Category Archives: MEMS

SEMI today announced that twenty-one start-ups have been selected to pitch to investors and exhibit their products at SEMICON Europa‘s INNOVATION VILLAGE in Grenoble, France at the Alpexpo from 25-27 October, 2016. INNOVATION VILLAGE will showcase never-before-seen technologies, with early stage companies introducing their technologies on the exposition floor.

INNOVATION VILLAGE, an area of more than 400m² on the SEMICON Europa exhibition floor, is dedicated to the launch and promotion of technological innovation.  Twenty-one leading European start-ups will be featured, including:

• 3Dis Technologies • HPROB • ProNT GmbH
• Antaios • Irlynx • Silicon Radar
• Applied Nanolayers BV • Madci • Siltectra
• Bright Red Systems Gmbh • Mi2-factory GmbH • Smart Force Technologies
• Fastree3D • Miniswys SA • Smoltek
• FlexEnable • Noivion • Solayl
• FMC – The Ferroelectric Memory Company • Pollen Metrology • Terabee

Start-ups will be given the opportunity to “pitch” their products to potential investors including Applied Ventures LLC, Samsung Ventures, TEL Venture Capital, Robert Bosch Venture Capital GmbH, 3M New Ventures, Aliad-Air Liquide Corporate Venture Capital, Capital ASTER, CEA Investment, VTT Ventures, Capital-E, Siemens Technology Accelerator GmbH and more.

For the first time at the INNOVATION VILLAGE, a new technology transfer program, called the TechnoMarket, from partner Linksium, SATT Grenoble Alpes will be showcased on 26 October. “The national network, SATT, has chosen SEMICON Europa to promote the best technological projects derived from public research within France that can also benefit manufacturers. The new Techno Market event offers new opportunities for businesses,” says Gilles Talbotier, CEO, Linksium.  The TechnoMarket acts as a genuine market place for VCs and companies ready to invest in innovation.

Free admission code: Use the promotional code SCEU-TBN4U to gain free admission to the show floor (not including conferences or forums).  Register now – attend to connect.

For more information about SEMICON Europa, please visit http://www.semiconeuropa.org

Nanoelectronics research center imec announces that Kris Myny, one of its young scientists, has been awarded an ERC Starting Grant. The grant of 1.5 million euros is earmarked to open up new research horizons in the field of thin-film transistor technology. This will allow a leap forward compared to current state-of-the-art and enable breakthrough applications in e.g. healthcare and the Internet-of-Things (IoT). ERC Starting Grants are awarded by the European Research Council to support excellent researchers at the stage at which they are starting their own independent research team after a stringent selection procedure; they are among the most prestigious of European research grants.

With his research, Kris Myny wants to realize a breakthrough in thin-film transistor technology, a technology used to create the large-area, flexible circuits that e.g. drive today’s flat-panel displays.

Specifically, he wants to introduce design innovations of unipolar n-type transistor circuits based on amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) as semiconductor. These are currently acknowledged as the most promising transistors for next-generation curved, flexible, or even rollable electronic applications.

Kris Myny said, “My goal is to use these transistors to introduce a new logic family for building digital circuits that will drastically decrease the power consumption compared to current flexible circuits. And this of course without compromising the speed of the electronics. At the same time, we will also make the transistors smaller, in a way that is compatible with large-area manufacturing. In addition, I will also look at new techniques to design ultralow-power systems in the new logic style. These will allow building next-generation large-area flexible applications such as displays, IoT sensors, or wearable healthcare sensor patches.”

In a recent press release, the European Commission announced that in 2017 it would invest a record 1.8 billion in its ERC grant scheme. A sizable part of the budget is earmarked for Starting Grants, reserved for young scientists with two to seven years of post-PhD experience. Jo De Boeck, imec’s CTO says “We congratulate Kris Myny for all his valuable research culminating in this grant. Imec goes to great lengths to select and foster our young scientists and provide them with a world-class infrastructure. These ERC Starting Grants show that their work indeed meets the highest standards, comparable to any in Europe.”

SEMI, a supplier of independent semiconductor market research, today announced SEMI FabView, a mobile-friendly, interactive version of its popular World Fab Forecast quarterly report for electronic supply chain players and analysts. The new product was announced during the press conference at SEMICON Taiwan, where 43,000 industry professionals are convening this week. SEMI FabView tracks spending and capacities of over 1,100 facilities, including over 60 future facilities, across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LED fabs.

semi fabview

SEMI FabView features high-level fab data such as capacity, technology nodes, and equipment spending, with other device manufacturing insights such as fabs by region, wafer size, product type and construction status. This new online platform enables anytime access on the changes taking place in fab construction and expansion, production volume, device types, and more. The ability to quickly access the latest data for quarterly business reviews or earnings calls, or to validate an investment decision, is a key feature of this new product.

“SEMI FabView, an online platform, provides SEMI members and customers access to the industry benchmark World Fab Forecast database information in an entirely new way,” said Dan Tracy, senior director of SEMI Industry Research & Statistics for SEMI. “By adding the interactive elements of SEMI FabView, subscribers now have on-the-go real-time access to expert analysis that can be implemented in their models or forecasts.”

SEMI FabView users can:

  • view forecast for equipment and construction spending, capacity changes, and fab status from new plans to closures
  • organize data views by filtering data and accessing analyst commentary for each company and fab to see the latest SEMI forecast
  • access forecast data by company, geographical region, wafer size, technology geometry and specific stages of fab life cycle ─ from announced and planned new fabs to fabs that are in transition (e.g., when a cleanroom is converting to a larger wafer size or a different product type)

SEMI FabView is available for a product demo; contact [email protected]. Learn more about SEMI FabView here: www.semi.org/en/semi-fabview

BY DR. BERND DIELACHER, DR. MARTIN EIBELHUBER and DR. THOMAS UHRMANN, EV Group, St. Florian, Austria

Over the past several decades, miniaturization has significantly improved clinical diagnostics, pharmaceutical research and analytical chemistry. Modern biotechnology devices— such as biosensors, fully integrated systems for diagnostics, cell-analysis or drug discovery—are often chip-based and rely on close interaction of biological substances at the micro- and nanoscale. Thus, process technologies that enable the production of surface patterns and integration of fluidic components with small feature sizes are needed (FIGURE 1).

FIGURE 1. Biotechnology devices utilize a variety of structures at the micro- and nanoscale that interact with biological substances.

FIGURE 1. Biotechnology devices utilize a variety of structures at the micro- and nanoscale that interact with
biological substances.

Today’s miniaturized biotechnology devices can be found in numerous applications, including fields related to human health as well as environmental and industrial sciences. For example, chemical sensors and biosensors are commonly used to analyze pH values, levels of electrolytes and blood-gas. Glucose sensors are a prominent example of highly successful commercial devices used for diabetes monitoring, where miniaturization has enhanced the development of implantable chips for continuous glucose level monitoring inside the human body.Fully integrated systems, including micro- and nanopumps for accurate insulin release, have also been shown. In general, such controlled drug delivery systems offer new opportunities for the treatment of common acute and chronic diseases. Moreover, microneedle arrays, which allow minimally invasive and painless delivery of drugs through the skin, neural electrodes for stimulation or monitoring signals inside the brain, or prosthetic devices such as artificial retinas, have also been developed.

Microfluidics plays a key role in the transport and manipulation of biological fluids in biotechnology devices. For example, laminar flow behavior can be overserved, which allows a well-defined control of liquids. Capillary forces can enable fluid flow without the need of active pumps. In addition, short distances reduce diffusion times of molecules, which lead to faster biological reactions. Overall, microfluidic devices offer a high degree of parallelization while using extremely-low-volume samples. Microfluidic devices that perform complete tasks or analysis, usually done in a laboratory, are referred to as lab-on-chip (LOC) devices. Other names include bio-chips or micro-Total-Analysis- Systems (μ-TAS). These systems are used in applications such as in-vitro diagnostics, high-throughput screening, genomics and drug discovery. LOC devices are also ideally suited for point-of-care testing (POCT), where they provide rapid diagnostics at the patient site.

Nanoimprint lithography

To successfully commercialize such products in a fast growing market with stringent requirements and high regulatory hurdles, precise and cost-effective micro- structuring technologies are essential. Nanoimprint lithography (NIL) has evolved from a niche technology to a powerful high-volume manufacturing method that is able to serve today’s needs and overcome the challenges of increasing complexity of microfluidic devices in particular, and biotechnology devices in general. NIL is a patterning technique capable of producing a multitude of different sizes and shapes on a large scale by imprinting either into a biocompatible resist or directly into the bulk material with resolutions down to 20 nm. NIL can be distinguished between three types of imprint technologies: hot-embossing or thermal NIL, UV-NIL, and micro- contact printing (μ-CP).

Hot-embossing is a cost-effective and relatively simple process, well suited for the fabrication of polymer microfluidic devices with very high replication accuracy of small features down to 50 nm (FIGURE 2). A polymer sheet or spin-on-polymer is heated above its glass transition temperature, transforming the material into a viscous state. A stamp containing the negative copy of the struc- tures is then pressed into the polymer with sufficient force to conformally mold the polymer. De-embossing is done after cooling the substrate below a certain temperature where the material retains its shape when removing the stamp. During hot-embossing, the structure is trans- ferred by displacement of the viscous material. The process is characterized by short flow paths of the material, moderate flow velocities and imprinting temperatures. Residual stress is therefore low, especially when comparing the process to injection molding, which is an alternative production technique for microfluidics.

FIGURE 2: a) 200-μm wide microfluidic channels and b) 10- μm pillar arrays with high aspect ratios (7:1) fabricated by hot- embossing (Courtesy of National Research Council Canada). c) Schematic drawing of hot-embossing process flow.

FIGURE 2: a) 200-μm wide microfluidic channels and b) 10- μm pillar arrays with high aspect ratios (7:1) fabricated by hot- embossing (Courtesy of National Research Council Canada). c) Schematic drawing of hot-embossing process flow.

FIGURE 2: a) 200-μm wide microfluidic channels and b) 10- μm pillar arrays with high aspect ratios (7:1) fabricated by hot- embossing (Courtesy of National Research Council Canada). c) Schematic drawing of hot-embossing process flow.

Because of the much higher process temperatures and pressures associated with injection molding, final products produced by this process usually experience higher internal residual stress, which easily results in significant deformation, such as warpage and shrinkage. In addition, a surface solidifi- cation layer is formed at the interface of the cold mold during the injection of the high-temperature molten polymer. This effect significantly influences the replication accuracy and optical quality. Extensive effort in process development and simulation is therefore often necessary for injection molding to replicate small features in an accurate manner. In contrast, hot-embossing allows precise replication of micro- and nanostructures with less effort and is superior when replicating high-aspect ratio features or when using very-thin substrates. Structures with high-aspect ratios are often needed in microfluidic chips for filtration elements, particle separation or cell sorting.

The ability to use very thin substrates enables the patterning of spin-on-polymer layers on top of other materials or even roll-to-roll embossing using polymer foils for very-high-throughput production. Parallel wafer-based batch processing also enables fabrication of typical-sized microfluidic chips with throughputs compa- rable to or even higher than injection molding or similar techniques. Since master stamps for hot-embossing do not need to withstand the high temperatures and forces required for mold inserts for injection molding, they are less expensive to produce. Therefore, hot-embossing is also a well suited technology for R&D and allows easier design changes in volume-production. UV-NIL refers to a technique where a transparent stamp is pressed into a photo-curable resist and cross-linked by UV-light while still in contact (FIGURE 3). In biotechnology applications, the resist is usually coated onto silicon or glass substrates. Unlike hot-embossing, the UV-NIL stamp is brought in contact with the resist using minimum force to conformally join the stamp and substrate. The different mechanisms of curing and stamp attachment account for different advantages and fields of application of the respective technologies.

FIGURE 3: (a) 100-nm grating with residual layer <10 nm imprinted into 90 nm height resist on silicon substrate and (b) 350-nm photonic crystal fabricated by UV-NIL. c) Schematic drawing of UV-NIL process flow.

FIGURE 3: (a) 100-nm grating with residual layer

UV-NIL provides very-high-alignment accuracy, pattern fidelity, and throughput whereas hot-embossing is capable of imprinting higher aspect ratios and larger structures in the upper micron range as well as combinations of micro- and nanostructures. UV-NIL offers additional opportunities for biotechnology devices where features with ultra- high precision are needed. Examples include optical-based biosensors that often rely on noble metal nanostructures that influence properties of coupled light upon the binding of molecules onto the nanostructures.Regardless of what the sensing principle is based on (e.g. localized surface plasmon resonance or photonic band gaps), small changes in shape and size can significantly alter the properties of the sensing element.

In order to produce nanostructures made of metals, either additive or subtractive processes can be used. The former involves the deposition of a metal layer onto the patterned resist followed by a lift-off process, whereas the latter involves the transfer of the pattern into an underlying metal layer by etching processes. In both cases, the small residual layer must first be removed. Having a uniform residual layer is of high importance, especially for subse- quent etching processes, and can be easily achieved with current equipment over large areas. Imprinted UV-NIL resists can also be used directly as functional layers. After many years of continuous resist development, a broad portfolio of optimized resist materials is available for various bio-applications. Another interesting aspect, especially for microfluidic devices, is the potential of nanostructures to influence surface properties. For example, nanostructures can change the surface behavior from hydrophilic to hydrophobic, which can be used to locally influence the fluid flow.

While UV-NIL is ideally suited for fabricating very small features, it is not well suited for features larger than several tens of micrometers. In cases where both highly-accurate nanostructures and large microfluidic channels are needed, hot-embossing can be used to imprint the channels on a separate substrate. The two substrates can subsequently be bonded together to produce the final device.

A third NIL option is μ-CP, where a pre-inked stamp is used to transfer materials such as biomolecules onto a substrate in a distinct pattern (FIGURE 4). Local modification of surface chemistry can, for example, be used to guide the growth of neurons on a chip. On the other hand, it can be used for the precise placement of capture molecules in biosensor fabrication. This technique is applicable on all common surfaces, such as silicon, glass or polymers with micro- and nanometer resolution and offers new possibilities for functionalization of biotechnology devices.

FIGURE 4: Bio-functionalized, micro-patterned array
created by micro-contact printing for the detection of protein- protein interactions in live cells. a) Antibody-patterns induce the recruitment of two interacting proteins to micro-patterns, which is detected by fluorescence microscopy. b) Missing interaction of the two candidate proteins leads to homogenous distribution on the functionalized surface. c) Schematic drawing of micro-contact printing process flow. [Images adapted from Schwarzenbacher et al., 2008, Nature Methods; Weghuber et al., 2010, Methods in Enzymology].

FIGURE 4: Bio-functionalized, micro-patterned array
created by micro-contact printing for the detection of protein- protein interactions in live cells. a) Antibody-patterns induce the recruitment of two interacting proteins to micro-patterns, which is detected by fluorescence microscopy. b) Missing interaction of the two candidate proteins leads to homogenous distribution on the functionalized surface. c) Schematic drawing of micro-contact printing process flow. [Images adapted from Schwarzenbacher et al., 2008, Nature Methods; Weghuber et al., 2010, Methods in Enzymology].

Although most current microfluidic devices do not follow the same degree of miniaturization in terms of chip-size compared to the microelectronics industry, large-scale parallel processing has a significant advantage in terms of costs and flexibility (FIGURE 5). Alternative fabrication techniques for microfluidic chips, such as injection molding, are principally serial processes and have limita- tions in up-scaling.Using nanoimprinting,30chipsofthe size of a microscopy slide (25 x 75 mm) can easily fit on a single 300-mm substrate. This format can be considered a good reference for an average- sized microfluidic chip. In terms of throughput, wafer-based batch processing is able to reach similar or better cycle times per device compared to alternative solutions, such as injection molding. UV-NIL has even been introduced on GEN2 substrates (370 x 470 mm). In addition, roll- to-roll processing can reach even higher throughput levels but is restricted to the structuring of flexible foils.

FIGURE 5: Large-area parallel processing offers significant advantages in terms of cost and flexibility. Additional processes, such as electrode fabrication or spotting of reagents, can also be efficiently integrated.

FIGURE 5: Large-area parallel processing offers significant advantages in terms of cost and flexibility. Additional processes, such as electrode fabrication or spotting of reagents, can also be efficiently integrated.

Wafer bonding

NIL has an additional advantage in terms of post- processing. Electrode fabrication, surface treatments or spotting of bio-reagents can be efficiently integrated in a large-area batch. The same is true for sealing and encapsulation, an essential process step for all biotechnology devices. It is usually mandatory to close micro-fluidic channels, to fabricate a hermetic sealing for protection against environmental influences or even to provide packaging that is compatible for implantation into human bodies. In addition, interconnections to the outer world have to be incorporated, such as holes or fluidic connectors. Electronic connections or assembling the device together with an integrated microelectronic chip is also often necessary. Thus, bonding of different device layers, capping layers or interconnection layers is a key process that can be implemented together with NIL in a cost-effective large-area batch process. NIL has an additional advantage of providing a high surface quality that can significantly improve subsequent bonding of polymer devices. Surface roughness, total-thickness variation as well as warpage are usually lower than in devices fabricated by injection molding. In the following section, several well-suited bonding processes for sealing biotechnology devices are discussed (FIGURE 6).

FIGURE 6: Typical bonding options for biotechnology devices that are well suited in combination with NIL processes.

FIGURE 6: Typical bonding options for biotechnology devices that are well suited in combination with NIL processes.

A common requirement in biotechnology applications is optical transparency, at least from one side, since most devices rely on optical readouts. Glass is therefore often used as a capping layer for highly complex devices made of silicon. In such cases, anodic bonding can provide a high-quality hermetic seal, where bonding is achieved by high voltage and heat causing inter-diffusion of ions. Another process for joining glass or polymer devices is thermal bonding using high temperatures and pressures. Special attention has to be paid when using this technique for bonding polymer and, in particular, polymer micro-fluidic devices. Thermal bonding is performed by heating the substrate near or above the glass transition temper- ature, which softens the material. The additional pressure generates sufficient flow of polymer at the interface to achieve intimate contact and inter-diffusion of polymer chains. Pressure is removed after the substrate is cooled down to a specific value below the glass transition temperature. Un-optimized temperature and pressure can easily lead to deformation of microstructures. Plasma as well as UV and ozone treatment can be used to activate the polymer surface, which allows bonding at reduced temperatures and reduces the risk of deformation. Anodic and thermal bonding are interlayer-free processes and therefore do not introduce any additional material to the device.

Adhesive bonding is another process that found widespread use in sealing or encapsulating bio-technology devices. Many biocompatible adhesives are available today and high bond strength can be expected from this technique. Bonding with adhesives can be used to join many different materials. Often liquid adhesives are used, which can be cured thermally or by exposure to UV light. The latter offers a significant advantage that addresses another important issue in many pharmaceu- tical or diagnostic devices where bio-molecules have to be incorporated before sealing the device. UV-curing allows bonding at room-temperature whereas higher temperatures usually lead to denaturation or complete destruction of bio-molecules.

Adhesives usually have to be selectively deposited on the substrate, which can be achieved with μ-contact printing. Similar to bio-molecule printing, an adhesive can be trans- ferred onto the substrate according to the pattern of the stamp. In contrast, however, an adhesive can be spin coated onto a transfer plate, which is then brought into contact with the substrate. By releasing the transfer plate, the adhesive will remain on the heightened structures. This production process is an elegant solution for micro-fluidic devices where micro-channels stay free of adhesive without the need for alignment. With these methods the adhesive can be coated as a thin layer (typically on the order of several microns) with very good uniformity over large areas. Commercially available adhesive tapes offer another solution, which can be easily laminated onto the microfluidic chips either in the form of double-side-adhesive tapes or pressure-sensitive-tapes. By using this process, the tape covers the top of microfluidic channels and can alter chemical or physical parameters of the channels, which can then influence the fluidic behavior or biological function of the device. Due to the availability of a variety of different tapes, however, such influences can be addressed and eliminated in many applications.

Summary

Micro- and nanotechnology combined with biotechnology has the potential to revolutionize many areas of healthcare, agriculture and industrial manufacturing. The market for miniaturized bio-devices is rapidly growing with technologies becoming increasingly complex. For successful translation of these technologies into new products, the availability of fabrication tools is key. Today’s NIL equipment offers a well suited solution, where complexity in design does not necessarily add manufacturing cost. Together with sealing and bonding processes that are well aligned with these structuring techniques, limitations of current fabrication methods can be overcome to enable the production for next-generation biotechnology devices.

Further reading

T. Glinsner and G. Kreindl, “Nanoimprint Lithography,” in Lithography, M. Wang, Ed. InTech, 2010.
T. Glinsner, T. Veres, G. Kreindl, E. Roy, K. Morton, T. Wieser,
C. Thanner, D. Treiblmayr, R. Miller, and P. Lindner, “Fully automated hot embossing processes utilizing high resolution working stamps,” Microelectron. Eng., vol. 87, no. 5–8, pp. 1037–1040, May 2010.
G. Kreindl, T. Glinsner, and R. Miller, “Next-generation lithography: Making a good impression,” Nat. Photonics, vol. 4, no. 1, pp. 27–28, Jan. 2010.

By Christian G. Dieseldorff, Industry Research & Statistics Group at SEMI (September 6, 2016)

SEMI’s Industry Research and Statistics group has published its August update of the World Fab Forecast report. The report has served the industry for 24 years, observing and analyzing spending, capacity, and technology changes for all front-end facilities worldwide, from high-volume to R&D fabs.  SEMI’s latest data show increasing equipment spending, reaching 4.1 percent YOY in 2016 and 10.6 percent in 2017. Figure 1 (below) shows a forecast of  -2 percent decline from 2H2015 to 1H2016 and an 18 percent increase from 1H2016 to. 2H2016.

Figure 1: Fab Equipment Spending by Quarter

Figure 1: Fab Equipment Spending by Quarter

The largest growth drivers for the industry are mobile devices (including devices using SSDs), automotive, and soon anticipated to be IoT, with these applications, in many cases, requiring 3D NAND and Logic 10nm/7nm.

The SEMI report indicates that the two industry segments leading to the biggest increase in 2H16 are Foundry (29 percent) and Memory (21 percent).  Growth in Memory is driven by a significant increase in 3D NAND spending in 2016. Comparing 2016 to 2017, Foundry growth remains quite steady, with a 14 percent increase in 2016 and 13 percent in 2017.

Companies like Samsung, Micron, Flash Alliance, Intel, and SK Hynix drive Memory growth with 3D NAND to an astounding 152 percent increase in 2016 and 29 percent in 2017. However, utilization of all this equipment is still low in 2016 but is expected to increase in 2017.

Looking at other product segments, DRAM equipment spending is expected to decline by 31 percent in 2016 and then recover slightly with 2 percent growth in 2017. Power devices also show strong growth with 25 percent in 2016 and 16 percent in 2017. The Analog segment will slump by -15 percent in 2016 but increase by 20 percent in 2017. Similarly, MPU will drop -20 percent in 2016 and then is expected to increase by 48 percent in 2017.

Comparing spending by region in 2016, SE Asia shows the largest growth, with 157 percent in 2016, driven mainly by 3D NAND (see Figure 2).

China, in third place for overall spending, shows 64 percent growth for 2016 primarily due to 3D NAND by non-Chinese companies, closely followed by Foundry companies. Although the largest spenders in China currently are overseas device companies, China-based chipmakers are starting to pick up investment activity.

Figure 2: Fab Equipment Spending by Region

Figure 2: Fab Equipment Spending by Region

By contrast, the largest growth rate in 2017 is in Europe/Mideast with about 60 percent which is mainly due to ramping of 10nm facilities. Korea is in second place for total spending, mainly driven by Samsung’s investment in DRAM and Flash. Japan in third place driven by Flash Alliance (3D NAND).

The World Fab Forecast report provides more detailed information by company and fab for construction spending, equipment spending and capacities by region and product type.  Since the last publication in May 2016, the SEMI research team has made over 330 changes to 300 facilities/lines. This includes 27 new records and 18 records closed.

For information about semiconductor manufacturing for the remainder of 2016 and in 2017, and for details about capex for construction projects, fab equipping, technology levels, and products, order the SEMI World Fab Forecast Report. The report, in Excel format, tracks spending and capacities for over 1,100 facilities including over 82 future facilities, across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities.  Using a bottoms-up approach methodology, the SEMI Fab Forecast provides high-level summaries and graphs, and in-depth analyses of capital expenditures, capacities, technology and products by fab.

The SEMI Worldwide Semiconductor Equipment Market Subscription (WWSEMS) data tracks only new equipment for fabs and test and assembly and packaging houses.  The SEMI World Fab Forecast and its related Fab Database reports track any equipment needed to ramp fabs, upgrade technology nodes, and expand or change wafer size, including new equipment, used equipment, or in-house equipment. Also check out the Opto/LED Fab Forecast. Learn more about the SEMI fab databases at: www.semi.org/MarketInfo/FabDatabase and www.youtube.com/user/SEMImktstats

Global growth in the number of “things” connected to the Internet continues to significantly outpace the addition of human users to the World Wide Web. New connections to the “Internet of Things” are now increasing by more than 6x the number of people being added to the “Internet of Humans” each year. Despite the increasing number of connections, IC Insights has trimmed back its semiconductor forecast for Internet of Things system functions over the next four years by about $1.9 billion, mostly because of lower sales projections for connected cities applications (such as smart electric meters and infrastructure). Total IoT semiconductor sales are still expected to rise 19% in 2016 to $18.4 billion, as shown in Figure 1, but the updated forecast first presented in the Update to the 2016 IC Market Drivers Report reduces the market’s compound annual growth rate between 2014 and 2019 to 19.9% compared to the original CAGR of 21.1%. Semiconductor sales for IoT system functions are now expected to reach $29.6 billion in 2019 versus the previous projection of $31.1 billion in the final year of the forecast.

Figure 1

Figure 1

The most significant changes in the new outlook are that semiconductor revenues for connected cities applications are projected to grow by a CAGR of 12.9% between 2014 and 2019 (down from 15.5% in the original forecast) while the connected vehicles segment is expected to rise by a CAGR of 36.7% (up from 31.2% in the previous projection). IoT semiconductor sales for connected cities are now forecast to reach $15.7 billion in 2019 while the chip market for connected vehicle functions is expected to be $1.7 billion in 2019, up from the previous forecast of $1.4 billion.

For 2016, revenues of IoT semiconductors used in connected cities applications are expected to rise 15% to about $11.4 billion while the connected vehicle category is projected to climb 66% to $787 million this year.

Sales of IoT semiconductors for wearable systems have also increased slightly in the forecast period compared to the original projection.  Sales of semiconductors for wearable IoT systems are now expected to grow 22% to about $2.2 billion in 2016 after surging 421% in 2015 to nearly $1.8 billion following Apple’s entry into the smartwatch market in 2Q15.  The semiconductor market for wearable IoT applications is expected to be nearly $3.9 billion in 2019.  Meanwhile, the forecast for IoT semiconductors in connected homes and the Industrial Internet categories remains unchanged.  The connected homes segment is still expected to grow 26% in 2016 to about $545 million, and the Industrial Internet chip market is forecast to increase 22% to nearly $3.5 billion.  The semiconductor forecast for IoT connections in the Industrial Internet is still expected to grow by a CAGR of 25.7% to nearly $7.3 billion in 2019 from $2.3 billion in 2014.

Leading sensors and actuators companies will present the latest trends at the upcoming SEMI European MEMS Summit in Stuttgart on 15-16 September 2016.  Following 2015’s highly successful debut in Milano, the SEMI European MEMS Summit this year moves to Stuttgart. Over 250 attendees, including the industry’s global thought leaders, will discuss challenges, opportunities, and solutions.  A full capacity exhibition with representatives from the full value chain will complement the conference.

The event’s keynote presentations will feature:

  • Bosch Sensortec:  “Smart Connected MEMS Sensors – Enabler for the IoT” by Udo Gomez, CTO
  • STMicroelectronics:  “MEMS Sensors and Actuators – Opportunities and Challenges” by Benedetto Vigna, EVP and GM
  • Qorvo: “BAW and the ‘Edge of Tomorrow’ in Wireless Communication: Innovate, Ramp. Repeat” by Robert Aigner, Senior Director
  • AMKOR: “Sensor in Package – Standard Package Platform for Sensor Fusion and IoT” by Adrian Arcedera, VP

In addition to keynotes, the MEMS Summit’s exceptional speaker line-up includes presentations from ams AG, Bosch, Coventor, Fraunhofer IPMS, GLOBALFOUNDRIES, IHS, Invensas, NXP, Roland Berger, STMicroelectronics, Teledyne DALSA, and Yole Developpement.  The event’s main sessions will address Market and Business, Technology, Internet of Things, Automotive, Consumer, and Wearable Electronics. Promising start-ups Innoluce, USound, Polight and Enerbee will pitch their innovative solutions in a brand new session.

The Summit benefits from strong support from within the industry including Platinum Sponsor Bosch Sensortec; Gold Sponsors ASE Group, STMicroelectronics, and SUSS MicroTec; Silver Sponsors Applied Materials, EV Group, LAM Research, and SPTS. Other sponsors include AMKOR Technology, JSR Micro, Materion, Trymax, and VAT.

For more information and registration, please visit www.semi.org/eu/EuropeanMEMSSummit

Driven by rising demand for thinner wafers and stronger die, dicing technology is evolving.

“Reaching more than US$100 million in 2015, the dicing equipment market will double by 2020-2021,” announced Yole Développement (Yole) (Source: Thin Wafer Processing & Dicing Equipment Market report, Yole Développement, May 2016). Yet at the same time thin wafers are creating new challenges of significant interest in the dicing equipment industry such as die breakage, chipping, low die strength, handling issues and dicing damage.

Yole’s Technology & Market Analyst, Amandine Pizzagalli, is pleased to give her vision of the dicing technologies, market forecast and competitive landscape during the webcast “Plasma Dicing for Next Generation Ultra Small and Ultra Thin Die” organized by SPTS Technologies, an Orbotech company. This webcast will take place on September 14. To register click PLASMA DICING.

Today, the most common dicing technology applied across memory, logic, MEMS, RFID and power devices is mechanical dicing, also known as blade dicing. 

“Blade dicing represents more than 80% of the dicing brand equipment business in terms of dicing tools and stealth dicing 20%,” explained Amandine Pizzagalli from Yole.

However, companies are showing a growing need for thinner wafers and smaller devices in general and Yole sees a trend towards adopting alternative dicing technologies. These include stealth dicing and plasma dicing based on deep reactive ion etching technology. Yole’s analysts details the plasma dicing market per application:

  • Memory specifically has predominantly relied on a combination of blade and laser dicing applied together to singulate complex stacks. Using only blade dicing on top layers leads to delamination issues because of the high metal density. However, it’s difficult to safely singulate 50 µm thin wafers even with laser dicing and this could allow plasma dicing to enter this area. “Even if the philosophy of the designers is changing, memories manufacturers are still the most conservative”, details Amandine from Yole.
  • In MEMS devices blade dicing is largely applied for singulating the ASIC, capping and MEMS sensors. However, exposure to water from the process can contaminate some sensors and destroy sensitive MEMS structures, example in MEMS microphones. In such cases, stealth dicing has been already adopted in large volume production. Plasma dicing has also been adopted in low volume production today for MEMS devices.
  • In parallel, the RFID is a growing market segment: plasma dicing is already in production but the adoption rate is still small. According to Yole’s analysts, a fast growth for plasma dicing especially for RFID devices is expected. Indeed plasma dicing has the ability to reduce die fragility, boost die strength, increase the number of chips per wafer and thus reduce Cost Of Ownership of equipment overall.

“As die sizes continue to shrink, singulation by plasma etching offers considerable benefits for die quality and strength as compared to traditional dicing solutions,” stated Richard Barnett, Etch Product Manager at SPTS Technologies, an Orbotech company. And he adds: “Ultra-small and ultra-thin devices like RFID chips or fragile devices like MEMS are more susceptible to damage from the vibration and chipping caused by mechanical saws, or from the heat caused by lasers.”

Under its new thin wafer & dicing equipment market report, the “More than Moore” market research and strategy consulting company is analyzing the competitive landscape: the current market is today controlled by DISCO and Accretech, which today claim market shares of almost 80% focused on blade dicing and stealth dicing, respectively:

  • DISCO leads the blade dicing market and offers a large product portfolio including stealth dicing and laser ablation. They have also a partnership with Plasma-Therm which gives them access to the complete range of dicing technologies: Yole’s analysts had the opportunity to discuss the market, its evolution and challenges with Abdul Lateef, CEO, and Thierry Lazerand, Business Development Director, of Plasma-Therm. To discover this interview, click Plasma-Therm solution.
  • Accretech leads the stealth dicing market offering.
  • ASM Pacific is a strong player in laser ablation, especially because their process does not lead to contamination issues compared to standard laser ablation technology.

During SPTS Technologies webcast, Amandine Pizzagalli will describe the today’s competitive landscape of the key dicing technologies across MEMS devices, power devices, CMOS image sensors, and RFID devices, highlighting her major findings on the evolution and trends of the dicing technologies.

These results are part of Yole’s report entitled Thin Wafer Processing & Dicing Equipment Market. Under this analysis, Yole presents a comprehensive overview of the key dicing technologies benchmarks in terms of feature requirements. This report includes insights into the number of tools, broken down by wafer size, by application and by dicing technology… A full description of the report is available on i-micronews.com, manufacturing reports section.

In parallel, SPTS Technologies speaker, Richard Barnett also proposes an overview of the latest advances in plasma dicing. During his talk, Richard will highlight the latest data illustrating how processing routes affect die strength, share experiences with different types of tapes and other die features such as solder balls. SPTS Technologies will share details of the latest equipment which is now available for plasma dicing wafers up to 300mm (on 400mm tape frames) for full production applications.

Technavio analysts forecast the global radio frequency (RF) IC market to grow at a CAGR of nearly 12% during the forecast period, according to their latest report.

The research study covers the present scenario and growth prospects of the global RF IC market for 2016-2020. To calculate the market size, the report considers revenue generated from the shipment of RF ICs globally.

Asia-Pacific (APAC) is expected to be the major demand generating region and is expected to be the major contributor to the market during the forecast period. This is because of the growing demand for RF IC’s in the consumer electronics segment and increasing need for logic and multipoint control units (MCUs) in the automotive segment in the region. The presence of major buyers such as Samsung Electronics, LG Electronics, and Toyota Motor led to the increasing consumption of RF ICs in this region.

Increased demand for electronics from countries such as China and India drives the market in APAC. China’s massive demand for electronics exceeds the production levels in the country. Despite the phenomenal growth, only a small share of semiconductors’ demand in China is actually produced domestically.

Technavio hardware and semiconductor analysts highlight the following four factors that are contributing to the growth of the global RF IC market:

  • Deployment of next-generation LTE wireless networks
  • Advent of carrier aggregation
  • Use of new materials for manufacture of RF devices
  • Growing traction of RF technology for remotes

Deployment of next-generation LTE wireless networks

The increase in data consumption has resulted in the adoption of next-generation LTE networks such as 3G and 4G. The growing consumption has resulted in the growth of commercial networks, making LTE the fastest developing mobile technology. Though specific bands have been designated for LTE, they vary from carrier to carrier.

Sunil Kumar Singh, one of the lead embedded systems research analysts at Technavio, says, “LTE-based computing devices allow consumers to upload and download music and photographs, play games online with minimum signal interference, and watch online TV shows uninterrupted. This has created an opportunity for manufacturers of transceiver chips to offer solutions that address the consumer needs for faster and smoother access to mobile data.”

Advent of carrier aggregation

Carrier aggregation results in an increase in RF content in smartphones and tablets. Carrier aggregation combines a wide range of the available spectrum at the same time to increase download and upload speeds. Though carrier aggregation is not a widespread concept currently, it has already been implemented in South Korea.

“The RF signals are transmitted and received using transceiver chips, which are integrated into RF modules as a component. The advent of carrier aggregation will compel transceiver chip manufacturers to improve and upgrade their offerings according to the requirements of the OEMs,” adds Sunil.

Use of new materials for manufacture of RF devices

The manufacture of RF devices such as power amplifiers incurs huge costs for vendors because of the high cost of raw materials. This has resulted in vendors searching for new materials that can reduce the expenditure incurred in the manufacturing process of RF devices. The development of new materials such as GaAs and indium phosphide (InP) will ramp up the production of RF power amplifiers. GaAs-RF power amplifiers use high saturated electron velocity and electron mobility to function, especially at high frequencies.

The new materials display a superior level of integration with other electronic components such as switches being fabricated in silicon on sapphire or other silicon on insulator processes. While, SAW filters and duplexers are being fabricated with piezo-effective materials such as lithium tantalate and lithium niobate. Therefore, companies such as Murata and TriQuint are trying to use cost-effective and superior-performing materials to manufacture RF power amplifiers.

Growing traction of RF technology for remotes

RF remotes accounted for 13% of the global remote market in 2015 and are expected to witness increased adoption during the forecast period, accounting for a little more than 20% by 2020. One of the major factors contributing to it is the decrease in the development cost of RF technology-based products. Moreover, RF remotes are expected to gain traction in the market because of advantages compared with IR remotes. RF remotes have lower power consumption, longer range, and do not need line-of-sight to control the device.

The RF remotes segment will witness high demand considering the demand for advanced TVs such as 3D smart TVs and 4k UHD smart TVs. Consumers demand visually aesthetic TVs that deliver a unique experience in terms of picture quality, viewing angle, and internet connectivity. With such advanced features, remote manufacturers are also manufacturing advanced and sophisticated RF remotes. RF has benefits such as out-of-line and sight communication and control, two-way communication, incorporation of gesture recognition and voice controls, and enhanced bandwidth compared to IR.

The key vendors are:

  • Infineon Technologies
  • Qualcomm
  • Avago Technologies
  • Qorvo
  • Skywork Solutions
  • NXP Semiconductors
  • STMicroelectronics
  • Renesas Electronics

The researchers in Jonathan Claussen’s lab at Iowa State University (who like to call themselves nanoengineers) have been looking for ways to use graphene and its amazing properties in their sensors and other technologies.

Iowa State engineers are developing real-world, low-cost applications for graphene. CREDIT: Photos by Christopher Gannon/Iowa State University.

Iowa State engineers are developing real-world, low-cost applications for graphene. Credit: Photos by Christopher Gannon/Iowa State University.

Graphene is a wonder material: The carbon honeycomb is just an atom thick. It’s great at conducting electricity and heat; it’s strong and stable. But researchers have struggled to move beyond tiny lab samples for studying its material properties to larger pieces for real-world applications.

Recent projects that used inkjet printers to print multi-layer graphene circuits and electrodes had the engineers thinking about using it for flexible, wearable and low-cost electronics. For example, “Could we make graphene at scales large enough for glucose sensors?” asked Suprem Das, an Iowa State postdoctoral research associate in mechanical engineering and an associate of the U.S. Department of Energy’s Ames Laboratory.

But there were problems with the existing technology. Once printed, the graphene had to be treated to improve electrical conductivity and device performance. That usually meant high temperatures or chemicals – both could degrade flexible or disposable printing surfaces such as plastic films or even paper.

Das and Claussen came up with the idea of using lasers to treat the graphene. Claussen, an Iowa State assistant professor of mechanical engineering and an Ames Laboratory associate, worked with Gary Cheng, an associate professor at Purdue University’s School of Industrial Engineering, to develop and test the idea.

And it worked: They found treating inkjet-printed, multi-layer graphene electric circuits and electrodes with a pulsed-laser process improves electrical conductivity without damaging paper, polymers or other fragile printing surfaces.

“This creates a way to commercialize and scale-up the manufacturing of graphene,” Claussen said.

The findings are featured on the front cover of the journal Nanoscale‘s issue 35. Claussen and Cheng are lead authors and Das is first author. Additional Iowa State co-authors are Allison Cargill, John Hondred and Shaowei Ding, graduate students in mechanical engineering. Additional Purdue co-authors are Qiong Nian and Mojib Saei, graduate students in industrial engineering.

Two major grants are supporting the project and related research: a three-year grant from the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 11901762 and a three-year grant from the Roy J. Carver Charitable Trust. Iowa State’s College of Engineering and department of mechanical engineering are also supporting the research.

The Iowa State Research Foundation Inc. has filed for a patent on the technology.

“The breakthrough of this project is transforming the inkjet-printed graphene into a conductive material capable of being used in new applications,” Claussen said.

Those applications could include sensors with biological applications, energy storage systems, electrical conducting components and even paper-based electronics.

To make all that possible, the engineers developed computer-controlled laser technology that selectively irradiates inkjet-printed graphene oxide. The treatment removes ink binders and reduces graphene oxide to graphene – physically stitching together millions of tiny graphene flakes. The process makes electrical conductivity more than a thousand times better.

“The laser works with a rapid pulse of high-energy photons that do not destroy the graphene or the substrate,” Das said. “They heat locally. They bombard locally. They process locally.”

That localized, laser processing also changes the shape and structure of the printed graphene from a flat surface to one with raised, 3-D nanostructures. The engineers say the 3-D structures are like tiny petals rising from the surface. The rough and ridged structure increases the electrochemical reactivity of the graphene, making it useful for chemical and biological sensors.

All of that, according to Claussen’s team of nanoengineers, could move graphene to commercial applications.

“This work paves the way for not only paper-based electronics with graphene circuits,” the researchers wrote in their paper, “it enables the creation of low-cost and disposable graphene-based electrochemical electrodes for myriad applications including sensors, biosensors, fuel cells and (medical) devices.”