Category Archives: MEMS

BY PETE SINGER, Editor-in-Chief

Do you know what’s coming? The semiconductor industry is evolving rapidly, driven by new demands from an increasingly diverse array of applications, including the IoT, 5G telecommunication, autonomous driving, virtual and augmented reality, and artificial intelligence/deep learning. Solid State Technology will be conducting a new survey will take aim at understanding what this evolution means to the semicon-ductor manufacturing industry supply chain in terms of the technology that will be needed.

IoT alone is expected to drive not only a huge demand for sensors, but a far more sophisticated cloud computing infrastructure that will employ the most advanced logic and memory chips available, including 7 and 5nm logic devices and 3D NAND. The survey will provide answer to questions such as:

  • What new materials are going into volume production and what kind of challenges do they create in terms of availability, handling and disposal?
  • How are fabs dealing with more complex devices structures such as FinFETs and 3D NAND which can create new pressures on process control, yield, and economics?
  • EUV lithography is expected to be in volume production for the 5nm node, if not sooner. What new opportunities and challenges will this create in the supply chain for process equipment, materials and inspection tools?
  • 200mm fabs are seeing a resurgence, in part due to the booming market for IoT devices and sensors. How will this impact the leading edge?
  • What kind of new challenges and opportunities exist in heterogeneous integration and advanced packaging?

The survey will be conducted across the entire Solid State Technology audience, which includes more than 180,000 engineering and management professionals in 181 countries. The report will be compiled by Solid State Technology editors, who will add valuable insights and interpretations based on decades of experience.

Stay tuned for the survey – we welcome your input!

Dow Corning, a developer of silicones, silicon-based technology and innovation and a wholly owned subsidiary of The Dow Chemical Company (NYSE: DOW), today announced that it received the prestigious Global Supplier Award from The Bosch Group, a worldwide supplier of technology and engineering services. Issued every two years, Bosch’s coveted awards recognize companies that have demonstrated outstanding performance in the manufacture and supply of products or services to Bosch – especially in terms of quality, pricing, reliability, technology, and continuous improvement. Bosch recognized 44 companies from 11 countries this year.

“We are delighted and very proud that Bosch has recognized Dow Corning’s commitment to its success with this prestigious award,” said Jörg Kersten, Dow Corning’s global key customer manager for The Bosch Group. “Like Bosch, we believe that long-term partnerships and close collaboration are the key to mutual success. It continues to be our privilege to work alongside their industry-leading team of innovators, and support their mission to be a top global engineer of automotive and electronic components.”

Karl Nowak, president of Corporate Sector Purchasing and Logistics at Bosch, informed Dow Corning via a letter that it had received the honor. Nowak’s letter read, in part: “Success in an increasingly connected and digitalized world requires strong and reliable partnerships. Your company’s outstanding performance and exemplary teamwork in 2015-16 contributed to Bosch’s success. To demonstrate our appreciation to you and your employees, we would like to honor you with the Bosch Global Supplier Award.”

Bosch officially bestowed its awards at a gala award ceremony held on July 12 in Stuttgart, Germany, and hosted by Robert Bosch GmbH’s executives and board members. Patrick McLeod, global business director, Dow Performance Silicones, and Wiltrud Treffenfeldt, chief technology officer, EMEAI at Dow, attended to accept the award on behalf of Dow Corning.

North America-based manufacturers of semiconductor equipment posted $2.29 billion in billings worldwide in June 2017 (three-month average basis), according to the June Equipment Market Data Subscription (EMDS) Billings Report published today by SEMI.

SEMI reports that the three-month average of worldwide billings of North American equipment manufacturers in June 2017 was $2.29 billion. The billings figure is 0.8 percent higher than the final May 2017 level of $2.27 billion, and is 33.4 percent higher than the June 2016 billings level of $1.72 billion.

“Through the first half of the year, 2017 equipment billings are 50 percent above the same period last year,” said Dan Tracy, senior director, Industry Research & Statistics, SEMI.  “While month-to-month growth is slowing, 2017 will be a remarkable growth year for the semiconductor capital equipment industry.”

The SEMI Billings report uses three-month moving averages of worldwide billings for North American-based semiconductor equipment manufacturers. Billings figures are in millions of U.S. dollars.

Billings
(3-mo. avg)
Year-Over-Year
January 2017
$1,859.4
52.3%
February 2017
$1,974.0
63.9%
March 2017
$2,079.7
73.7%
April 2017
$2,136.4
46.3%
May 2017 (final)
$2,270.5
41.8%
June 2017 (prelim)
$2,288.9
33.4%

Source: SEMI (www.semi.org), July 2017
SEMI publishes a monthly North American Billings report and issues the Worldwide Semiconductor Equipment Market Statistics (WWSEMS) report in collaboration with the Semiconductor Equipment Association of Japan (SEAJ). The WWSEMS report currently reports billings by 24 equipment segments and by seven end market regions. SEMI also has a long history of tracking semiconductor industry fab investments in detail on a company-by-company and fab-by-fab basis in its World Fab Forecast and SEMI FabView databases. These powerful tools provide access to spending forecasts, capacity ramp, technology transitions, and other information for over 1,000 fabs worldwide. For an overview of available SEMI market data, please visit www.semi.org/en/MarketInfo.

 

Imagine slipping into a jacket, shirt or skirt that powers your cell phone, fitness tracker and other personal electronic devices as you walk, wave and even when you are sitting.

A new, ultrathin energy harvesting system developed at Vanderbilt University’s Nanomaterials and Energy Devices Laboratory has the potential to do just that. Based on battery technology and made from layers of black phosphorus that are only a few atoms thick, the new device generates small amounts of electricity when it is bent or pressed even at the extremely low frequencies characteristic of human motion.

“In the future, I expect that we will all become charging depots for our personal devices by pulling energy directly from our motions and the environment,” said Assistant Professor of Mechanical Engineering Cary Pint, who directed the research.

The new energy harvesting system is described in a paper titled “Ultralow Frequency Electrochemical Mechanical Strain Energy Harvester using 2D Black Phosphorus Nanosheets” published Jun.21 online by the journal ACS Energy Letters.

“This is timely and exciting research given the growth of wearable devices such as exoskeletons and smart clothing, which could potentially benefit from Dr. Pint’s advances in materials and energy harvesting,” observed Karl Zelik, assistant professor of mechanical and biomedical engineering at Vanderbilt, an expert on the biomechanics of locomotion who did not participate in the device’s development.

Currently, there is a tremendous amount of research aimed at discovering effective ways to tap ambient energy sources. These include mechanical devices designed to extract energy from vibrations and deformations; thermal devices aimed at pulling energy from temperature variations; radiant energy devices that capture energy from light, radio waves and other forms of radiation; and, electrochemical devices that tap biochemical reactions.

“Compared to the other approaches designed to harvest energy from human motion, our method has two fundamental advantages,” said Pint. “The materials are atomically thin and small enough to be impregnated into textiles without affecting the fabric’s look or feel and it can extract energy from movements that are slower than 10 Hertz–10 cycles per second–over the whole low-frequency window of movements corresponding to human motion.”

Doctoral students Nitin Muralidharan and Mengya Li co-led the effort to make and test the devices. “When you look at Usain Bolt, you see the fastest man on Earth. When I look at him, I see a machine working at 5 Hertz,” said Muralidharan.

Extracting usable energy from such low frequency motion has proven to be extremely challenging. For example, a number of research groups are developing energy harvesters based on piezoelectric materials that convert mechanical strain into electricity. However, these materials often work best at frequencies of more than 100 Hertz. This means that they don’t work for more than a tiny fraction of any human movement so they achieve limited efficiencies of less than 5-10 percent even under optimal conditions.

“Our harvester is calculated to operate at over 25 percent efficiency in an ideal device configuration, and most importantly harvest energy through the whole duration of even slow human motions, such as sitting or standing,” Pint said.

The Vanderbilt lab’s ultrathin energy harvester is based on the group’s research on advanced battery systems. Over the past 3 years, the team has explored the fundamental response of battery materials to bending and stretching. They were the first to demonstrate experimentally that the operating voltage changes when battery materials are placed under stress. Under tension, the voltage rises and under compression, it drops.

The team collaborated with Greg Walker, associate professor of mechanical engineering, who used computer models to validate these observations for lithium battery materials. Results of the study were published Jun. 27 in the journal ACS Nano in an article titled “The MechanoChemistry of Lithium Battery Electrodes.”

These observations led Pint’s team to reconstruct the battery with both positive and negative electrodes made from the same material. Although this prevents the device from storing energy, it allows it to fully exploit the voltage changes caused by bending and twisting and so produce significant amounts of electrical current in response to human motions.

The lab’s initial studies were published in 2016. They were further inspired by a parallel breakthrough by a group at Massachusetts Institute of Technology who produced a postage-stamp-sized device out of silicon and lithium that harvested energy via the effect Pint and his team were investigating.

In response, the Vanderbilt researchers decided to go as thin as possible by using black phosphorus nanosheets: A material has become the latest darling of the 2D materials research community because of its attractive electrical, optical and electrochemical properties.

Because the basic building blocks of the harvester are about 1/5000th the thickness of a human hair, the engineers can make their devices as thin or as thick as needed for specific applications. They have found that bending their prototype devices produces as much as 40 microwatts per square foot and can sustain current generation over the full duration of movements as slow as 0.01 Hertz, one cycle every 100 seconds.

The researchers acknowledge that one of the challenges they face is the relatively low voltage that their device produces. It’s in the millivolt range. However, they are applying their fundamental insights of the process to step up the voltage. They are also exploring the design of electrical components, like LCD displays, that operate at lower than normal voltages.

“One of the peer reviewers for our paper raised the question of safety,” Pint said. “That isn’t a problem here. Batteries usually catch on fire when the positive and negative electrodes are shorted, which ignites the electrolyte. Because our harvester has two identical electrodes, shorting it will do nothing more than inhibit the device from harvesting energy. It is true that our prototype will catch on fire if you put it under a blowtorch but we can eliminate even this concern by using a solid-state electrolyte.”

One of the more futuristic applications of this technology might be electrified clothing. It could power clothes impregnated with liquid crystal displays that allow wearers to change colors and patterns with a swipe on their smartphone. “We are already measuring performance within the ballpark for the power requirement for a medium-sized low-power LCD display when scaling the performance to thickness and areas of the clothes we wear.” Pint said.

Pint also believes there are potential applications for their device beyond power systems. “When incorporated into clothing, our device can translate human motion into an electrical signal with high sensitivity that could provide a historical record of our movements. Or clothes that track our motions in three dimensions could be integrated with virtual reality technology. There are many directions that this could go.”

Conventional electronic devices make use of semiconductor circuits and they transmit information by electric charges. However, such devices are being pushed to their physical limit and the technology is facing immense challenges to meet the increasing demand for speed and further miniaturisation. Spin wave based devices, which utilise collective excitations of electronic spins in magnetic materials as a carrier of information, have huge potential as memory devices that are more energy efficient, faster, and higher in capacity.

While spin wave based devices are one of the most promising alternatives to current semiconductor technology, spin wave signal propagation is anisotropic in nature – its properties vary in different directions – thus posing challenges for practical industrial applications of such devices.

A research team led by Professor Adekunle Adeyeye from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering, has recently achieved a significant breakthrough in spin wave information processing technology. His team has successfully developed a novel method for the simultaneous propagation of spin wave signals in multiple directions at the same frequency, without the need for any external magnetic field.

Using a novel structure comprising different layers of magnetic materials to generate spin wave signals, this approach allows for ultra-low power operations, making it suitable for device integration as well as energy-efficient operation at room temperature.

“The ability to propagate spin waves signal in arbitrary directions is a key requirement for actual circuitry implementation. Hence, the implication of our invention is far-reaching and addresses a key challenge for the industrial application of spin wave technology. This will pave the way for non-charge based information processing and realisation of such devices,” said Dr Arabinda Haldar, who is the first author of the study and was formerly a Research Fellow with the Department at NUS. Dr Haldar is currently an Assistant Professor at Indian Institute of Technology Hyderabad.

The research team published the findings of their study in the scientific journal Science Advances on 21 July 2017. This discovery builds on an earlier study by the team that was published in Nature Nanotechnology in 2016, in which a novel device that could transmit and manipulate spin wave signals without the need for any external magnetic field or current was developed. The research team has filed patents for these two inventions.

“Collectively, both discoveries would make possible the on-demand control of spin waves, as well as the local manipulation of information and reprogramming of magnetic circuits, thus enabling the implementation of spin wave based computing and coherent processing of data,” said Prof Adeyeye.

Moving forward, the team is exploring the use of novel magnetic materials to enable coherent long distance spin wave signal transmission, so as to further the applications of spin wave technology.

Worldwide PC shipments totaled 61.1 million units in the second quarter of 2017, a 4.3 percent decline from the second quarter of 2016, according to preliminary results by Gartner, Inc. The PC industry is in the midst of a 5 year slump, and this is the 11th straight quarter of declining shipments. Shipments in the second quarter of this year were the lowest quarter volume since 2007.

“Higher PC prices due to the impact of component shortages for DRAM, solid state drives (SSDs) and LCD panels had a pronounced negative impact on PC demand in the second quarter of 2017,” said Mikako Kitagawa, principal analyst at Gartner “The approach to higher component costs varied by vendor. Some decided to absorb the component price hike without raising the final price of their devices, while other vendors transferred the costs to the end-user price.”

However, in the business segment, vendors could not increase the price too quickly, especially in large enterprises where the price is typically locked in based on the contract, which often run through the quarter or even the year,” Ms. Kitagawa said. “In the consumer market, the price hike has a greater impact as buying habits are more sensitive to price increases. Many consumers are willing to postpone their purchases until the price pressure eases.”

HP Inc. reclaimed the top position from Lenovo in the worldwide PC market in the second quarter of 2017 (see Table 1). HP Inc. has achieved five consecutive quarters of year-over-year growth. Shipments grew in most regions, and it did especially well in the U.S. market where its shipments growth far exceeded the regional average.

Table 1
Preliminary Worldwide PC Vendor Unit Shipment Estimates for 2Q17 (Thousands of Units)

Company

2Q17 Shipments

2Q17 Market Share (%)

2Q16 Shipments

2Q16 Market Share (%)

2Q17-2Q16 Growth (%)

HP Inc.

12,690

20.8

12,285

19.2

3.3

Lenovo

12,188

19.9

13,305

20.8

-8.4

Dell

9,557

15.6

9,421

14.7

1.4

Apple

4,236

6.9

4,252

6.7

-0.4

Asus

4,036

6.6

4,501

7.0

-10.3

Acer Group

3,850

6.3

4,402

6.9

-12.5

Others

14,546

23.8

15,710

24.6

-7.4

Total

61,105

100.0

63,876

100.0

-4.3

Notes: Data includes desk-based PCs, notebook PCs and ultramobile premiums (such as Microsoft Surface), but not Chromebooks or iPads. All data is estimated based on a preliminary study. Final estimates will be subject to change. The statistics are based on shipments selling into channels. Numbers may not add up to totals shown due to rounding.
Source: Gartner (July 2017)

Lenovo’s global shipments declined 8.4 percent in the second quarter of 2017, after two quarters of growth. Lenovo recorded year-over-year shipment declines in all key regions. Ms. Kitagawa said the 2Q17 results could reflect Lenovo’s strategic shift from unit share gains to margin protection. The strategic balance between share gain and profitability is a challenge for all PC vendors.

Dell achieved five consecutive quarters of year-on-year global shipment growth, as shipments increased 1.4 percent in 2Q17. Dell has put a high priority on PCs as a strategic business. Among the top three vendors, Dell is the only vendor which can supply the integrated IT needs to businesses under the Dell Technologies umbrella of companies.

In the U.S., PC shipments totaled 14 million units in the second quarter of 2017, a 5.7 percent decline from the second quarter of 2016 (see Table 2). The U.S. market declined due to weak consumer PC demand. The business market has shown some consistent growth, while early indicators suggest that spending in the public sector was on track with normal seasonality as the second quarter is typically the peak PC procurement season. However, the education market was under pressure from strong Chromebook demand.

The Chromebook market has been growing much faster than the overall PC market. Gartner does not include Chromebook shipments within the overall PC market, but it is moderately impacting the PC market. Worldwide Chromebook shipments grew 38 percent in 2016, while the overall PC market declined 6 percent.

“The Chromebook is not a PC replacement as of now, but it could be potentially transformed as a PC replacement if a few conditions are met going forward,” Ms. Kitagawa said. “For example, infrastructure of general connectivity needs to improve; mobile data connectivity needs to become more affordable; and it needs to have more offline capability.”

Table 2
Preliminary U.S. PC Vendor Unit Shipment Estimates for 2Q17 (Thousands of Units)

Company

2Q17 Shipments

2Q17 Market Share (%)

2Q16 Shipments

2Q16 Market Share (%)

2Q17-2Q16 Growth (%)

HP Inc.

4,270

30.5

4,008

27.0

6.5

Dell

3,874

27.7

3,801

25.6

1.9

Lenovo

1,848

13.2

2,207

14.9

-16.3

Apple

1,649

11.8

1,825

12.3

-9.6

Asus

447

3.2

754

5.1

-40.7

Others

1,921

13.7

2,257

15.2

-14.9

Total

14,009

100.0

14,852

100.0

-5.7

Notes: Data includes desk-based PCs, notebook PCs and ultramobile premiums (such as Microsoft Surface), but not Chromebooks or iPads. All data is estimated based on a preliminary study. Final estimates will be subject to change. The statistics are based on shipments selling into channels. Numbers may not add up to totals shown due to rounding.
Source: Gartner (July 2017)

PC shipments in EMEA totaled 17 million units in the second quarter of 2017, a 3.5 percent decline year over year. There were mixed results across various countries. Uncertainty around the U.K. elections meant some U.K. businesses delayed buying, especially in the public sector. In France, consumer confidence rose more than expected after Emmanuel Macron was elected president, however spending on PCs remains sluggish. PC shipments increased in Germany as businesses invest in Windows 10 based new hardware, and the Russian market continued to show improvement driven by economic stabilization.

In Asia/Pacific, PC shipments surpassed 21.5 million units in the second quarter of 2017, down 5.1 percent from the same period last year. The PC market in this region was primarily affected by market dynamics in India and China. In India, the pent up demand after the demonetization cooled down after the first quarter, coupled with the absence of a large tender deal compared to a year ago and higher PC prices, brought about weak market growth. The China market was hugely impacted by the rise in PC prices due to the component shortage

These results are preliminary. Final statistics will be available soon to clients of Gartner’s PC Quarterly Statistics Worldwide by Region program. This program offers a comprehensive and timely picture of the worldwide PC market, allowing product planning, distribution, marketing and sales organizations to keep abreast of key issues and their future implications around the globe.

 

MagnaChip Semiconductor Corporation (NYSE: MX), a Korea-based designer and manufacturer of analog and mixed-signal semiconductor platform solutions for communications, IoT, consumer, industrial and automotive applications, announced today it was selected as a foundry partner by ELAN Microelectronics to manufacture the world’s first fingerprint sensor IC-based smartcard. The smartcard uses biometrics technology that provides secure identification to prevent credit card fraud, a severe and growing problem globally. The sensor-IC based smartcard will be manufactured utilizing MagnaChip’s 0.35 micron Mixed Signal Thick IMD manufacturing process technology.

The requirement for more precise, efficient and low-power ICs has increased dramatically, coinciding with the rise in importance of biometrics technology for a range of applications.  Industry analyst Frost & Sullivan forecasts that the biometrics industry will grow at a CAGR of 17.4% from 2014 to 2019 and that fingerprint-based sensor ICs will comprise 66% of the market.

MagnaChip was selected as ELAN’s foundry partner primarily because of the company’s recognized specialized foundry capability, proven and reliable manufacturing processes with robust analog  performance. MagnaChip’s current technologies for fingerprint sensor ICs include 0.35 micron, 0.18 micron 1.8V/3.3V and single 3.3V Mixed Signal technology processes. MagnaChip plans to expand its portfolio of manufacturing processes to include more advanced technologies such as its highly competitive 0.18 micron Slim Mixed Signal manufacturing process, which requires fewer mask layers than usual. MagnaChip’s manufacturing processes are well-suited for applications in fast-growing markets that require fingerprint identification, such as in the payment, medical, transportation and automobile industries.

“We hope that the collaboration between MagnaChip and ELAN will continue to produce innovative and high quality products for our customers,” said I. H. Yeh, ELAN’s Chief Executive Officer. “ELAN sees its continued strategic partnership with MagnaChip as a long-term benefit to ELAN and MagnaChip.”

YJ Kim, Chief Executive Officer of MagnaChip, commented, “We are very pleased to announce MagnaChip’s continued partnership with ELAN and the volume ramp of fingerprint sensor IC-based products utilizing our 0.35 micron Mixed Signal Thick IMD based process technology. This process is well-suited for smartcards, which require low power consumption. We will continue to develop high-performance and cost-effective fingerprint sensor IC technology solutions that meet the growing needs of our foundry customers.”

A hypoallergenic electronic sensor can be worn on the skin continuously for a week without discomfort, and is so light and thin that users forget they even have it on, says a Japanese group of scientists. The elastic electrode constructed of breathable nanoscale meshes holds promise for the development of noninvasive e-skin devices that can monitor a person’s health continuously over a long period.

Wearable electronics that monitor heart rate and other vital health signals have made headway in recent years, with next-generation gadgets employing lightweight, highly elastic materials attached directly onto the skin for more sensitive, precise measurements. However, although the ultrathin films and rubber sheets used in these devices adhere and conform well to the skin, their lack of breathability is deemed unsafe for long-term use: dermatological tests show the fine, stretchable materials prevent sweating and block airflow around the skin, causing irritation and inflammation, which ultimately could lead to lasting physiological and psychological effects.

“We learned that devices that can be worn for a week or longer for continuous monitoring were needed for practical use in medical and sports applications,” says Professor Takao Someya at the University of Tokyo’s Graduate School of Engineering whose research group had previously developed an on-skin patch that measured oxygen in blood.

In the current research, the group developed an electrode constructed from nanoscale meshes containing a water-soluble polymer, polyvinyl alcohol (PVA), and a gold layer–materials considered safe and biologically compatible with the body. The device can be applied by spraying a tiny amount of water, which dissolves the PVA nanofibers and allows it to stick easily to the skin–it conformed seamlessly to curvilinear surfaces of human skin, such as sweat pores and the ridges of an index finger’s fingerprint pattern.

The researchers next conducted a skin patch test on 20 subjects and detected no inflammation on the participants’ skin after they had worn the device for a week. The group also evaluated the permeability, with water vapor, of the nanomesh conductor–along with those of other substrates like ultrathin plastic foil and a thin rubber sheet–and found that its porous mesh structure exhibited superior gas permeability compared to that of the other materials.

Furthermore, the scientists proved the device’s mechanical durability through repeated bending and stretching, exceeding 10,000 times, of a conductor attached on the forefinger; they also established its reliability as an electrode for electromyogram recordings when its readings of the electrical activity of muscles were comparable to those obtained through conventional gel electrodes.

“It will become possible to monitor patients’ vital signs without causing any stress or discomfort,” says Someya about the future implications of the team’s research. In addition to nursing care and medical applications, the new device promises to enable continuous, precise monitoring of athletes’ physiological signals and bodily motion without impeding their training or performance.

The electric current from a flexible battery placed near the knuckle flows through the conductor and powers the LED just below the fingernail. Credit: 2017 Someya Laboratory.

The electric current from a flexible battery placed near the knuckle flows through the conductor and powers the LED just below the fingernail. Credit: 2017 Someya Laboratory.

Transistors, as used in billions on every computer chip, are nowadays based on semiconductor-type materials, usually silicon. As the demands for computer chips in laptops, tablets and smartphones continue to rise, new possibilities are being sought out to fabricate them inexpensively, energy-saving and flexibly. The group led by Dr. Christian Klinke has now succeeded in producing transistors based on a completely different principle. They use metal nanoparticles which are so small that they no longer show their metallic character under current flow but exhibit an energy gap caused by the Coulomb repulsion of the electrons among one another. Via a controlling voltage, this gap can be shifted energetically and the current can thus be switched on and off as desired. In contrast to previous similar approaches, the nanoparticles are not deposited as individual structures, rendering the production very complex and the properties of the corresponding components unreliable, but, instead, they are deposited as thin films with a height of only one layer of nanoparticles. Employing this method, the electrical characteristics of the devices become adjustable and almost identical.

These Coulomb transistors have three main advantages that make them interesting for commercial applications: The synthesis of metal nanoparticles by colloidal chemistry is very well controllable and scalable. It provides very small nanocrystals that can be stored in solvents and are easy to process. The Langmuir-Blodgett deposition method provides high-quality monolayered films and can also be implemented on an industrial scale. Therefore, this approach enables the use of standard lithography methods for the design of the components and the integration into electrical circuits, which renders the devices inexpensive, flexible, and industry-compatible. The resulting transistors show a switching behavior of more than 90% and function up to room temperature. As a result, inexpensive transistors and computer chips with lower power consumption are possible in the future. The research results have now been published in the scientific journal “Science Advances“.

“Scientifically interesting is that the metal particles inherit semiconductor-like properties due to their small size. Of course, there is still a lot of research to be done, but our work shows that there are alternatives to traditional transistor concepts that can be used in the future in various fields of application”, says Christian Klinke. “The devices developed in our group can not only be used as transistors, but they are also very interesting as chemical sensors because the interstices between the nanoparticles, which act as so-called tunnel barriers, react highly sensitive to chemical deposits.”

Scientists from the Moscow Institute of Physics and Technology (MIPT) and the Kotelnikov Institute of Radio Engineering and Electronics (IRE) of the Russian Academy of Sciences (RAS), in collaboration with their colleagues from Finland, have developed a new type of optical fiber that has an extremely large core diameter and preserves the coherent properties of light. The paper was published in the journal Optics Express. The results of the study are promising for constructing high-power pulsed fiber lasers and amplifiers, as well as polarization-sensitive sensors.

When it comes to optical fiber applications, preserving the properties of light is crucial. There are two principal parameters that often need to be preserved: the distribution of light intensity in cross section and the polarization of light (a property that specifies the oscillation directions of the electric or magnetic field in a plane perpendicular to the wave propagation direction). In their study, the researchers managed to fulfill both conditions.

“Optical fiber research is one of the most rapidly developing fields of optics. Over the last decade, numerous technological solutions have been proposed and implemented. For instance, researchers and engineers at IRE RAS can now produce optical fiber of almost any diameter with arbitrary transverse structure,” says Vasily Ustimchik, who is a co-author of the study, a senior research scientist at IRE RAS and the Russian Quantum Center, and a professor at MIPT. “In the course of this study, a specific structure was formed in the optical fiber. It varies along two orthogonal axes, and its diameters change proportionally along the fiber. Individually, such solutions are already widely used, so it is critical to continue to work in this direction.”

An optical fiber is generally a very thin flexible strand drawn from glass or transparent plastic. At first glance, it seems to be a rather simple system, but in practice, we are confronted with a number of major issues limiting its applications, the first being signal attenuation in fiber-optic lines. The solution to this problem has long been found, paving the way for fiber-optic communications. However, communications are not the only area where optical fibers can be applied. Today, one of the most common types of lasers are based on fiber-optic technology. A fiber laser, just like any other, incorporates an optical resonator, which causes light to travel back and forth repeatedly. The geometrical parameters of the fiber resonator allow for only a limited set of transverse patterns of light intensity distribution in the output beam — the so-called transverse modes of the resonator (see Fig. 1). Naturally, one would want to control the mode structure of the light, and in fact, when it comes to practice, researchers and engineers are mostly seeking to excite nothing but one pure fundamental mode (see the upper left corner of Fig. 1) that does not change with time.

In order to maintain single-mode operation, the fiber must consist of a core and a cladding — materials with different refractive indexes. Ordinarily, the thickness of the inner part (fiber core), through which radiation propagates, normally has to be less than 10 micrometers.

An increase in the optical power of the light propagating in the fiber results in a greater amount of energy being absorbed. This translates into a change in the properties of the fiber. Specifically, it causes uncontrolled variation of the refractive index of the fiber material. This gives rise to parasitic nonlinear effects, resulting in additional spectral lines of emission etc., which limits the strength of the optical signals that are transmitted. An existing solution to the problem — which the authors also used — lies in the variation of the core and outer diameters along the length of the fiber (see Fig. 2).

If the expansion of the fiber occurs adiabatically — that is, relatively slowly — it is possible to reduce the amount of energy transferred to other modes to less than 1 percent, even with a core diameter of up to 100 micrometers (which is exceptionally large for single-mode fibers). Moreover, the fact that the core diameter is large and varies along the fiber increases the threshold for nonlinear effects occurrence.

To achieve the second goal — which was to preserve the polarization state of the light — the authors of the study made the cladding of the fiber anisotropic: The width and the height of the inner cladding are different (the cladding is elliptical), which means the propagation speed of light with different field oscillation directions is not the same. In a structure like this, the process of transferring energy from one polarized mode to another is almost entirely disrupted. In their study, the researchers have shown that the geometric length of the path traveled by light through the fiber at which the oscillations of the two different polarizations are in antiphase depends on the fiber core diameter: It decreases as the diameter is increased. This length, known as the polarization beat length, corresponds to one complete rotation of the linear polarization state in the fiber. In other words, if you launch linearly polarized light into a fiber, it will be linearly polarized again after traveling precisely this distance. The ability to measure this parameter is in itself evidence of the fact that the polarization state in the fiber is preserved.

In order to investigate the properties related to light polarization in the fiber, the method of optical frequency-domain reflectometry was used. It involves launching an optical signal into the fiber and detecting the backscattered signal. The reflected signal contains a lot of information. This method is normally used to determine the location of defects and impurities in optical fibers, but it can also determine both the coherence length and the spatial distribution of polarization beat length. Coherence reflectometry techniques are widely used to monitor the state of optical fibers. However, the method used in this study is notable for enabling data collection at a high resolution of up to 20 micrometers along the fiber length.

Professor Sergey Nikitov, who is deputy head of MIPT’s Section of Solid State Physics, Radiophysics and Applied Information Technologies, corresponding member of RAS, the director of IRE RAS, and the leader of the research group, commented: “The fiber samples we obtained have demonstrated great results, indicating good prospects for further development of such technological solutions. They will find use not only in laser systems but also in optical fiber sensors, where the change of polarization characteristics is known in advance, since they are determined by external environmental factors, such as temperature, pressure, biological and other impurities. Besides, they have a number of advantages over semiconductor sensors. For example, they need no electrical power and are capable of carrying out distributed sensing, and that is not a complete list.”