STEM skills will remain under the spotlight

Continuous innovation is the oxygen of the electronics manufacturing industry, powering the development of highly customized solutions by workers with technical expertise in chemistry, materials, design, mechanics, production and many other fields. In addition, capabilities such as smart manufacturing require workers with growing technical sophistication in areas such as software, information and communications technology (ICT) and data analytics, stiffening the challenge the electronics industry faces in finding skilled workers. Little wonder that employers in Europe struggle to build a workforce with the right technical expertise. The findings of the study “Encouraging STEM Studies for the Labour Market” conducted by the European Parliament underscores the difficulty of hiring enough workers with adequate STEM skills:

  • The proportion of STEM students is not rising at the European level and the underrepresentation of women persists.
  • Businesses are expected to produce about 7 million new STEM jobs, an uptick of 8 percent, between 2013 and 2025 in Europe.

3) The women-in-tech gap is becoming more persistent 

The global manufacturing industry suffers from strikingly low female participation in STEM education and careers. According to UNSECO, in Europe and North America, the number of female graduates in STEM is generally low. For instance, women make up just 19 percent of engineers in Germany and the U.S. The European Parliament study confirms that STEM employment remains stubbornly male-dominated, with women filling just 24 percent of science and engineering jobs and 15 percent of science and engineering associate positions in Europe. According to an article by Guardian, a mere 16 percent of computer science undergraduates in the United Kingdom and the U.S. are female. This yawning gender gap is a deep concern for electronics manufacturing companies in Europe, hampering innovation in a sector that relies heavily on diversity and inclusion and shrinks the talent pipeline critical to remaining competitive.

4) Coping with new technologies: work-based learning is the key

The evolution of the electronics industry since the 1980s has been swift. PCs emerged largely as islands of communication, then became networked. Networking bred the proliferation of social platforms and mobile devices and, today, is giving rise to IoT. Education curricula in Europe, however, have not matured at the same pace, opening a gap between the worlds of industry and education and imposing a formidable school-to-work transition for many young graduates. Work-based learning, which helps students develop the knowledge and practical job skills needed by business, is one solution. The industry reports that work-based learning is vital to remaining competitive in the long run. Innovative dual-learning programmes, apprenticeships and industrial master’s and doctorates are shining examples that are already paying off in some parts of Europe. Such work-based learning models can be extended as a common pillar of education in Europe.

5) A global industry needs a global talent pipeline

The electronics value chain workforce needs an international and multicultural talent pipeline, chiefly spanning the U.S., Europe and Asia. However, many European manufacturers, in particular small and medium enterprises (SMEs), report that building an international workforce remains a challenge due to employment and immigration law barriers as well as cultural and linguistic differences. The EU’s Blue Card initiative, designed to facilitate hiring beyond Europe, is a step in the right direction. Nevertheless, with the exception of Germany, EU member states have made little or no use of the EU Blue Card scheme.

SEMI drives sector-wide initiatives on workforce development

Understanding the urgency, SEMI is accelerating its workforce development activities at global level. Contributing to this initiative, the SEMI talent pipeline Forum in Dresden served as an effective platform for the industry to share its challenges and opportunities with students at various education levels. Led by industry representatives, the sessions enabled the exchange of workforce-development best practices and paved the way for further collaboration among industry, academia and government in Europe. For example, in the Career Café session, students networked with hiring managers. Other workforce development initiatives include:

To help position the skills challenges faced by SEMI members high on the public policy agenda, SEMI in 2017 joined several policy groups including Digital Skills and Jobs Coalition and Expert Group on High-Tech Skills. Last year SEMI also launched Women in Tech, an initiative that convenes industry leaders to help increase female representation in the sector. SEMI also educates its members about key EU resources such as the Blue Card and Digital Opportunity Internship programmes aimed at hiring international talent. In 2018, SEMI will reach out to even more young people through its High Tech U programme to raise awareness of careers in electronics. SEMICON Europa 2018 will host dedicated talent pipeline sessions to help the industry tackle its skills challenges. ISS Europe 2018 sessions on Gaining, Training and Retaining World Class Talent will disseminate best practices to the wider industry. Also this year, SEMI Europe plans to start a new advisory group, “Workforce 4.0,” dedicated to bringing together human resources leaders in the sector to give the electronics manufacturing industry a stronger voice on workforce development.

 

The internet of things is coming, that much we know. But still it won’t; not until we have components and chips that can handle the explosion of data that comes with IoT. In 2020, there will already be 50 billion industrial internet sensors in place all around us. A single autonomous device – a smart watch, a cleaning robot, or a driverless car – can produce gigabytes of data each day, whereas an airbus may have over 10 000 sensors in one wing alone.

Two hurdles need to be overcome. First, current transistors in computer chips must be miniaturized to the size of only few nanometres; the problem is they won’t work anymore then. Second, analysing and storing unprecedented amounts of data will require equally huge amounts of energy. Sayani Majumdar, Academy Fellow at Aalto University, along with her colleagues, is designing technology to tackle both issues.

Majumdar has with her colleagues designed and fabricated the basic building blocks of future components in what are called “neuromorphic” computers inspired by the human brain. It’s a field of research on which the largest ICT companies in the world and also the EU are investing heavily. Still, no one has yet come up with a nano-scale hardware architecture that could be scaled to industrial manufacture and use.

“The technology and design of neuromorphic computing is advancing more rapidly than its rival revolution, quantum computing. There is already wide speculation both in academia and company R&D about ways to inscribe heavy computing capabilities in the hardware of smart phones, tablets and laptops. The key is to achieve the extreme energy-efficiency of a biological brain and mimic the way neural networks process information through electric impulses,” explains Majumdar.

The probe-station device (the full instrument, left, and a closer view of the device connection, right) which measures the electrical responses of the basic components for computers mimicking the human brain. The tunnel junctions are on a thin film on the substrate plate. Credit: Tapio Reinekoski

The probe-station device (the full instrument, left, and a closer view of the device connection, right) which measures the electrical responses of the basic components for computers mimicking the human brain. The tunnel junctions are on a thin film on the substrate plate. Credit: Tapio Reinekoski

Basic components for computers that work like the brain

In their recent article in Advanced Functional Materials, Majumdar and her team show how they have fabricated a new breed of “ferroelectric tunnel junctions”, that is, few-nanometre-thick ferroelectric thin films sandwiched between two electrodes. They have abilities beyond existing technologies and bode well for energy-efficient and stable neuromorphic computing.

The junctions work in low voltages of less than five volts and with a variety of electrode materials – including silicon used in chips in most of our electronics. They also can retain data for more than 10 years without power and be manufactured in normal conditions.

Tunnel junctions have up to this point mostly been made of metal oxides and require 700 degree Celsius temperatures and high vacuums to manufacture. Ferroelectric materials also contain lead which makes them – and all our computers – a serious environmental hazard.

“Our junctions are made out of organic hydro-carbon materials and they would reduce the amount of toxic heavy metal waste in electronics. We can also make thousands of junctions a day in room temperature without them suffering from the water or oxygen in the air”, explains Majumdar.

What makes ferroelectric thin film components great for neuromorphic computers is their ability to switch between not only binary states – 0 and 1 – but a large number of intermediate states as well. This allows them to ‘memorise’ information not unlike the brain: to store it for a long time with minute amounts of energy and to retain the information they have once received – even after being switched off and on again.

We are no longer talking of transistors, but ‘memristors’. They are ideal for computation similar to that in biological brains. Take for example the Mars 2020 Rover about to go chart the composition of another planet. For the Rover to work and process data on its own using only a single solar panel as an energy source, the unsupervised algorithms in it will need to use an artificial brain in the hardware.

“What we are striving for now, is to integrate millions of our tunnel junction memristors into a network on a one square centimetre area. We can expect to pack so many in such a small space because we have now achieved a record-high difference in the current between on and off-states in the junctions and that provides functional stability. The memristors could then perform complex tasks like image and pattern recognition and make decisions autonomously,” says Majumdar.

Semtech Corporation (Nasdaq:SMTC), a supplier of high performance analog and mixed-signal semiconductors and advanced algorithms, announced its next generation LoRa devices and wireless radio frequency (RF) technology (LoRa Technology) chipsets enabling innovative LPWAN use cases for consumers with its advanced technology. Addressing the need for cost-effective and reliable sensor-to-cloud connectivity in any type of RF environment, the new features and capabilities will significantly improve the performance and capability of Internet of Things (IoT) sensor applications that demand ultra-low power, small form factor and long range wireless connectivity with a shortened product development cycle.

The next generation LoRa radios extends Semtech’s link budget by 20% with a 50% reduction in receiver current (4.5 mA) and a high power +22 dBm option. This extends battery life of LoRa-based sensors up to 30%, which reduces the frequency of battery replacement. The extended connectivity range, with the ability to reach deep indoor and outdoor sensor locations, will create new markets as different types of verticals integrate LoRa Technology in their IoT applications including healthcare and pharmaceuticals, media and advertising, logistics/shipping, and asset tracking.

In addition, the new platform has a command interface that simplifies radio configuration and shortens the development cycle, needing only 10 lines of code to transmit or receive a packet, which will allow users to focus on applications. The small footprint, 45% less than the current generation, is highly configurable to meet different application requirements utilizing the global LoRaWAN open standard. The chipsets also supports FSK modulation to allow compatibility with legacy protocols that are migrating to the LoRaWAN™ open protocol for all the performance benefits LoRa Technology provides.

“LPWAN IoT applications are going through a massive transformation, shifting from trials to large deployments in smart cities, buildings, healthcare, logistics, and agriculture,” said Marc Pegulu, Vice President and General Manager for Semtech’s Wireless and Sensing Products Group. “LoRa Technology enables an infinite amount of IoT use cases as Semtech pushes for the last mile of connectivity and reinforces its position as the defacto platform for LPWAN.”

After several years of close partnership, SEMI and the Fab Owners Association (FOA) have fully integrated. Driving manufacturing efficiencies remains the overriding purpose of the FOA – where the “A” now stands for “Alliance.”  With FOA’s integration with SEMI, the association will leverage SEMI’s global infrastructure and connections to over 2,000 members around the world to extend its platforms for collaborative networking and benchmarking manufacturing operations.

“FOA members operate some of the most innovative and efficient fabrication facilities and are hotbeds for new optimization methodologies in integrated circuit and micro-electromechanical production,” said Ajit Manocha, president and CEO of SEMI. “The integration of FOA with SEMI brings together firsthand understanding of manufacturing challenges so we can help all SEMI members achieve higher operating efficiency.”

With integration complete, FOA is managed as a Special Interest Group (SIG) within SEMI. FOA member companies will become full SEMI members, with FOA continuing to expand its global membership through SEMI’s global network, while maintaining its unique community.

Established in 2004, FOA brings to SEMI a focus on addressing common semiconductor operations and manufacturing issues. The full integration comes after more than a year in which the organizations operated under an Association Management Agreement where SEMI provided FOA association services and deepened its association with FOA. SEMI-FOA will continue to focus on manufacturing efficiency, including the group’s popular benchmark activities, to enable best practices among FOA members.

“FOA members manufacture a wide variety of complex devices, many of which make up the applications we see in some of the most advanced automotive systems, medical devices, Smart Manufacturing and general IoT,” said Dale Miller, member of the FOA Executive Director, and Senior Director, Fab 9 Semiconductor Manufacturing Operations at GLOBALFOUNDRIES. “Given the strong growth in these applications, FOA members must keep the fabs humming at full capacity while always pursuing higher yield and lower cost. To help maintain this momentum, FOA will continue to enable members to collaborate on best practices and benchmarking while focusing on key issues such as cycle-time, yield and tool performance.”

ON Semiconductor (Nasdaq: ON) has joined the global Charging Interface Initiative e.V. (CharIN) ecosystem with the goals of promoting standards for charging systems in electric vehicles (EV), creating requirements for the evolution of EV charging systems and developing a certification system for manufacturers to implement charging systems into their products.

ON Semiconductor has all the core technologies for vehicle electrification, particularly the company’s extensive automotive qualified power management portfolio including: IGBTs, high voltage gate drivers, super junction rectifiers, high voltage MOSFETs, high voltage DC-DC converters, as well as Wide Band Gap (WBG) devices in Silicon Carbide (SiC) and Gallium Nitride (GaN) for next generation solutions. Beyond silicon development, investments in advanced packaging include: high power modules, single/dual sided cooled and dual sided direct cooled packages. With sensing, communication and analog solutions, ON Semiconductor has nearly all the components for current and future EV charging infrastructure needs.

“At ON Semiconductor, our core business is Power Management, and we support virtually every requirement with products that range from low drop-out regulators, to switched mode power supplies to sophisticated power management ICs (PMICs), positioning the company as an unrivaled supplier of power solutions for the rapidly emerging EV and hybrid electric vehicle market,” said Ali Husain, senior manager, power conversion and motor control solutions at ON Semiconductor. “We are seeing a ramp-up of our IGBT modules and FETs for electric vehicle charger designs. We expect next generation semiconductor materials such as silicon carbide and gallium nitride to drive improving power density and efficiency. We look forward to bringing this expertise to the CharIN ecosystem and collaborating with other industry leaders to create a Combined Charging System and supporting the continued evolution of EV charging infrastructure.”

As automotive manufacturers turn to next generation semiconductor materials to improve power density and efficiency in hybrid and electric vehicles, ON Semiconductor’s 1200V silicon carbide power devices and 650V gallium nitride power devices provide market leading solutions. These solutions provide higher power efficiency and power density while keeping weight to a minimum.

“We are excited to have ON Semiconductor collaboration in our efforts,” said Claas Bracklo, chairman of CharIN e.V. “Their broad portfolio of power, analog and communication silicon products, system design expertise, and relationships with leading companies in both the automotive and industrial markets complement and supplement the already-strong CharIN roster of members and partners.”

A team of physicists, headed by the U.S. Naval Research Laboratory (NRL), have demonstrated the means to improve the optical loss characteristics and transmission efficiency of hexagonal boron nitride devices, enabling very small lasers and nanoscale optics.

Image shows directly measured polaritons propagating through a flake of Hexagonal boron nitride (hBN). This material has been identified as an ideal substrate for two-dimensional materials research while also recently being demonstrated as an exciting optical material for infrared nanophotonics. Credit: (US Naval Research Laboratory)

Image shows directly measured polaritons propagating through a flake of Hexagonal boron nitride (hBN). This material has been identified as an ideal substrate for two-dimensional materials research while also recently being demonstrated as an exciting optical material for infrared nanophotonics. Credit: (US Naval Research Laboratory)

“The applications for this research are considerably broad,” said Dr. Alexander J. Giles, research physicist, NRL Electronics Science and Technology Division. “By confining light to very small dimensions, nanophotonic devices have direct applications for use in ultra-high resolution microscopes, solar energy harvesting, optical computing and targeted medical therapies.”

Hexagonal boron nitride (hBN) forms an atomically thin lattice consisting of boron and nitrogen atoms. This material has recently been demonstrated as an exciting optical material for infrared nanophotonics and is considered an ‘ideal substrate’ for two-dimensional materials.

While previous work demonstrated that natural hBN supports deeply sub-diffractional hyperbolic phonon polaritons desired for applications, such as, sub-diffractional optical imaging (so-called ‘hyperlensing’), energy conversion, chemical sensing, and quantum nanophotonics, limited transmission efficiencies continue to persist.

“We have demonstrated that the inherent efficiency limitations of nanophotonics can be overcome through the careful engineering of isotopes in polar semiconductors and dielectric materials,” Giles said.

Naturally occurring boron is comprised of two isotopes, boron-10 and boron-11, lending a 10 percent difference in atomic masses. This difference results in substantial losses due to phonon scattering, limiting the potential applications of this material. The research team at NRL has engineered greater than 99 percent isotopically pure samples of hBN, meaning they consist almost entirely of either boron-10 or boron-11 isotopes.

This approach results in a dramatic reduction in optical losses, resulting in optical modes that travel up to three times farther and persist for up to three times longer than natural hBN. These long-lived vibrational modes not only enable immediate advances specific to hBN – near field optics and chemical sensing – but also provide a strategic approach for other materials systems to exploit and build upon.

“Controlling and manipulating light at nanoscale, sub-diffractional dimensions is notoriously difficult and inefficient,” said Giles. “Our work represents a new path forward for the next generation of materials and devices.”

By Junko Collins, Director of Standards, SEMI Japan

SEMI Standards are the very heartbeat of manufacturing efficiency, underpinning the state-of-the-art technologies and products showcased by over 750 exhibitors at SEMICON Japan last December. Through its Standards committees, SEMI is a key enabler of innovation, higher manufacturing efficiency and lower manufacturing costs for the global electronics industry.

At SEMICON Japan, 22 SEMI Standards meetings were held by committees including:

  • Japan Regional Standards Committee (JRSC)
  • Gases Committee
  • Facilities Committee
  • Liquid Chemical Committee
  • Physical Interface & Carriers Committee
  • Silicon Wafers Committee
  • Traceability Committee
  • Information & Control Committee
  • Environmental, Health & Safety Committee

At the SEMI Standards Friendship Party during SEMICON Japan, JRSC recognized the following nine committee members for outstanding contributions to the development of SEMI Standards.

SEMI Japan Standards Award honors enduring commitments and outstanding contributions to standards development.

  • Takayuki Nishimura, SCREEN Semiconductor Solutions Co, Ltd, for his long-term chairmanship of the Japan Information & Control Committee. He led the committee’s collaboration with other regions and spearheaded the development of the Generic Equipment Model (GEM) 300A standard for smarter semiconductor factories by the SEMI equipment suppliers special interest group (ESG).

SEMI Japan International Collaboration Award recognizes members who contributed to Japan’s collaboration with other regions.

The four Japan 3 Dimensional Structured IC (3DS-IC) Committee steering group leaders for their contribution to the integration of 3DS-IC Committee and Packaging Committee into the 3D Integration & Packaging Committee.

  • Masahiro Tsuriya, International Electronics Manufacturing Initiative
  • Eiji Yoshino, Hitachi High-Technologies Co.
  • Haruo Shimamoto, Advanced Industrial Science and Technology
  • Mamoru Takahashi, Asahi Glass Co., Ltd.

SEMI Japan Special Appreciation Award is awarded for special contributions to the SEMI Standards program.

  • Mitsune Sakamoto, Zama Consulting for his dedication to the full revision of the GEM 300 seminar text that explains the 300 mm automated communication standard.

SEMI Japan Honor Award recognizes long-term contributions to SEMI Standards.

  • Yoshitada Nogami, SK-Electronics Co., Ltd. for his contribution to the development of many flat panel display standards as a chairman of the FPD committee. He also contributed to the growth of the FPD industry through SEMI Japan Production Cost Saving activities.
  • Yoshihisa Takasaki, ASM Japan K.K., for his contribution to the Information & Control Committee. In particular, as co-leader of the GEM 300 TF he was instrumental in the development of the GEM300A standard for smarter manufacturing.
  • Toshio Murakami, Murakami Corporation, for his contribution to Metrics Committee as a chairman and for maintaining high committee productivity even in times of constrained resources.

The award ceremony was attended by international SEMI Standards members and SEMI global leadership including: Ajit Manocha, SEMI president and CEO; Michael Ciesinski, SEMI Vice President, Technology Communities; and Osamu Nakamura, president of SEMI Japan.

For more information on SEMI Standards program, visit www.semi.org/standards.

From the Internet of Things to the cloud to artificial intelligence, industries are seeing a new wave of technologies that have the potential to transform and significantly impact the world around us. For its latest white paper, business information provider IHS Markit (Nasdaq: INFO) surveyed its leading technology experts to find out how these technologies are coming together in new and powerful ways to fundamentally change businesses, fuel innovation, disrupt industries and create both threats and opportunities.

The top eight transformative technologies for the global technology market in 2018, as identified in the IHS Markit report, are as follows:

Trend #1: Artificial intelligence (AI)

AI has matured to the point where it is being used as a competitive differentiator in several industries, particularly in the smartphone, automotive and medical markets. Also, optimization for on-device versus cloud-based solutions is becoming an area of focus. Cloud AI has more computing power to analyze data as it utilizes deep learning algorithms, but there are potential issues around privacy, latency and stability. On-device AI, meanwhile, can help offset those dangers to some degree. For instance, smartphone users who deploy the built-in AI of their phones are able to store data locally and thus safeguard their privacy.

Trend #2: Internet of Things (IoT)

The global installed base of IoT devices will rise to 73 billion in 2025, IHS Markit forecasts show. Accelerating IoT growth in 2018 and movement through a four-stage IoT evolution — “Connect, Collect, Compute and Create” — will be the confluence of enhanced connectivity options with edge computing and cloud analytics.

Enhancements in IoT connectivity, such as low-power wireless access (LPWA) will drive growth. Moreover, technologies adjacent to the IoT will become increasingly sophisticated. Machine video and ubiquitous video will empower new types of visual analytics. And AI, the cloud and virtualization will help develop critical insights sourced from data at the so-called “edge” of computing networks. Applying AI techniques to data will drive monetization in the form of cost savings, greater efficiencies and a transition from product- to service-centric business models.

Trend #3: Cloud and virtualization

Cloud services will pave the way for technologically immature companies to utilize machine learning (ML) and AI, radically transforming their usage and understanding of data.

Trend #4: Connectivity

As the first 5G commercial deployments emerge, the story will focus on connectivity. However, the path to full 5G adoption and deployment is complicated, with new opportunities and challenges alike in store for mobile network operators, infrastructure providers, device manufacturers and end users. 5G represents a dramatic expansion of traditional cellular technology use cases beyond mobile voice and broadband, to include a multitude of IoT and mission-critical applications.

Trend #5: Ubiquitous video

The growing use of screens and cameras across multiple consumer- and enterprise-device categories, along with increasingly advanced broadcast, fixed and mobile data networks, is powering an explosion in video consumption, creation, distribution and data traffic. More importantly, video content is increasingly expanding beyond entertainment into industrial applications for medical, education, security and remote controls, as well as digital signage.

Trend #6: Computer vision

The increasing importance of computer vision is directly tied to the mega-trend of digitization that has been playing out in the industrial, enterprise and consumer segments. The proliferation of image sensors, as well as improvements in image processing and analysis, are enabling a broad range of applications and use cases including industrial robots, drone applications, intelligent transportation systems, high-quality surveillance, and medical and automotive.

Trend #7: Robots and drones

The global market for robots and drones will grow to $3.9 billion in 2018. The deeper underpinnings of the story, however, lie in the disruptive potential of robots and drones to transform long-standing business models in manufacturing and industry, impacting critical areas such as logistics, material picking and handling, navigational autonomy and delivery.

Trend #8: Blockchain

Blockchain enables decentralized transactions and is the underlying technology for digital currency such as bitcoin and ether. Blockchain-based services beyond financial services are already being developed and deployed and will continue to ramp in 2018. These include: the use of blockchain to improve advertising measurement and combat ad fraud; blockchain-based systems for distributing music royalty payments; and solutions to better track and manage electronics supply chains.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $37.7 billion for the month of November 2017, an increase of 21.5 percent compared to the November 2016 total of $31.0 billion and 1.6 percent more than the October 2017 total of $37.1 billion. All major regional markets posted both year-to-year and month-to-month sales increases in November, with the Americas market leading the way. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“The global semiconductor industry reached another key milestone in November, notching its highest-ever monthly sales, and appears poised to reach $400 billion in annual sales for the first time,” said SIA President & CEO John Neuffer. “Global market growth continues to be led by sales of memory products, but sales of all other major semiconductor categories also increased both month-to-month and year-to-year in November. All regional markets also experienced growth in November, with the Americas continuing to post the strongest gains.”

Regionally, year-to-year sales increased in the Americas (40.2 percent), Europe (18.8 percent), China (18.5 percent), Asia Pacific/All Other (16.2 percent), and Japan (10.6 percent). Month-to-month sales increased in the Americas (2.6 percent), China (2.1 percent), Europe (1.8 percent), Asia Pacific/All Other (0.5 percent), and Japan (0.3 percent).

To find out how to purchase the WSTS Subscription Package, which includes comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, please visit http://www.semiconductors.org/industry_statistics/wsts_subscription_package/. For detailed data on the global and U.S. semiconductor industry and market, consider purchasing the 2017 SIA Databook: https://www.semiconductors.org/forms/sia_databook/.

Nov 2017

Billions

Month-to-Month Sales                              

Market

Last Month

Current Month

% Change

Americas

8.54

8.77

2.6%

Europe

3.37

3.43

1.8%

Japan

3.20

3.21

0.3%

China

11.65

11.90

2.1%

Asia Pacific/All Other

10.33

10.39

0.5%

Total

37.09

37.69

1.6%

Year-to-Year Sales                         

Market

Last Year

Current Month

% Change

Americas

6.25

8.77

40.2%

Europe

2.88

3.43

18.8%

Japan

2.90

3.21

10.6%

China

10.04

11.90

18.5%

Asia Pacific/All Other

8.94

10.39

16.2%

Total

31.02

37.69

21.5%

Three-Month-Moving Average Sales

Market

Jun/Jul/Aug

Sep/Oct/Nov

% Change

Americas

7.55

8.77

16.1%

Europe

3.22

3.43

6.4%

Japan

3.13

3.21

2.6%

China

11.08

11.90

7.4%

Asia Pacific/All Other

9.98

10.39

4.0%

Total

34.96

37.69

7.8%

At CES 2018, PixelDisplay will be demonstrating Vivid Color HDR, and implementations for thinner, more portable, brighter, narrow-bezel, cost-effective display products, targeting new HDR standards, with:

  • Increased color gamut and brightness, with better energy efficiency and lower cost, thickness, and weight than previously available
  • Wider-gamut color, for brighter edge-lit HDR LCD’s without the limitations of Quantum Dots, or HDR-crippling narrow-band phosphors
  • Thin MiniLED 2D array direct-backlit for HDR LCD’s, enabling removal of diffuser and light-guide layers, for additional savings
  • Flexible capabilities: “In-die” standard LED applications, “Roll-to-roll” color-conversion layers for MiniLED, and “Wafer-level-patterning” for MicroLED displays
  • Highest compatibility with LCD manufacturing processes, enabling existing LED Backlight designs to meet the new HDR standards
  • Zero heavy metals. Fully RoHS compliant

Following the initial launch of Vivid Color technology May 2017, demonstrated in the Innovation-Zone of SID’s DisplayWeek Conference in LA, showing an industry leading 97.8% of Rec.2020 from a single chip LED, PixelDisplay is directly addressing the HDR market gaps unfilled by Narrow-Band Phosphors, and Quantum Dots.

Mike Trainor, VP of Marketing at PixelDisplay, commented, “We’ve already established our capability for industry-leading laser-like color purity for AR and the next generation 8K standards, but the opportunity we also conveyed in our presentations and SID paper at DisplayWeek was the ability to apply the Vivid Color technology to nearer-term products aiming for prolific HDR compatibility, in thin, portable and narrow-bezel product categories.” Trainor continued, “We’re proud to be showing how near-term this technology is, through side-by-side comparisons with QLED LCD display, and LCD using our entry-level Vivid Color VC65R, the first of the new product series.”

Mike Trainor summarized, “Vivid Color is unique in enabling existing LCD display designs aiming to achieve the UHD Alliance’s MobileHDR and VESA’s new DisplayHDR logo’s requirements, without thickness-adding, bezel-widening. And unlike Narrow-Band KSF Phosphor LED’s, Vivid Color is fully HDR-Compatible, directly supporting inter-frame and dynamic PWM backlight control at high speeds, and very high brightness without disrupting color, sacrificing responsiveness or dynamic range – key challenges of these new HDR standards.”