Category Archives: MEMS

Problems frequently arise as a result of an incomplete or absent formal risk assessment when processes are modified or new materials introduced.

BY ALAN IFOULD and ANDREW CHAMBERS, Edwards, North Somerset, UK

The sub-fab is home to the many pumps and abatement systems that not only help to create the pristine environments required in the process chambers of the numerous tools in the cleanroom, but also handle the exhaust gases and by-products generated by the manufacturing process. In this respect, the efficiency and efficacy of sub-fab operations directly affect the availability, productivity, total operating cost and yield of the manufacturing fab above. Perhaps more importantly, in addition to supporting the process vacuum, equipment in the sub-fab is designed to render cleanroom process wastes harmless and ready for safe disposal or, if appropriate, release into the environment. As such, they are vital to protecting the safety of the people working in the fab as well as those living and working in the surrounding community, and ultimately, all of us who share that environment. The very nature of the process materials and reaction byproducts handled in the sub fab, which may be variously corrosive, toxic, pyrophoric, flammable or environmentally damaging, creates significant risks, especially for those who must operate and maintain the equipment located there. Moreover, as device manufacturing becomes more complex, with the introduction of new materials, new precursors and new processes, the risk of mistakes with potentially catastrophic consequences in both human and financial terms will only increase.

While ultimate responsibility for personnel safety in the sub-fab lies with the fab operator, equipment manufac- turers have a part to play by optimizing their products not only for efficient, effective and reliable operation, but also by ensuring any risks associated with operation, maintenance and repair are assessed and minimised to the greatest extent possible.

There is often a strong focus on technical performance and cost attributes when selecting sub-fab equipment. However, processes and procedures to ensure optimum operation and continuous mitigation of risks to service personnel are equally critical; these demand the devel- opment of clear and effective operating procedures and guidelines – in industry jargon “best known methods” or BKMs – to ensure the equipment achieves its full performance potential and safety integrity maintained. The manufacturers of sub-fab equipment are perhaps in the best position to define these guidelines since they will typically have acquired an understanding of the risks posed by hazardous materials on a case-by-case basis during the course of system optimization. Frequent development of BKMs is undertaken in collaboration with the process tool manufacturer or early adopters of the process. However, defining operating and maintenance methods and procedures that are truly the best known requires a commitment to doing so at the highest levels of corporate management, and a formal process of reporting, analysis, synthesis and dissemination throughout the equipment support community.

A key component of any BKM program is the active participation of the equipment manufacturer’s service personnel who are responsible for installing, commissioning and maintaining the equipment and are also likely to have first- hand knowledge and experience of the potential hazards. Since service personnel are invariably in the front-line when safety incidents occur, they are well motivated to contribute since they themselves are often at greatest risk, and it is essential that their contribution is incorporated into product development programs to complement the technical performance with assured safety and reliability.

Even a cursory search of the internet will quickly reveal numerous examples of fab and sub-fab incidents. Amongst the lessons that can be taken from these events is that the risk management process and the resulting controls have to cover every foreseeable circumstance across the equipment lifecycle: installation, commissioning, operation, servicing and maintenance. Notable recent serious accidents include:

– March 2014 – A fab worker dies after a carbon dioxide leak

– January 2013 – One worker dies and four others are hospitalized after a hydrofluoric acid leak at a manufacturing facility

– September 2013 – A fire at major memory fab results in the closure of the facility with losses estimated in the range of $1 billion and a measurable impact on global DRAM pricing

– August 2012 – A security guard and 3 firefighters are hospitalized when a fire occurs in the exhaust ducts of a photovoltaic manufacturing laboratory in Singapore. The entire facility is shut down for weeks and 35 workers are laid off

These were events with consequences visible and far-reaching enough to make the national and international news. However, experience indicates that smaller events, often with narrowly-averted disastrous consequences, occur on a much more frequent basis with adverse impacts on fab productivity. These events are typically not widely broadcast, thereby limiting the community learning that might otherwise take place.

In respect of process exhausts, three types of hazard recur repeatedly as manufacturing processes evolve and new process materials are introduced: condensation of reactive chemical precursors or reaction products, corrosion due to condensation of acidic materials, and pipe blockage due to accumulation of condensate in significant volume. The images in FIGURES 1-3 show a few examples.

FIGURE 1. (left) Condensed explosive polysiloxane material in an epitaxial deposition system process foreline, (middle and right) CVD exhaust pipe destroyed by explosion of condensed process by-product.

FIGURE 1. (left) Condensed explosive polysiloxane material in an epitaxial deposition system process foreline, (middle and right) CVD exhaust pipe destroyed by explosion of condensed process by-product.

FIGURE 2. (left) Acidic TEOS-based polymer with a pH of approximately 1, (middle) Condensed corrosive Br2-based liquid, (right) Exhaust pipe damaged by exposure to condensed acidic material.

FIGURE 2. (left) Acidic TEOS-based polymer with a pH of approximately 1, (middle) Condensed corrosive Br2-based liquid, (right) Exhaust pipe damaged by exposure to condensed acidic material.

FIGURE 3. Exhaust blockage caused by various materials (left) AlCl3 from a metal etch process, (middle) NH4Cl from an LPCVD process, (right) Unknown material deposited in the exhaust of a metal carbide CVD process.

FIGURE 3. Exhaust blockage caused by various materials (left) AlCl3 from a metal etch process, (middle) NH4Cl from an LPCVD process, (right) Unknown material deposited in the exhaust of a metal carbide CVD process.

In many cases, the cause of the risk is understood and solutions exist, but problems frequently arise as a result of an incomplete or absent formal risk assessment when processes are modified or new materials introduced. For example, condensation of potentially dangerous or explosive materials can usually be prevented by carefully controlling the temperature of the exhaust gas through the pipework and pumps. Pipe heating systems are widely available for forelines and exhaust pipes, and pumps can be designed with internal thermal management, but if the risk is not properly assessed, the appropriate controls will not be put in place. Furthermore, while a risk analysis may conclude that exhaust pipe heating is required in a specific case, it should also recognize that key to its effective implementation is the avoidance of cool spots, particularly at bends and junctions. Even a small local drop in temperature can create a hazardous situation despite the application of what is widely perceived as an effective protective measure – a subtle effect, but one with which field service personnel have become familiar through hard-won experience. At a practical level, if each process exhaust is designed in isolation, such considerations make their design and implementation a time-consuming and labor-intensive process. However, as noted in a previous publication [1] the ability to maintain effective thermal control throughout the exhaust stream can be enhanced by integrating the vacuum pumping and point- of-use abatement functions together with the interconnecting exhaust pipes into a single unified system. In this way the pipe routing can be standardized to permit optimization of the exhaust pipe heating installation for each specific process and to avoid the need for customization in the field. Integration and standardization also permits careful optimization of pump capacities and pipe diameters and routing to minimize power consumption and maximize destruction or removal efficiency (DRE). Finally, whether consid- ering an integrated system or not, secondary enclosures for pumps, abatement and exhaust pipes provide an additional layer of protection by permitting hazardous materials to be routed away from personnel in the event of an unintended release.

In some cases, it is not possible to prevent the accumu- lation of hazardous materials. It then becomes essential to monitor the deposition and remove it through periodic maintenance procedures. For example, blockage can be monitored by measuring the pressure drop over the length of the exhaust pipe – as material accumulates in the pipe the pressure drop increases. By monitoring for blockage, operators can ensure that the system is cleaned before its performance impacts production and at the same time avoid cleaning more frequently than required. Integrated vacuum and abatement systems often combine monitoring capabilities with automated software to alert operators of the need for maintenance.

While problems associated with accumulation of materials in process exhausts is arguably the most frequently encountered hazard faced by sub-fab maintenance personnel, another widely applied risk mitigation strategy, particularly for flammable process materials, is dilution below their lower flammability limit (LFL) with an inert gas such as nitrogen. However, it is important to understand the nature of the chemical processes occurring in the deposition chamber and to base the dilution calculation on the composition and volume of the effluent gas rather than the precursor. For example, TEOS is a precursor gas widely used in the chemical vapor deposition of silicon oxide films. The lower temperature needed for the CVD process and the absence of aggressive reaction products are the main advan- tages of using TEOS compared with traditional precursors such as silane and the mechanical and electrical properties of Si02 films deposited from TEOS are also very good. The decomposition products of TEOS in the gas phase in the absence of oxygen include organic fragments (ethanol, ethanal, ethene, methane, carbon monoxide), and in the presence of oxygen include water vapour, carbon dioxide, ethanal and methanol [2], many of which are flammable. A dilution calculation based on the amount of TEOS entering the chamber rather than the volume of decompo- sition products exiting the chamber could easily lead to an underestimate of the required volume of diluent and the presence of a flammable mixture in the exhaust pipe in some circumstances. Once again, a rigorous risk assessment is required to identify such potential hazards and put corrective measures in place where needed.

Risk assessment and communication

It should be clear from the preceding discussion that a detailed technical understanding of semiconductor manufacturing processes and materials and their impact on sub-fab equipment is a prerequisite for safe and efficient pumping and abatement of process exhaust. In particular, ensuring the safety of sub fab operations requires a formal process for risk assessment. Once determined, safe operating proce- dures must be codified and effectively communicated to field personnel, and a mechanism must exist to update procedures based on feed-back from the field. FIGURE 4 is taken from the Risk Assessment Procedure [3] used at Edwards (adapted from Semi S10) and illustrates the Risk Rating Table, a matrix by which risks are evaluated and appropriate responses determined.

Once risks are assessed the information must be effec- tively communicated to users and field service personnel. To ensure appropriate dissemination of required information, Edwards publishes Application Notes for equipment users and Safety Application Procedures (SAP) for service engineers.

Conclusion

The hazardous nature of many of the materials present in the semiconductor manufacturing process creates significant safety risks for fab personnel and others living or working near the fab, and financial risks for manufacturers and investors. Managing those risks takes more than good intentions and common sense precautions. It requires a detailed and continuously updated technical understanding of the processes and materials based on broad experience across many different types of applications, and ideally, partnership with process tool manufacturers during development and optimization of new processes. As in other high risk industries – nuclear, aviation, automotive, healthcare, oil, rail and military – best practice safety and risk management is heavily influ- enced by equipment manufacturers, who are in the best position to understand the capabil-
ities of their products across a wide range of applications.

Ultimately the fab management team own the responsibility for managing risk and safety with the highest levels of corporate respon- sibility. Semiconductor equipment manufacturers, and in particular, manufacturers of pumping and abatement systems that handle and safely dispose of hazardous materials, have an invaluable supporting role to play with their continuous accumulation of know-how and formal processes for risk assessment, including a mechanism for distributing safety information to, and incorporating feedback from, the field.

References

1. Andrew Chambers, Managing hazardous process exhausts in high volume manufacturing, Solid State Technology, 2016 Issue 2
2. Van der Vis, M.G.M., et al, The thermodynamic properties of tetrae- thoxysilane (TEOS) and an infrared study of its thermal decomposition, Colloque C3, supplement au Journal de Physique 11, Volume 3, aofit 1993, http://dx.doi.org/10.1051/jp4:1993309
3. Adapted from Semiconductor Equipment and Materials International (SEMI) standard S-10, http://www. semi.org

A major research institution has placed orders for two Advanced Vacuum plasma processing systems that will provide etch and deposition capabilities to be used in nanoelectronics research and development.

The order by imec, a Belgium-based, global nanoelectronics R&D center, is for two Advanced Vacuum Apex SLR systems. One will be configured with an inductively-coupled plasma (ICP) source, with the other configured for high-density plasma chemical vapor deposition (HDPCVD). Apex SLR® systems incorporate a field-proven, high-density plasma source that was developed by Plasma-Therm, parent company of Advanced Vacuum, for its widely used Shuttlelock® line of plasma tools.

Imec is an internationally renowned research institute that works with global partners on many types of nanoelectronics-based innovation. Imec is headquartered in Belgium and has offices in the Netherlands, Taiwan, USA, China, India, and Japan.

Dr. David Lishan, Director, Technical Marketing for Plasma-Therm, noted that “Plasma-Therm has a long history supporting R&D institutions, and this order continues that tradition. We are pleased that leading R&D organizations rely on Plasma-Therm technology for developing new processes and creating smaller, faster, and more efficient devices.”

“It’s gratifying that these Apex SLR systems were selected by imec’s scientists to help develop industry-relevant technology solutions,” Dr. Lishan said. Recent imec innovations include disposable photonics biosensors, flexible electronics, hyperspectral imaging devices, and 3D device integration (advanced packaging) processes.

Advanced Vacuum’s Apex SLR is a highly versatile, small-footprint plasma processing system. Apex SLR ICP is capable of etching a wide range of materials used in semiconductor devices and nanotechnology, while the Apex SLR HDPCVD enables relatively low-temperature plasma deposition of high-quality thin films. These films can include optical coatings, semiconductor device passivation layers, and other materials used in nanoelectronic fabrication and other applications with limited processing thermal budget.

Cypress CEO and President Hassane El-Khoury

Cypress CEO and President Hassane El-Khoury

Cypress Semiconductor Corporation (NASDAQ:  CY) today announced that Hassane El-Khoury has been named its president, chief executive officer, and a member of its board of directors, and that Ray Bingham’s current role as chairman of the board has been expanded to executive chairman, providing him with a day-to-day role in support of the CEO focused externally on customers and investment opportunities.

“The goal of our comprehensive internal and external executive search was to identify a CEO who would drive the transformation of Cypress, expand our leadership position in embedded systems and enhance our focus on revenue and earnings growth and long-term shareholder value,” said Bingham, a 30-year veteran of the semiconductor industry who sits on numerous high-tech boards of directors in addition to Cypress. “Among the many interested and qualified candidates we interviewed, El-Khoury emerged as the clear executive leader to deliver on Cypress’s enormous potential and unlock its value for customers and investors. He has demonstrated strong leadership and judgment over the past nine years as a senior executive at Cypress, heading up some of the company’s most innovative and successful businesses. He is an agent of change who brings to this position an extensive knowledge of our target markets and a mindset focused on customer value and profitable growth.”

“Cypress is at an inflection point,” said El-Khoury, who played a key role in Cypress’s successful integration with Spansion over the last year and a half and its more recent acquisition of Broadcom’s Internet of Things (IoT) business. “We’ve architected our company to become more valuable to our embedded-systems customers, significantly expanding our portfolio of high-value solutions in growth markets such as automotive, industrial, consumer electronics and the IoT. I am thrilled and humbled to lead Cypress into the future as we expand upon our position as the supplier of choice for the world’s most innovative embedded-systems customers and partners.”

Before joining Cypress in 2007, El-Khoury served in various roles with Continental Automotive Systems in the U.S., Germany and Japan. Prior to Continental, he earned his bachelor’s of science degree in electrical engineering (BSEE) from Lawrence Technological University in Michigan and his master’s degree in engineering management from Michigan’s Oakland University.

Bingham served as the non-executive chairman of Cypress’s Board of Directors from its merger with Spansion in March 2015 to the present. He serves on the boards of high-tech companies including Oracle Corporation, he is the chairman of the board of Flex (formerly Flextronics), and he has served as the managing director of General Atlantic LLC, a technology-focused global private investment firm with offices in Silicon Valley. From 1993-2005, Bingham served in leadership positions with Cadence Design Systems, Inc., including president and chief executive officer and executive chairman. His executive experience provides Cypress with the critical perspective of someone familiar with all facets of an international enterprise.

Concurrent with these changes, as planned, former Cypress CEO T.J. Rodgers has resigned from Cypress and the Cypress board. “T.J. created a company with the resiliency to stand up to more than 34 years of change in the semiconductor industry, and one that is positioned for considerable future success,” El-Khoury said. “On behalf of all of our employees around the world, we would like to thank T.J. for his contributions and dedication to Cypress.”

SEMI today announced that SEMICON Japan 2016, at Tokyo Big Sight on December 14-16, has increased exhibition and programming to keep pace with high-growth semiconductor segments in Japan. SEMICON Japan, celebrating its 40th anniversary, is the leading electronics event in Japan, with more than 700 exhibitors and 35,000 attendees.

With the world’s largest installed fab capacity of over 4.1 million (200mm equivalent) wafers per month and its diverse product mix, Japan is well-positioned to meet the increasing demands of the new world of electronics – from innovations in mobile technologies to the growing “World of IoT” devices.  SEMICON Japan 2016 connects the players and companies across the electronics manufacturing supply chain by facilitating communications and partnerships. Highlights of the exhibition area include:

  • Themain exhibit zone includes a Front-end Process zone and a Back-end/Materials Process zone.
  • “World of IoT (Internet of Things)”, a “show-within-a-show,” is where semiconductor manufacturing intersects IoT applications including wearable, health care, medical, automotive, and more. The World of IoT this year newly expands its scope to include flexible hybrid electronics (FHE), an essential enabling technology for IoT applications. Exhibiting companies include Japanese flexible and printed electronics companies from key institutes and associations for the industry area.
  • The Sustainable Manufacturing Pavilion, features solutions for the expanding IoT market driving 200mm lines; exhibitors include used and refurbished equipment, cleanroom-related, environmental safety, and more.
  • The Manufacturing Innovation Pavilion showcases innovations for leading-edge lower-cost semiconductor devices; exhibitors include advanced lithography, 2.5D/3D-IC, innovative manufacturing systems, specialty materials, OLED/LED/PE manufacturing equipment and materials.
  • Innovation Village, an interactive exposition showcase arena. Exhibitors are early-stage startups seeking funding, partners, and media exposure in the domain of electronics, materials, IT, tele-communications, bio, med-tech, environment, security or hardware.

For complete information of exhibits and programs, visit www.semiconjapan.org/en.

 

Recognizing the massive growth potential of micro-electro-mechanical systems (MEMS) and sensors in Internet of Things (IoT) applications, MEMS & Sensors Industry Group (MSIG) will hold its third annual MEMS & Sensors Industry Group Conference Asia in Shanghai, China on September 13-14, 2016. Held in partnership with Shanghai Industrial Technology Research Institute (SITRI) and co-located with SENSOR CHINA, “The Internet of MEMS and Sensors Today and the Internet of TSensors Tomorrow” is a two-day conference focused on near- and long-term opportunities for MEMS and sensors in the IoT. MSIG and its members will also participate in a two-day exposition at SENSOR CHINA.

The IoT market is expanding rapidly, presenting huge market opportunities for MEMS and sensors. According to IHS Technology, the IoT market will grow from 15.4 billion devices in 2015 to 75.4 billion in 2025.

That growth has caught the attention of the global MEMS and sensors supply chain: “MEMS and sensors are critical to IoT devices,” said Karen Lightman, executive director, MEMS & Sensors Industry Group. “From smartphones that monitor air quality and agricultural sensors that manage irrigation to smart city applications that monitor structural health, adapt street lights to weather and light conditions, and enable smart roads, MEMS and sensors allow IoT devices to measure, monitor, sense and interact with our always-changing environment.”

Ms. Lightman added, “On September 13, attendees will gain actionable intelligence on the IoT devices of the near future — those applications that will reach commercialization within the next two to five years. On September 14, they will learn about the IoT devices that will come to market in ten to 20 years. Those speakers will address our TSensors vision — a transformational movement advocating the use of a trillion sensors to address major world problems — as they consider longer-term opportunities in the IoT.”

Conference Agenda
Featured presentations currently include:

Additional featured speakers include:

  • Masayuki Abe, manager, Corporate Production Technology, Asahi Kasei Corporation
  • Dr. Janusz Bryzek, CEO, eXo Systems, Inc., and founder, TSensors
  • Ahmed Busnaina, professor & director, NSF Center, Northeastern University
  • Susumu Kaminaga, executive senior advisor, SPP Technologies Co., Ltd.
  • Karen Lightman, executive director, MEMS & Sensors Industry Group
  • Ryoma Miyake, Process Development Group, Silicon Sensing Products, Ltd.
  • Keynote Speaker Tomy Runne, senior manager of planning and promotion department, Sensor Product Division, Murata Manufacturing Co., Ltd.
  • Keynote Speaker Dr. Jian Xu, executive general manager, Shanghai International Autocity Development Co., Ltd.

Panel
Context Computing — panel moderated by Leopold Beer, regional president AP, Bosch Sensortec, with panelists:

  • Xianfeng (Sean) Ding, director of sensing, Huawei Technologies
  • Ruizhen Liu, Shanghai Academy of Artificial Intelligence
  • Yang (Richard) Shi, industry strategy expert, Huawei Technologies

ON Semiconductor (Nasdaq: ON) this week announced that it is joining the Original Equipment Suppliers Association (OESA), which champions the business interests of more than 430 member automotive suppliers. All members also belong to the parent Motor and Equipment Manufacturers Association (MEMA), which represents more than 1,000 companies from both the original equipment and aftermarket segments of the light vehicle and commercial vehicle industries.

Joining these organizations enables ON Semiconductor to work more closely with its customers on the policy issues that matter to the automotive industry, such as the promotion of advanced driver assistance systems (ADAS). MEMA estimates that ADAS technologies alone have the potential to prevent 30 percent of all crashes, and ON Semiconductor is a supplier of the components that are used in these systems.

“As the #2 ranked non-microcontroller automotive semiconductor supplier, we have long recognized the importance of working closely with customers to promote the policies and technologies that will advance innovation in vital areas like safety and sustainability,” said Lance Williams, vice president of automotive strategy and OEM development at ON Semiconductor. “OESA and MEMA are two of the automotive industry’s most well respected trade associations, and we look forward to expanding our collaborations with their more than 1,000 member companies.”

IBM (NYSE:  IBM) scientists have created randomly spiking neurons using phase-change materials to store and process data. This demonstration marks a significant step forward in the development of energy-efficient, ultra-dense integrated neuromorphic technologies for applications in cognitive computing.

An artistic rendering of a population of stochastic phase-change neurons which appears on the cover of Nature Nanotechnology, 3 August 2016. Credit: IBM Research

An artistic rendering of a population of stochastic phase-change neurons which appears on the cover of Nature Nanotechnology, 3 August 2016. Credit: IBM Research

Inspired by the way the biological brain functions, scientists have theorized for decades that it should be possible to imitate the versatile computational capabilities of large populations of neurons. However, doing so at densities and with a power budget that would be comparable to those seen in biology has been a significant challenge, until now.

“We have been researching phase-change materials for memory applications for over a decade, and our progress in the past 24 months has been remarkable,” said IBM Fellow Evangelos Eleftheriou. “In this period, we have discovered and published new memory techniques, including projected memorystored 3 bits per cell in phase-change memory for the first time, and now are demonstrating the powerful capabilities of phase-change-based artificial neurons, which can perform various computational primitives such as data-correlation detection and unsupervised learning at high speeds using very little energy.”

The results of this research are appearing today on the cover of the peer-reviewed journal Nature Nanotechnology.

The artificial neurons designed by IBM scientists in Zurich consist of phase-change materials, including germanium antimony telluride, which exhibit two stable states, an amorphous one (without a clearly defined structure) and a crystalline one (with structure). These materials are the basis of re-writable Blu-ray discs. However, the artificial neurons do not store digital information; they are analog, just like the synapses and neurons in our biological brain.

In the published demonstration, the team applied a series of electrical pulses to the artificial neurons, which resulted in the progressive crystallization of the phase-change material, ultimately causing the neuron to fire. In neuroscience, this function is known as the integrate-and-fire property of biological neurons. This is the foundation for event-based computation and, in principle, is similar to how our brain triggers a response when we touch something hot.

Exploiting this integrate-and-fire property, even a single neuron can be used to detect patterns and discover correlations in real-time streams of event-based data. For example, in the Internet of Things, sensors can collect and analyze volumes of weather data collected at the edge for faster forecasts. The artificial neurons could be used to detect patterns in financial transactions to find discrepancies or use data from social media to discover new cultural trends in real time. Large populations of these high-speed, low-energy nano-scale neurons could also be used in neuromorphic coprocessors with co-located memory and processing units.

IBM scientists have organized hundreds of artificial neurons into populations and used them to represent fast and complex signals. Moreover, the artificial neurons have been shown to sustain billions of switching cycles, which would correspond to multiple years of operation at an update frequency of 100 Hz. The energy required for each neuron update was less than five picojoule and the average power less than 120 microwatts — for comparison, 60 million microwatts power a 60 watt lightbulb.

“Populations of stochastic phase-change neurons, combined with other nanoscale computational elements such as artificial synapses, could be a key enabler for the creation of a new generation of extremely dense neuromorphic computing systems,” said Tomas Tuma, a co-author of the paper.

Samco, a semiconductor process equipment developer and manufacturer based in Japan, announced that it will open its Malaysia branch office on Aug. 10, 2016 in Petaling Jaya, a suburb of Kuala Lumpur.

“With our new office conveniently located near Kuala Lumpur, we expect to better serve Malaysia’s research universities and manufacturers,” says Osamu Tsuji, Samco’s chairman, president and CEO. “Four company representatives will be assigned to this new location, where they will actively provide production-type systems and services, consisting of the three major technologies Samco specializes in.”

These technologies include: thin film deposition with PECVD and ALD systems; microfabrication with ICP etching, RIE and DRIE systems; and surface treatment with plasma cleaning and UV ozone cleaning systems.

“Samco has been continually enhancing its sales presence and service capability in Southeast Asia since the establishment of Samco’s Singapore office 20 years ago,” says Tsuji. “The region has seen an increased number of semiconductor and electronic component manufacturers in recent years, which initially led to the creation of the company’s former Vietnam service office in Ho Chi Minh during 2012.”

However, Tsuji adds, there was still a considerable physical distance between the Vietnam office and the Europe-based device manufacturers that have accumulated in Malaysia (mainly in Penang, Kuala Lumpur and Malacca), as well as the research institutions of some of Samco’s important customers.

“Bridging that distance was one reason Samco decided to replace its Vietnam office with our new location in Malaysia,” he says.

These efforts to strengthen the company’s presence in Southeast Asia include samco-ucp, which was established in Liechenstein after the acquisition of plasma cleaner systems maker UCP in May 2014, and now serves as Samco’s main European office.

“Some of samco-ucp’s chief customers are concentrated in Southeast Asia,” says Tsuji. “Our Malaysia office will also be used as a sales and service base for samco-ucp’s main product, production-type plasma cleaners that operate with a remote plasma source.”

Currently, the company’s annual sales in the region are nearly 2 million USD, which is expected to rise to 5 million USD after three years.

“With the combined sales revenue from both companies, we plan to increase Samco’s annual revenue in Malaysia to 10 million USD,” says Tsuji.

Samco’s Malaysia branch office is located at:

C-8-21, Block C, Centum at Oasis Corporate Park,
No. 2, Jalan PJU 1A/2, Ara Damansara, 47301
Petaling Jaya, Selangor Darul Ehsan, Malaysia

ams AG (SIX: AMS), a provider of high performance sensors and analog ICs, has launched the smallest ever optical sensor module that delivers a combination of colour (RGB), ambient light and proximity sensing, providing OEMs with design flexibility and the ability to provide a better display viewing experience.

The TMD3700 footprint, at 4.00 x 1.75mm, is the smallest footprint available in the market, and with height of 1.00mm, its low-profile is ideal for next-generation mobile phones with extremely tight layout and mechanical design constraints. Its wide 45 degree field-of-view, ambient light sensing accuracy of +/-10% and operating range of 200mlux to 60Klux behind dark glass enable smartphones to measure the surrounding light environment and automatically adjust display colour and brightness for optimal viewing.

The TMD3700 colour sensor channels each have UV and IR blocking filters and a dedicated converter allowing simultaneous data capture necessary for accurate measurements. The combination of photopic colour and ambient light sensing enables smartphones to perform real-time adjustment of the display properties, such as white point, colour gamut and colour saturation, to achieve the best visual colour accuracy.

The TMD3700 features allow dynamic elimination of both electrical and optical crosstalk producing reliable proximity detection, a function used by smartphone manufacturers to disable the touchscreen display when it is held close to the user’s face. In addition, the module’s integrated IR LED is calibrated for maximum performance and consistent operation.

“Smartphone OEMs are continually condensing their product profiles while seeking ways to improve display performance for the best visual appeal. The availability of the TM3700 light sensing and proximity detection performance in a compact package enables innovative display management for today’s space-constrained smartphones,” said Darrell Benke, Strategic Program Director for Advanced Optical Solutions at ams.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $79.1 billion during the second quarter of 2016, an increase of 1.0 percent over the previous quarter and a decrease of 5.8 percent compared to the second quarter of 2015. Global sales for the month of June 2016 reached $26.4 billion, an uptick of 1.1 percent over last month’s total of $26.1 billion, but down 5.8 percent from the June 2015 total of $28.0 billion. Cumulatively, year-to-date sales during the first half of 2016 were 5.8 percent lower than they were at the same point in 2015. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Global semiconductor sales increased slightly from Q1 to Q2 but remain behind the pace from last year, due largely to global economic uncertainty and sluggish demand,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Sales into Japan and China have been a bright spot midway through 2016, and a modest rebound in sales is projected during the second half of the year.”

Regionally, sales increased compared to June 2015 in China (1.7 percent), but fell in Asia Pacific/All Other (-11.0 percent), the Americas (-10.8 percent), Europe (-5.5 percent), and Japan (-1.3 percent). Sales were up slightly compared to last month in the Americas (3.0 percent), China (2.2 percent) and Europe (1.7 percent), but down somewhat in Japan (-1.0 percent) and Asia Pacific/All Other (-0.6 percent).

sales graph sales table