Category Archives: MEMS

Applied Materials, Inc. will explore the future of computing in the era of artificial intelligence (A.I.) at its 2017 Analyst Day on Wednesday, September 27 in New York. In his presentation, Applied president and CEO Gary Dickerson will explain how the rapid increase in data generation, combined with A.I. and machine learning, creates the need for new system architectures and compute models in the years ahead.

“The move to artificial intelligence signals a new era for computing that is driving major changes to the way logic and memory chips are designed and manufactured,” said Gary Dickerson. “New materials and innovative chip architectures will increasingly be needed to bring faster processors and more efficient memory to market, and Applied Materials is at the foundation with the solutions that enable the A.I. revolution.”

Applied will also host a panel of technical experts for a discussion titled “Enabling the A.I. Era.” The panelists include:

  • Christos Georgiopoulos, Former Vice President at Intel Corporation and Professor of High Energy Physics at Florida State University and CERN
  • Matt Johnson, Senior Vice President and General Manager in Automotive, NXP Semiconductors
  • Mukesh Khare, Vice President of Semiconductor Research, IBM Research
  • Praful Krishna, CEO, Coseer
  • Jay Kerley, Group Vice President and CIO, Applied Materials

Applied Materials’ Analyst Day presentations will be webcast live beginning at 1:00 p.m. EDT (10:00 a.m. PDT) on the company’s investor relations website: http://www.appliedmaterials.com/company/investor-relations.

North America-based manufacturers of semiconductor equipment posted $2.18 billion in billings worldwide in August 2017 (three-month average basis), according to the August Equipment Market Data Subscription (EMDS) Billings Report published today by SEMI.

SEMI reports that the three-month average of worldwide billings of North American equipment manufacturers in August 2017 was $2.18 billion.The billings figure is 3.9 percent lower than the final July 2017 level of $2.27 billion, and is 27.7 percent higher than the August 2016 billings level of $1.71 billion.

“Equipment billings in August declined relative to July, signaling a pause in this year’s extraordinary growth,” said Ajit Manocha, president and CEO of SEMI. “Nonetheless monthly billings remain well above last year’s monthly levels.”

The SEMI Billings report uses three-month moving averages of worldwide billings for North American-based semiconductor equipment manufacturers. Billings figures are in millions of U.S. dollars.

Billings
(3-mo. avg)
Year-Over-Year
March 2017
$2,079.7
73.7%
April 2017
$2,136.4
46.3%
May 2017
$2,270.5
41.8%
June 2017
$2,300.3
34.1%
July 2017 (final)
$2,269.7
32.9%
August 2017 (prelim)
$2,181.8
27.7%

Source: SEMI (www.semi.org), September 2017

Leti, a technology research institute of CEA Tech, announced today it has developed a methodology for testing high-speed wireless communications on airplanes that allows different system deployments in cabins, and assesses wireless devices before they are installed.

In a joint research project with Dassault Aviation, Leti demonstrated a channel-measurement campaign over Wi-Fi frequency in several airplanes, including Dassault’s Falcon business jet. Using a channel sounder and a spatial scanner, Leti teams determined a statistic model of the in-cabin radio channel, constructed from the antenna position and the configuration of the aircraft.

A radio-frequency channel emulator and the in-cabin channel model were used to test Wi-Fi designed for passenger communication and entertainment before installation in the aircraft. In that test, two different wireless access points and different antenna configurations for Wi-Fi networks deployed in an aircraft cabin were evaluated. Based on an extensive test campaign, mean values of performance parameters, together with the operating margin, were provided according to the device configuration, kind of traffic and channel conditions.

In addition, the technology gives aircraft designers key tools to define wireless communication systems that enhance passenger experience, without aircraft immobilization.

“This research collaboration with Dassault is a critical first step toward validating wireless connectivity systems before they are installed in aircraft,” said Lionel Rudant, Leti strategic marketing manager. “Wireless systems have multiple benefits, ranging from more efficient monitoring of aircraft comfort and safety to reducing the weight of planes.”

Leti’s roadmap also addresses goals for wireless sensor networks, which are part of an industry effort to replace the hundreds of miles of wiring required to connect thousands of sensors and other detectors located throughout aircraft to monitor safety and comfort factors. The factors range from ice detection, tire pressure and engine sensors to cabin pressure, smoke detection and temperature monitoring.

Rudant will present details of Leti’s proof of concept at the AeroTech Conference and Exhibition, Sept. 26-28 in Fort Worth, Texas. His talk, “Test of in-flight wireless connectivity with radio channel emulator”, will be on Sept. 27 at 8 a.m. in room 201B.

SEMI, the global electronics manufacturing supply chain association, and SAE International, the association driving knowledge and expertise across automotive and aerospace industries, announce a partnership to provide their members with insights and access to important markets. The partnership will include information-sharing, presentation opportunities, and branding and exposition opportunities for members from both organizations.

SEMI and SAE are creating forums for raising awareness of the challenges and opportunities in design and manufacturing for the automotive and electronics sectors. From the electronics manufacturing industry perspective, the smart transportation segment is rich with opportunity to improve the performance and digitalization of vehicles.

According to IHS Markit, the high-end car is on track to contain more than $6,000 worth of electronics in five years, driving to a $160 billion automotive electronics market in 2022 − a 7 percent CAGR through 2022. The design, sourcing, and manufacturing cycles are significantly different than traditional electronics markets (such as consumer) but the opportunities are significant.  From the transportation industry perspective, all roadmaps to improve performance emphasize that advancements in electronics systems are key.

“Electronics systems in vehicles continue to undergo significant changes year over year, driven by the changing electronics capabilities – even in subsystems areas such as infotainment and control.  The impact of new vehicle operational modes, such as autonomous driving, is all about gathering and processing information on an enormous scale.  The systems that do this are developing rapidly and our members want immediate visibility into these new materials, processing and electronic subsystems.  Improvements in processing, controlling, sensing, have impact across our vehicle supply chain,” notes Jim Forlenza, group director, SAE Events. “Our members look to us to multiply their interactions with the supply chain and our partnership with SEMI allows us to offer them this in several areas across the world.”

“This relationship provides a new platform for SEMI members to showcase products, services and engage new customers,” states Art Paredes, VP of Global Expositions at SEMI. “As SEMI members increasingly collaborate with end-product manufacturers to develop novel capabilities, automotive is the leading area for silicon solutions to enable the future of driving. Working directly with SAE’s members and ecosystem will speed the time to innovate for both memberships.”

From large events − including SAE’s annual World Congress Experience and SEMI’s annual SEMICON expositions around the world − to a host of smaller, focused workshops and speaking engagements throughout the year, members will have many opportunities to establish supplier-vendor-customer relationships.

Intel Corporation today announced that Andrew Wilson, CEO of Electronic Arts Inc., has been elected to Intel’s board of directors. Wilson’s election brings Intel’s board membership to 12.

“Andrew understands first-hand how technology and data create opportunity with his transformation of EA from offline packaged goods to a leader in online digital services,” said Intel Chairman Andy Bryant. “In addition to his experience leading and growing a global, technology-driven company, Andrew possesses a combination of creativity and business acumen that will further strengthen Intel’s board.”

Wilson, 43, joined Electronic Arts (“EA”) in May 2000, and has served as the company’s chief executive officer and a director of EA since September 2013. During his tenure as CEO, EA has launched groundbreaking new games and services, reached record player engagement levels across its global franchises, and transformed into one of the world’s leading digital entertainment companies. Prior to his appointment as CEO, Wilson held several leadership positions at EA, including executive vice president of EA SPORTS. He also serves as chairman of the board for the World Surf League.

The International Microelectronics And Packaging Society (IMAPS) will celebrate the 50th anniversary of its flagship technical conference – the IMAPS Symposium – from October 9 – 12, 2017, as microelectronics engineers and scientists gather at the Raleigh Convention Center near Research Triangle Park, North Carolina, USA to take part in the electronics industry’s largest technical conference dedicated to advanced microelectronics packaging technology. Researchers and exhibitors will showcase their work during a comprehensive conference program of technical papers, panels, special sessions, short courses/tutorials, and an exhibition that will spotlight premier work in the fields of microelectronics, semiconductor packaging and circuit design.

The 50th International Symposium on Microelectronics is an international technology forum for the presentation of applied research on microelectronics, consisting of more than 180 papers presented by researchers from corporations, universities and government labs worldwide, with five technical tracks: Chip Packaging Interactions; High Performance, Reliability, & Security; Advanced Packaging & Enabling Technologies; Advanced Packaging & System Integration; and Advanced Materials & Processes.

Keynote Presentations Lead Off the IMAPS Technical Program on Tuesday, October 10
Four keynote addresses from leading industry experts include:

“Packaging Challenges for the Next Generation of Mobile Devices,” by Ahmer Syed, Senior director of package engineering, Qualcomm Technologies

“Packaging without the Package – A More Holistic Moore’s Law,” by Subramanian (Subu) S. Iyer, distinguished chancellor’s professor in the Charles P. Reames Endowed Chair of the Electrical Engineering Department at the University of California at Los Angeles (UCLA) and Director of the Center for Heterogeneous Integration and Performance Scaling (CHIPS)

“Electronics Outside the Box: Building a Manufacturing Ecosystem for Flexible Hybrid Electronics,” by Benjamin Leever, senior materials engineer, Air Force Research Laboratory (AFRL) Soft Matter Materials Branch

“Transforming Electronic Interconnect,” by Tim Olson, founder & CTO, Deca Technologies

International Panel Session & Wine Reception on Wednesday, October 11
A panel session on “Global Perspectives on Packaging Requirements & Trends Towards 2025” will be moderated by Jan Vardaman, TechSearch International and Gabriel Pares, CEA-Leti. Panelist will include representatives from Asia (Yasumitsu Orii, NAGASE Group and Ton Schless, SIBCO), Europe (Steffen Kroehnert, Nanium and Eric Bridot, SAFRAN), and North America (David Jandzinski, Qorvo). The 90-minute panel session includes a wine reception.

Diversity Roundtable & Networking Discussions on Monday, October 9
Following the opening reception, IMAPS leaders will conduct a series of roundtable discussions designed to inspire conversations about overcoming diversity barriers, the strengths inherent in a diverse workforce, identifying and collaborating with a mentor, and more.

Posters & Pizza Session on Thursday, October 12
One of the fastest-growing segments of the IMAPS conference is the popular “Posters & Pizza” session held outside the exhibit hall, giving attendees the opportunity to interact one-on-one with presenters in a more informal setting.

Professional Development Courses (Short Courses & Tutorials) on Monday, October 9
Preceding the IMAPS Symposium technical program is a full day of professional development opportunities, presented as a series of 2-hour sessions in four tracks: Intro to Microelectronics Packaging; Next Generation Packaging Challenges; Baseline & Emerging Technologies; and Reliability. These short courses represent a unique opportunity, only available through IMAPS, for participants to personally interact with the instructors, and with each other in small groups from 10 – 30 people, led by industry experts in the field with ample time for questions and networking.

Student Opportunities at IMAPS
As part of its ongoing mission IMAPS invites students to participate in an informal networking event on Tuesday, October 10 with IMAPS industry leaders over lunch in the exhibit hall, giving them an chance to learn about career opportunities, navigating the hiring process, and other topics. In addition, the IMAPS Microelectronics Foundation sponsors a student paper competitionin conjunction with the Symposium that awards more than $3,500 in scholarships for outstanding student papers.

Social Events & an Introduction to the RTP/Raleigh Area’s Technology Community
In addition to the technical program, a variety of social events are planned around the IMAPS Symposia, including the Annual David C. Virissimo Memorial Fall Golf Classic, a charity golf outing scheduled for Monday, October 9 at NCSU’s Lonnie Poole Golf Course. Proceeds from the event benefit the IMAPS Microelectronics Foundation.

Monday evening’s welcome reception will feature NC-themed entertainment from a local bluegrass band, and participants will also be able to view historical photos and other memorabilia spanning 50 years of IMAPS history.

There is also a scheduled tour of the nearby Micross Advanced Interconnect Technology (AIT) facility, one of the premier wafer bumping and wafer level packaging facilities in the U.S., with more than 20 years experience providing leading edge interconnect and 3D integration technologies (TSV, Si interposers, 3D IC) to worldwide customers.

New to the Symposium this year is a unique opportunity for IMAPS attendees to experience the vibrant technology community in the greater RTP/Raleigh area. IMAPS has invited local non-profit organizations that comprise the area’s rapidly-growing technology ecosystem to participate in a special area adjacent to the exhibit hall during the day of October 10, providing an opportunity for IMAPS Symposium attendees to network and interact.

To register for the IMAPS 50th International Symposium on Microelectronics, please visit the online registration site for more information, or contact Brianne Lamm, IMAPS Marketing & Events Manager, at [email protected] or 980-299-9873.

Despite a slightly down first quarter, the semiconductor industry achieved near record growth in the second quarter of 2017, posting a 6.1 percent growth from the previous quarter, according to IHS Markit (Nasdaq: INFO). Global revenue came in at $101.4 billion, up from $95.6 billion in the first quarter of 2017. This is the highest growth the industry has seen in the second quarter since 2014.

The memory chip market set records in the second quarter, growing 10.7 percent to a new high of $30.2 billion with DRAM and NOR flash memory leading the charge, growing 14 percent and 12.3 percent quarter-on-quarter, respectively.

“The DRAM market had another quarter of record revenues on the strength of higher prices and growth in shipments,” said Mike Howard, director for DRAM memory and storage at IHS Markit. “Anxiety about product availability in the previous third and fourth quarters weighed on the industry. This led many DRAM buyers to build inventory — putting additional pressure on the already tight market. This year is shaping up to smash all DRAM revenue records and will easily pass the $60 billion mark.”

“For NOR, the supply-demand balance has tightened raising average selling prices and revenue,” said Clifford Leimbach, senior analyst for memory and storage at IHS Markit. “This mature memory technology has been in a steady decline for many years, but some market suppliers are reducing supply or leaving the market, which has tightened supply recently, resulting in the increase of revenue.”

In terms of application, consumer electronics and data processing saw the most growth, increasing in revenue by 7.9 percent and 6.8 percent, respectively, quarter-on-quarter. A lot of this growth can be attributed to the continual growth in memory pricing, as supply still remains tight.

Industrial semiconductors showed the third highest growth rate at 6.4 percent during the same period. This growth can be attributable to multiple segments, such as commercial and military avionics, digital signage, network video surveillance, HVAC, smart meters, traction, PV inverters, LED lighting and medical electronics including cardiac equipment, hearing aids and imaging systems.

Another trend in the industrial market is increasing factory automation, which alone is driving growth for discrete power transistors, thyristors, rectifiers and power diodes. The market for these devices is expected to reach $8 billion in 2021, up from $5.7 billion in 2015.

Intel remains the number one semiconductor supplier in the world, followed by Samsung Electronics by a slight margin. IHS Markit does not include foundry operations and other non-semiconductor revenue in the semiconductor market rankings.

Among the top 20 semiconductor suppliers, Advanced Micro Devices (AMD) and nVidia achieved the highest revenue growth quarter over quarter by 24.7 percent and 14.6 percent, respectively. There was no market share movement in the top 10 semiconductor suppliers. However, seven of the 10 companies in the 11 to 20 market share slots did change market share.

top_5_semiconductor_companies

Upbeat about the growth prospects of Taiwan’s electronics sector, more than 45,000 visitors are expected to attend SEMICON Taiwan 2017 which opens tomorrow at Taipei’s Nangang Exhibition Center.  SEMICON Taiwan (September 13-15), the premier tradeshow and event for the electronics manufacturing supply chain, aims to connect the electronics manufacturing ecosystem─ both vertically and horizontally. The event will provide an overview of market trends and leading technologies in the industry, with forums and business-matching activities which will enable collaboration and new opportunities. The three-day event features 700 exhibitors covering over 1,800 booths.

Taiwan is forecast to spend US$12.3 billion in 2017, making it the second largest fab equipment spending region, according to the SEMI World Fab Forecast report just issued.  Taiwan is home to the leading share of the world’s IC foundry, and has the largest share of installed capacity ─ more than 20 percent. With 2017’s large semiconductor equipment investment, Taiwan’s semiconductor industry is booming and is also the world’s largest consumer of semiconductor materials ($9.8 billion in 2016) for the seventh consecutive year, bringing new opportunities in this increasingly critical sector.

Covering the hottest electronics topics like smart manufacturing and automation, high-tech facility, materials, laser, and emerging semiconductor technology, more than 70 presentations will be given on TechXPOT stages, providing the latest technology updates plus opportunities to meet potential partners and customers. To further connect attendees and exhibitors, SEMICON Taiwan will facilitate a series of networking events, like the Materials, High-Tech Facility, Laser, and Smart Manufacturing “Get Togethers” and the Supplier Search Program, creating business opportunities.

This year SEMICON Taiwan has added new theme pavilions including Circular Economy, Compound Semiconductor, Laser, and Opto Semiconductor.  In addition, 12 theme pavilions and eight country/region pavilions are featured.

This is the first year that the International Test Conference (ITC) will be co-located with SEMICON Taiwan 2017, also marking the first time that ITC is held in Asia. The conference will focus on the rapid growth of emerging applications like IoT and automotive electronics, and how testing technologies are challenged by rapid advancements of manufacturing processes, 3D stacking and SiP.

Also co-located with SEMICON Taiwan 2017, the SiP Global Summit will discuss three key system-in-package topics:

  •  Package Innovation in Automotive
  •  3D IC, 3D interconnection for AI and High-end Computing
  •  Innovative Embedded Substrate and Fan-Out Technology to Enable 3D-SiP Devices

The Jing Jing Lucky Draw is always an anticipated show activity with excellent prizes like the Dyson 3-in-1 smart fan, iPad Pro, and Nintendo Switch.

For more information about SEMICON Taiwan 2017, please visit http://www.semicontaiwan.org.

Researchers at Caltech have developed a prototype miniature medical device that could ultimately be used in “smart pills” to diagnose and treat diseases. A key to the new technology–and what makes it unique among other microscale medical devices–is that its location can be precisely identified within the body, something that proved challenging before.

“The dream is that we will have microscale devices that are roaming our bodies and either diagnosing problems or fixing things,” says Azita Emami, the Andrew and Peggy Cherng Professor of Electrical Engineering and Medical Engineering and Heritage Medical Research Institute Investigator, who co-led the research along with Assistant Professor of Chemical Engineering and Heritage Medical Research Institute Investigator Mikhail Shapiro. “Before now, one of the challenges was that it was hard to tell where they are in the body.”

A paper describing the new device appears in the September issue of the journal Nature Biomedical Engineering. The lead author is Manuel Monge (MS ’10, PhD ’17), who was a doctoral student in Emami’s lab and a Rosen Bioengineering Center Scholar at Caltech, and now works at a company called Neuralink. Audrey Lee-Gosselin, a research technician in Shapiro’s lab, is also an author.

Called ATOMS, which is short for addressable transmitters operated as magnetic spins, the new silicon-chip devices borrow from the principles of magnetic resonance imaging (MRI), in which the location of atoms in a patient’s body is determined using magnetic fields. The microdevices would also be located in the body using magnetic fields–but rather than relying on the body’s atoms, the chips contain a set of integrated sensors, resonators, and wireless transmission technology that would allow them to mimic the magnetic resonance properties of atoms.

Illustration of an ATOMS microchip localized within the gastrointestinal tract. The chip, which works on principles similar to those used in MRI machines, is embodied with the properties of nuclear spin. Credit: Ella Marushchenko for Caltech

Illustration of an ATOMS microchip localized within the gastrointestinal tract. The chip, which works on principles similar to those used in MRI machines, is embodied with the properties of nuclear spin. Credit: Ella Marushchenko for Caltech

“A key principle of MRI is that a magnetic field gradient causes atoms at two different locations to resonate at two different frequencies, making it easy to tell where they are,” says Shapiro. “We wanted to embody this elegant principle in a compact integrated circuit. The ATOMS devices also resonate at different frequencies depending on where they are in a magnetic field.”

“We wanted to make this chip very small with low power consumption, and that comes with a lot of engineering challenges,” says Emami. “We had to carefully balance the size of the device with how much power it consumes and how well its location can be pinpointed.”

The researchers say the devices are still preliminary but could one day serve as miniature robotic wardens of our bodies, monitoring a patient’s gastrointestinal tract, blood, or brain. The devices could measure factors that indicate the health of a patient–such as pH, temperature, pressure, sugar concentrations–and relay that information to doctors. Or, the devices could even be instructed to release drugs.

“You could have dozens of microscale devices traveling around the body taking measurements or intervening in disease. These devices can all be identical, but the ATOMS devices would allow you to know where they all are and talk to all of them at once,” says Shapiro. He compares it to the 1966 sci-fi movie Fantastic Voyage, in which a submarine and its crew are shrunk to microscopic size and injected into the bloodstream of a patient to heal him from the inside–but, as Shapiro says, “instead of sending a single submarine, you could send a flotilla.”

The idea for ATOMS came about at a dinner party. Shapiro and Emami were discussing their respective fields–Shapiro engineers cells for medical imaging techniques, such as MRI, and Emami creates microchips for medical sensing and performing actions in the body–when they got the idea of combining their interests into a new device. They knew that locating microdevices in the body was a long-standing challenge in the field and realized that combining Shapiro’s knowledge in MRI technology with Emami’s expertise in creating microdevices could potentially solve the problem. Monge was enlisted to help realize the idea in the form of a silicon chip.

“This chip is totally unique: there are no other chips that operate on these principles,” says Monge. “Integrating all of the components together in a very small device while keeping the power low was a big task.” Monge did this research as part of his PhD thesis, which was recently honored with the Charles Wilts Prize by Caltech’s Department of Electrical Engineering.

The final prototype chip, which was tested and proven to work in mice, has a surface area of 1.4 square millimeters, 250 times smaller than a penny. It contains a magnetic field sensor, integrated antennas, a wireless powering device, and a circuit that adjusts its radio frequency signal based on the magnetic field strength to wirelessly relay the chip’s location.

“In conventional MRI, all of these features are intrinsically found in atoms,” says Monge. “We had to create an architecture that functionally mimics them for our chip.”

While the current prototype chip can relay its location in the body, the next step is to build one that can both relay its location and sense body states.

“We want to build a device that can go through the gastrointestinal tract and not only tell us where it is but communicate information about the various parts of the body and how they are doing.”

The latest update to the World Fab Forecast report, published on September 5, 2017 by SEMI, again reveals record spending for fab equipment. Out of the 296 Front End facilities and lines tracked by SEMI, the report shows 30 facilities and lines with over $500 million in fab equipment spending.  2017 fab equipment spending (new and refurbished) is expected to increase by 37 percent, reaching a new annual spending record of about US$55 billion. The SEMI World Fab Forecast also forecasts that in 2018, fab equipment spending will increase even more, another 5 percent, for another record high of about $58 billion. The last record spending was in 2011 with about $40 billion. The spending in 2017 is now expected to top that by about $15 billion.

fab equipment spending

Figure 1: Fab equipment spending (new and refurbished) for Front End facilities

Examining 2017 spending by region, SEMI reports that the largest equipment spending region is Korea, which increases to about $19.5 billion in spending for 2017 from the $8.5 billion reported in 2016. This represents 130 percent growth year-over-year. In 2018, the World Fab Forecast report predicts that Korea will remain the largest spending region, while China will move up to second place with $12.5 billion (66 percent growth YoY) in equipment spending. Double-digit growth is also projected for Americas, Japan, and Europe/Mideast, while other regions growth is projected to remain below 10 percent.

The World Fab Forecast report estimates that Samsung is expected to more than double its fab equipment spending in 2017, to $16-$17 billion for Front End equipment, with another $15 billion in spending for 2018. Other memory companies are also forecast to make major spending increases, accounting for a total of $30 billion in memory-related spending for the year. Other market segments, such as Foundry ($17.8 billion), MPU ($3 billion), Logic ($1.8 billion), and Discrete with Power and LED ($1.8 billion), will also invest huge amounts on equipment. These same product segments also dominate spending into 2018.

In both 2017 and 2018, Samsung will drive the largest level in fab spending the industry has ever seen. While a single company can dominate spending trends, SEMI’s World Fab Forecast report also shows that a single region, China, can surge ahead and significantly impact spending. Worldwide, the World Fab Forecast tracks 62 active construction projects in 2017 and 42 projects for 2018, with many of these in China.

For insight into semiconductor manufacturing in 2017 and 2018 with more details about capex for construction projects, fab equipping, technology levels, and products, visit the SEMI Fab Database webpage (www.semi.org/en/MarketInfo/FabDatabase) and order the SEMI World Fab Forecast Report. The report, in Excel format, tracks spending and capacities for over 1,200 facilities including over 80 future facilities, across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities.