Category Archives: MEMS

Packing tiny solar cells together, like micro-lenses in the compound eye of an insect, could pave the way to a new generation of advanced photovoltaics, say Stanford University scientists.

In a new study, the Stanford team used the insect-inspired design to protect a fragile photovoltaic material called perovskite from deteriorating when exposed to heat, moisture or mechanical stress. The results are published in the journal Energy & Environmental Science (E&ES).

A compound solar cell illuminated from a light source below. Hexagonal scaffolds are visible in the regions coated by a silver electrode. The new solar cell design could help scientists overcome a major roadblock to the development of perovskite photovoltaics. Credit: Dauskardt Lab/Stanford University

A compound solar cell illuminated from a light source below. Hexagonal scaffolds are visible in the regions coated by a silver electrode. The new solar cell design could help scientists overcome a major roadblock to the development of perovskite photovoltaics. Credit: Dauskardt Lab/Stanford University

“Perovskites are promising, low-cost materials that convert sunlight to electricity as efficiently as conventional solar cells made of silicon,” said Reinhold Dauskardt, a professor of materials science and engineering and senior author of the study. “The problem is that perovskites are extremely unstable and mechanically fragile. They would barely survive the manufacturing process, let alone be durable long-term in the environment.”

Most solar devices, like rooftop panels, use a flat, or planar, design. But that approach doesn’t work well with perovskite solar cells.

“Perovskites are the most fragile materials ever tested in the history of our lab,” said graduate student Nicholas Rolston, a co-lead author of the E&ES study. “This fragility is related to the brittle, salt-like crystal structure of perovskite, which has mechanical properties similar to table salt.”

Eye of the fly

To address the durability challenge, the Stanford team turned to nature.

“We were inspired by the compound eye of the fly, which consists of hundreds of tiny segmented eyes,” Dauskardt explained. “It has a beautiful honeycomb shape with built-in redundancy: If you lose one segment, hundreds of others will operate. Each segment is very fragile, but it’s shielded by a scaffold wall around it.”

Using the compound eye as a model, the researchers created a compound solar cell consisting of a vast honeycomb of perovskite microcells, each encapsulated in a hexagon-shaped scaffold just 0.02 inches (500 microns) wide.

“The scaffold is made of an inexpensive epoxy resin widely used in the microelectronics industry,” Rolston said. “It’s resilient to mechanical stresses and thus far more resistant to fracture.”

Tests conducted during the study revealed that the scaffolding had little effect on the perovskite’s ability to convert light into electricity.

“We got nearly the same power-conversion efficiencies out of each little perovskite cell that we would get from a planar solar cell,” Dauskardt said. “So we achieved a huge increase in fracture resistance with no penalty for efficiency.”

Durability

But could the new device withstand the kind of heat and humidity that conventional rooftop solar panels endure?

To find out, the researchers exposed encapsulated perovskite cells to temperatures of 185 degrees Fahrenheit (85 degrees Celsius) and 85 percent relative humidity for six weeks. Despite these extreme conditions, the cells continued to generate electricity at relatively high rates of efficiency.

Dauskardt and his colleagues have filed a provisional patent for the new technology. To improve efficiency, they are studying new ways to scatter light from the scaffold into the perovskite core of each cell.

“We are very excited about these results,” he said. “It’s a new way of thinking about designing solar cells. These scaffold cells also look really cool, so there are some interesting aesthetic possibilities for real-world applications.”

Following a substantial increase in semiconductor capital expenditures during the first half of this year, IC Insights raised its annual semiconductor capex forecast to a record high of $80.9 billion for 2017, a 20% increase from $67.3 billion in 2016. Previously, 2017 semiconductor capex was expected to grow 12% in 2017 to $75.6 billion.

A little over half of 2017 capex spending is forecast for wafer foundries (28%) and upgrades for NAND flash memory (24%), as shown in Figure 1. With a projected 53% increase in 2017, the DRAM/SRAM segment is expected to display the largest percentage growth in capital expenditures of the major product types this year. With DRAM prices surging since the third quarter of 2016, DRAM manufacturers are once again stepping up spending in this segment. Although the majority of this spending is going towards technology advancement, DRAM producer SK Hynix recently admitted that it can no longer keep up with demand by technology advancements alone and needs to begin adding wafer start capacity.

Figure 1

Figure 1

Even with a DRAM spending surge this year, capital spending for flash memory in 2017 ($19.0 billion) is still expected to be significantly higher than spending allocated to the DRAM/SRAM category ($13.0 billion). Overall, IC Insights believes that essentially all of the spending for flash memory in 2017 will be dedicated to 3D NAND process technology, including production of 3D NAND at Samsung’s giant new fab in Pyeongtaek, South Korea.

Overall, capital spending for the flash memory segment is forecast to register a 33% surge in 2017 after a strong 23% increase in 2016. However, historical precedent in the memory market shows that too much spending usually leads to overcapacity and subsequent pricing weakness. With Samsung, SK Hynix, Micron, Intel, Toshiba/Western Digital/SanDisk, and XMC/Yangtze River Storage Technology all planning to significantly ramp up 3D NAND flash capacity over the next couple of years (and new Chinese producers possibly entering the market), IC Insights believes that the future risk for overshooting 3D NAND flash market demand is high and growing.

STMicroelectronics (NYSE: STM) has strengthened its ecosystem through a Partner Program that connects customers with qualified technical specialists capable of strategically supporting their projects.

The new ST Partner Program helps customers’ design teams access extra skills, products, and services to aid engineering development and shorten time-to-market for new products. While searching ST parts, solutions, and resources online, customers can at the same time identify approved Program members with competencies related to the chosen products. These competencies can be in Cloud services, associated Components or Modules, embedded Software, Engineering services, Development tools, or Training services. This info is also centralized in a dedicated partner area on the ST website at www.st.com/partners.

“The ST Partner Program provides fast introductions to trusted partners able to supply expertise to critical design projects. We evaluate program applicants to ensure that all partners are committed to offering consistently high-quality services,” said Alessandro Maloberti, Partner Ecosystem Director, STMicroelectronics. “The Program is designed to encourage product developers to choose even more components, modules, embedded software, and tools from the broad portfolio available at st.com to start their new product designs.”

Potential partners can apply to join the ST Partner Program via web registration. A complete framework covering technical, marketing, legal, and business aspects protects partners and ensures high service quality for customers. New, formalized partner benefits include enhanced marketing support from ST, which may include promotion in the ST Community and ST YouTube channel, the right to use the ST Partner Program logo and communication materials, as well as exposure to ST’s global customer base of engineers and purchasers from leading high-tech brands, manufacturing-service providers, and independent engineers and designers.

Going forward, ST will introduce more ways for its partners to engage, including co-marketing activities, sharing design opportunities, training, and networking events.

Qualcomm Incorporated (NASDAQ:QCOM) and its subsidiary Qualcomm Technologies, Inc., and Himax Technologies, Inc. (NASDAQ:HIMX), today jointly announced a collaboration to accelerate the development and commercialization of a high resolution, low power active 3D depth sensing camera system to enable computer vision capabilities for use cases such as biometric face authentication, 3D reconstruction, and scene perception for mobile, IoT, surveillance, automotive and AR/VR.

The collaboration brings together Qualcomm Spectra™ technologies and expertise in computer vision architecture and algorithm with Himax’s complementary technologies in wafer optics, sensing, driver, and module integration capabilities to deliver a fully integrated SLiM (Structured Light Module) 3D solution. The SLiM is a turn-key 3D camera module that delivers real-time depth sensing and 3D point cloud generation with high resolution and high accuracy performance for indoor and outdoor environments. The SLiM is engineered for very low power consumption in a compact, low profile form factor, making the solution ideal for embedded and mobile device integration. Qualcomm Technologies and Himax will commercialize the SLiM 3D camera as a total camera system solution for a wide array of markets and industries with mass production targeting in Q1/2018.

“This partnership with Himax highlights the technology investments we are making with Taiwanese companies to continue leading in visual processing innovation,” said Jim Cathey, senior vice president and president, Asia Pacific and India, Qualcomm Technologies, Inc. “The combination of cutting edge technology licensing and collaboration with an industry leading Taiwanese partner like Himax will help create groundbreaking new products in Taiwan, strengthening the global 3D depth sensing ecosystem and boosting Taiwan’s economy.”

“As an engineer, it is gratifying to see how our technology inventions enable products that will enrich user experience for consumers around the world,” said Chienchung Chang, vice president of engineering, Qualcomm Technologies, Inc. “It has been a great experience collaborating with Himax on the project to enable 3D computer vision technologies in smartphones, virtual reality and augmented reality products.”

“Our 3D sensing solution will be a game changing technology for smartphones, where we will enable the Android ecosystem to provide the next generation of mobile user experience,” said Jordan Wu, President and Chief Executive Officer of Himax Technologies. “Our two companies have worked together for more than four years to design the SLiM 3D sensing solution to meet growing demands for enhanced computer vision capabilities that will enable amazing new features and use cases in a broad range of markets and applications. We are pleased to partner with Qualcomm Technologies to put together an ecosystem and to enable the revolutionary computer vision solutions for our customers globally in a timely fashion.”

Imagine repeatedly lifting 165 times your weight without breaking a sweat — a feat normally reserved for heroes like Spider-Man.

Rutgers University-New Brunswick engineers have discovered a simple, economical way to make a nano-sized device that can match the friendly neighborhood Avenger, on a much smaller scale. Their creation weighs 1.6 milligrams (about as much as five poppy seeds) and can lift 265 milligrams (the weight of about 825 poppy seeds) hundreds of times in a row.

Its strength comes from a process of inserting and removing ions between very thin sheets of molybdenum disulfide (MoS2), an inorganic crystalline mineral compound. It’s a new type of actuator – devices that work like muscles and convert electrical energy to mechanical energy.

The Rutgers discovery — elegantly called an “inverted-series-connected (ISC) biomorph actuation device” — is described in a study published online today in the journal Nature.

“We found that by applying a small amount of voltage, the device can lift something that’s far heavier than itself,” said Manish Chhowalla, professor and associate chair of the Department of Materials Science and Engineering in the School of Engineering. “This is an important finding in the field of electrochemical actuators. The simple restacking of atomically thin sheets of metallic MoS2 leads to actuators that can withstand stresses and strains comparable to or greater than other actuator materials.”

Actuators are used in a wide variety of electromechanical systems and in robotics. They have applications such as steerable catheters, aircraft wings that adapt to changing conditions and wind turbines that reduce drag, the study notes.

The discovery at Rutgers University-New Brunswick was made by Muharrem Acerce, study lead author and a doctoral student in Chhowalla’s group, with help from E. Koray Akdo?an, teaching assistant professor in Department of Materials Science and Engineering, said Chhowalla, senior author of the study.

Molybdenum disulfide — a naturally occurring mineral — is commonly used as a solid-state lubricant in engines, according to Chhowalla, who also directs the Rutgers Institute for Advanced Materials, Devices and Nanotechnology. It’s a layered material like graphite, with strong chemical bonding within thin layers but weak bonding between the layers. Thus, individual layers of MoS2 can be easily separated into individual thin sheets via chemistry.

The extremely thin sheets, also called nanosheets, remain suspended in solvents such as water. The nanosheets can be assembled into stacks by putting the solution onto a flexible material and allowing the solvent to evaporate. The restacked sheets can then be used as electrodes — similar to those in batteries – with high electrical conductivity to insert and remove ions. Inserting and removing ions leads to the expansion and contraction of nanosheets, resulting in force on the surface. This force triggers the movement — or actuation — of the flexible material.

Chhowalla and his group members found that their MoS2-based electrochemical device has mechanical properties such as stress, strain and work capacity that are extraordinary considering the electrodes are made by simply stacking weakly interacting nanosheets.

“The next step is to scale up and try to make actuators that can move bigger things,” Chhowalla said.

SEMI, with its Strategic Association partner MEMS & Sensors Industry Group (MSIG), today announced its shortlist of competitors for the Technology Showcase, which will take place on September 21 at the SEMI European MEMS & Sensors Summit 2017 in Grenoble. Selected by a committee of industry experts, five finalist companies will demonstrate advancements in MEMS and sensors for markets that span Internet of Things (IoT), consumer electronics, robotics and biomedical. The audience will vote for a winner, which will be announced at the Summit’s conclusion.

“We congratulate the finalists of the Technology Showcase, an event where attendees experience some of the newest and most fascinating MEMS and sensors technology in an interactive setting,” said Laith Altimime, president, SEMI Europe. “While this is SEMI’s first Technology Showcase at our European MEMS & Sensors Summit, this excellent group of contenders should make it an audience favorite.”

Technology Showcase finalists include:

Bosch Sensortec GmbH: BML050 — a high-precision MEMS scanner for interactive laser projection applications, which offers a virtual user interface solution for IoT applications such as home appliances, tablets and social robots.

Fraunhofer Institute for Photonic Microsystems: Integrated Capacitive Micromachined Ultrasonic Transducers (CMUTs) — provides miniaturized, highly sensitive, low-power, and customer-specific sensors and sensor nodes for applications in liquid and gases. Applications include human-machine interaction, robotics, biomedical, and smart consumer systems.

Hap2U: Ultrasonic Piezoelectric Actuators for Smart Touchscreen Applications — gives users the sensation of feeling sliders, knobs and buttons while touching their display. Hap2U’s new approach to haptic feedback drastically reduces applied power and power consumption.

Philips Innovation Services: CMUTs for Ultrasound and Non-Ultrasound Devices — complements conventional technology with advantages such as large bandwidth, easy fabrication of large arrays, and monolithic integration of ASIC functionality. Through Philips MEMS Foundry, CMUTs are available for medium- and high-volume manufacturing.

Si-Ware Systems: NeoSpectra MEMS Spectral Sensors —features an FT-IR spectrometer on MEMS die. NeoSpectra MEMS Spectral Sensors enable tiny low-cost spectral sensors that are highly integrated, scalable and reliable, making them ideal for in-field and inline applications in various industries, including consumer electronics.

The Technology Showcase at SEMI European MEMS & Sensors Summit (September 20-22, 2017) will take place from 11:00 am-12:00 pm on September 21 at the MINATEC innovation campus at 3 parvis Louis Néel, Grenoble, France.

Despite its age and maturity, the automotive market has witnessed many unexpected developments over the past two years. And as has always been the case, safety drives the market. Automotive OEMs and suppliers are now investing in technologies to develop autonomous and electric vehicles. Automation will spur the development of imaging and detection sensors like cameras, LiDAR, and radar, while electrification will boost the design of current and thermal sensors for battery management. And because sensors are becoming a must-have, other markets are dynamic and growing too.

Yole Développement (Yole), part of Yole Group of Companies, presents an overview of the different sensors involved in autonomous systems with its new report MEMS & Sensors for Automotive. It also describes the applications, technologies and players associated with the automotive sensors market’s impending changes. This analysis includes detailed roadmaps and market forecasts until 2022.

How will sensor technology shape the tomorrow’s automotive industry? Yole’s analysts propose you today a deep understanding of the reborn automotive sensor market.

In a global automotive market worth than US$2.3 trillion, the little world of automotive sensors has recently been shaken up by the emergence of electric and autonomous cars.

Despite just 3% growth in the volume of cars sold expected through to 2022, Yole expects an average growth rate in sensors sales volumes above 8% over the next five years, and above 14% growth in sales value. This is thanks to the expanding integration of high value sensing modules like RADAR, imaging and LiDAR. The current automotive sensing market groups MEMS and classic active sensors such as pressure, TPMS , chemical, inertial, magnetic, ultrasonic, imaging, RADAR and LiDAR. “This market is worth US$11 billion in 2016 and is expected to reach US$23 billion by 2022,” announced Guillaume Girardin, Technology & Market Analyst at Yole. “This is mainly due to the boom in imaging, RADAR and LiDAR sensors, which will respectively be worth US$7.7 billion, US$6.2 billion and US$1.4 billion by 2022,” he adds.

Among classical sensors like pressure, chemical and magnetic sensors, the impact of electric vehicles will remain small in the short term. However, the advent of electrical vehicles will greatly change the amount and the distribution of pressure and magnetic sensors within the car in the longer term. More electric cars will mean fewer pressure sensors and a surge in magnetic sensors for battery monitoring and various positioning and detection of moving pieces. Finally, the automotive world is experiencing one of the fastest-changing eras in its evolution ever. Sensor suppliers are now engaged in a race where they need to be prepared for the golden age of the automotive world.

Among all sensing technologies located in the car, three main sensors will drastically change the landscape: imaging, RADAR and LiDAR sensors.

Imaging sensors were initially mounted for ADAS purposes in high-end vehicles, with deep learning image analysis techniques promoting early adoption. It is now a well-established fact that vision-based AEB is possible and saves lives. Adoption of forward ADAS cameras will therefore accelerate.
Growth of imaging for automotive is also being fueled by the park assist application, and 360° surround view camera volumes are skyrocketing. While it is becoming mandatory in the US to have a rear view camera, that uptake is dwarfed by 360° surround view cameras, which enable a “bird’s eye view” perspective. This trend is most beneficial to companies like Omnivision at sensor level and Panasonic and Valeo, which have become the main manufacturers of automotive cameras.
RADAR sensors, which are often wrongly seen as competitors of imaging and LiDAR sensors, are increasingly adopted in high-end vehicles. They are also diffusing into mid-price cars for blind spot detection and adaptive cruise control, pushing Level 2/3 features as a common experience.

Lastly, LiDAR remains the “Holy Grail” for most automotive players, allowing 3D sensing of the environment. In this report Yole’ analysts highlight the different potential usages of this technology, which will transform the transportation industry completely.

“We expect tremendous growth of the LiDAR market within the next five years, from being worth US$300 million in 2017 to US$4.4 billion by 2022,” detailed Guillaume Girardin from Yole. LiDAR is expected to be a key technology, but sensing redundancy will still be the backbone of the automotive world where security remains the golden rule.

The MEMS & Sensors for automotive report represents the best of Yole’s automotive sensor industry and imaging sector knowledge. Yole regularly participates in industry conferences and tradeshows worldwide, and maintains close relations with market leaders.

Unlike the slow ferroelastic domain switching expected for ceramics, high-speed sub-microsecond ferroelastic domain switching and simultaneous lattice deformation are directly observed for the Pb(Zr0.4Ti0.6)O3 thin films. This exciting finding paves the way for high-frequency ultrafast electromechanical switches and sensors.

Piezo micro electro mechanical systems (piezoMEMS) are miniaturized devices exhibiting piezoelectricity, i.e., the appearance of an electric charge under applied mechanical stress. These devices have many diverse applications in energy harvesters, micropumps, sensors, inkjet printer heads, switches, and so on. In permanently polarized (ferroelectric) materials, ferroelastic domain switching affects the piezoelectric properties significantly, and this behavior can be exploited for piezoMEMS applications.

Pb(Zr1-xTix)O3 (PZT) thin films have excellent piezoelectric and ferroelectric properties; therefore, they are potential candidates for MEMS applications. Under an applied electric field, both lattice elongation and 90° ferroelastic domain switching are observed in tetragonal PZT thin films. In particular, non-180° ferroelastic domain switching has important implications for the future realization of high-performance piezoMEMS devices.

However, before the recent investigation, the speed of this 90° domain switching was unknown. In addition, the relationship between the speeds of the lattice deformation and ferroelastic domain switching had not been determined. To investigate these speeds, the research team led by Hiroshi Funakubo examined the switching behavior of Pb(Zr0.4Ti0.6)O3 thin films under applied rectangular electric field pulses.

To observe the changes in the lattice and the domain structure, time-resolved in situ synchrotron X-ray diffraction was carried out in synchronization with a high-speed pulse generator. These observations were performed at the BL13XU beamline at the SPring-8 synchrotron radiation facility. The electric field pulses were applied to the PZT thin films through Pt top electrodes, which were fabricated on top of the films.

Investigation of the diffraction peaks in the PZT thin films revealed elongation of the surface normal c-axis lattice parameter of the c-domain with a simultaneous decrease in the surface normal a-axis lattice parameter of the a-domain under the applied electric field. The intensities of the diffraction peaks also changed under the electric field. These observations provided direct evidence of 90° domain switching.

To determine the switching speed, the lattice elongation and domain switching behaviors were plotted as functions of time (Figure 1). These plots revealed that these processes were completed within 40 ns and occurred simultaneously in response to the applied electric field. The switching behavior was also shown to be perfectly repeatable.

The (a-f) capacitance, strain, tilting angle, intensity, difference capacitance, and volume fraction of the c domain were measured as functions of time, respectively. The elastic deformation and ferroelastic domain switching were completed within 40 ns. Credit: Scientific Reports

The (a-f) capacitance, strain, tilting angle, intensity, difference capacitance, and volume fraction of the c domain were measured as functions of time, respectively. The elastic deformation and ferroelastic domain switching were completed within 40 ns. Credit: Scientific Reports

The high-speed switching observed in these experiments was limited by the present electrical equipment, but is faster than that reported in previous studies. Further, this high-speed 90° switching is reversible and can be used to enhance the piezoelectric response in piezoMEMS devices by several tens of nanoseconds. Therefore, this finding is of considerable importance for the ongoing development of ultrafast electromechanical switches and sensors.

SparkLabs Group, a network of accelerators and funds, is launching a $50 million early-stage fund (Series A & B) primarily focused on South Korea. The fund will be led by Brian Kang, who was a founding member of Samsung’s first venture capital arm and later led Korea Venture Fund, which was Korea’s first VC fund of funds. He has over 20 years of experience as an investment professional and several years as an entrepreneur and operator. He was CEO & Chairman of the Board at Gravity, a Softbank affliated gaming company, and then went on to launch his own gaming startup.

Brian is joined by Chris Koh, Co-founder of Coupang which is the leading ecommerce player in South Korea and received $1 billion investment from Softbank in 2015. Chris started Coupang with a classmate from Harvard Business School and their friend at Harvard Law. He was vice president of the company for five years focusing on operations and growth.

“We are grateful to SeAH who was one of the first investors in SparkLabs Global Ventures, our global seed fund, and now the anchor investor along with Korea Development Bank/Multi-Asset in our new Series A fund for South Korea. We believe we have assembled the best team to service entrepreneurs in Korea since all of us have built companies from the ground up in Korea and the U.S.,” stated HanJoo Lee, co-founder of SparkLabs.

SeAH is a top 50 business group in South Korea and Korea Development Bank/Multi-Asset is subsidiary of Mirae Asset, which is the largest asset manager in South Korea with over US$100 billion assets under management.

Brian Kang and Chris Koh are joined by Venture Partners (part-time partners) Rob Das, Co-founder and former Chief Architect of Splunk, and John Suh, CEO of Legalzoom. Splunk is a $8 billion market cap company that Rob helped grow from concept to its IPO in 2012. John has served as CEO since 2007 to help grow Legalzoom into the leading provider of online legal document services in the U.S. that has serviced almost 4 million customers.

“We are excited to launch this new early-stage fund to help Korea’s rapidly growing startup ecosystem. I believe the venture capital business must evolve as the startup environment is changing fast in Korea. Finding companies of global capacity, generating rich deal flow, adding real values post investment are becoming more and more critical to the success of venture investments. Chris and I look forward to working with other investors to help nurture the next generation of impact entrepreneurs in South Korea,” said Brian Kang, Co-founder and Managing Partner of SparkLabs Ventures.

SparkLabs Ventures is also supported by a heavy hitting advisory board that includes former Congressman Mike Honda, who served in the U.S. Congress from 2001 to 2017 (represented Silicon Valley in the 17th congressional district from 2013 to 2017); David Lee, Co-founder and Managing Partner of Refactor Capital; and Nadiem Makarim, Co-founder and CEO of Go-Jek, which recently raised $1.2 billion from Tencent and others.

The fund will focus primarily on South Korea startups at their Series A or B rounds, and will not be limited to graduates of SparkLabs accelerator in Seoul. The fund will focus its investments on companies that have potential to expand abroad to different markets and have the ability to take advantage of the global reach of the SparkLabs’ network. A secondary target region is SE Asia, so the fund will be open to startups within this region who have global ambitions.

Researchers at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) in Japan have designed a small ‘body-on-a-chip’ device that can test the side effects of drugs s on human cells. The device solves some issues with current, similar microfluidic devices and offers promise for the next generation of pre-clinical drug tests.

The Integrated Heart/Cancer on a Chip (iHCC) was used to test the toxicity of the anti-cancer drug doxorubicin on heart cells. The researchers, led by iCeMS’s Ken-ichiro Kamei, found that, while the drug itself was not toxic to heart cells, a metabolite of the drug resulting from its interaction with cancer cells was.

The device is smaller than a microscope glass slide. It contains six tiny chambers; every two are connected by microchannels with a series of port inlets and valves. A pneumatic pump controls movement of fluid through the channels. Every two chambers and their separate microchannel system constitute one test bed. Three test beds in the device allow for the introduction of minor changes in each bed to simultaneously compare results.

The team first tested doxorubicin’s effects on heart cells and liver cancer cells cultured separately in small wells. The drug had the expected anti-cancer effect on the cancer cells without causing damage to the heart cells.

They then ran the test using the iHCC device. Heart cells were placed in one chamber while liver cancer cells were placed in the other. Doxorubicin was introduced into a cell culture medium circulating through a closed-loop system of microchannels that connects the two chambers, mimicking the blood’s circulatory system. In this way, the drug flows unidirectionally in a continuous loop through both chambers.

The team found signs of toxicity in both cancer and heart cells. They hypothesized that a compound, doxorubicinol, which is a metabolic byproduct of doxorubicin interacting with cancer cells, was causing the toxic effect.

To test this, they added doxorubicinol to heart cells and liver cancer cells cultured separately in small wells. It was toxic to the heart cells but not to the cancer cells.

When doxorubicin alone is added to the liver cancer cells, the amount of doxorubicinol produced is too small to be toxic to the heart cells. The team believes this is because the amount of cell culture medium needed for the well-based tests dilutes the metabolite.

In contrast, when doxorubicin is introduced into the iHCC, the metabolite is not diluted when moving through the microchannel circulation system because a smaller volume of cell culture is needed. As a result, the drug does have a toxic effect on the heart cells via its metabolite.

The device requires further improvements, but the study demonstrates how this design concept could be used to investigate the toxic side effects of anti-cancer drugs on heart cells well before expensive clinical trials. The study was published in the journal Royal Society of Chemistry Advances.