Category Archives: MEMS

SMIC acquires LFoundry


June 27, 2016

Semiconductor Manufacturing International Corporation, the largest and most advanced foundry in mainland China, jointly announces with LFoundry Europe GmbH (“LFE”) and Marsica Innovation S.p.A. (“MI”), the signing of an agreement on June 24, 2016 to purchase a 70% stake of LFoundry for a consideration of 49 million EUR.

LFoundry is an integrated circuit wafer foundry headquartered in Italy, which is owned by LFE and MI. At the closing, SMIC, LFE and MI will own 70%, 15% and 15% of the corporate capital of the target respectively. This acquisition benefits both SMIC and LFoundry, through increased combined scale, strengthened overall technology portfolios, and expanded market opportunities for both parties to gain footing in new market sectors.

This also represents the Mainland China IC foundry industry’s first successful acquisition of an overseas-based manufacturer, which marks a major step forward in internationalizing SMIC; furthermore, through this acquisition, SMIC has formally entered into the global automotive electronics market.

As the leading semiconductor foundry in Mainland China, in the first quarter of 2016, SMIC recorded profit for the 16th consecutive quarter with revenue of US$634.3 million, an increase of over 24% year-on-year. In 2015, SMIC recorded annual revenue of US$2.24 billion. In fiscal year 2015, LFoundry revenue reached 218 million EUR.

This acquisition will bring both companies additional room for business expansion. At present, SMIC’s total capacity includes 162,000 8-inch wafers per month and 62,500 12-inch wafers per month, which represents a total 8-inch equivalent capacity of 302,600 wafers per month. LFoundry’s capacity amounts to 40,000 8-inch wafers per month. Thus, by consolidating the entities, overall total capacity would increase by 13%; this combined capacity will provide increased flexibility and business opportunities for supporting both SMIC and LFoundry customers.

SMIC has a diversified technology portfolio, including applications such as radio frequency (“RF”), connectivity, power management IC’s (“PMIC”), CMOS image sensors (“CIS”), embedded memory, MEMS, and others—mainly for the communications and consumer markets. Complementarily, LFoundry’s key focus is primarily in automotive, security, and industrial related applications including CIS, smart power, touch display driver IC’s (“TDDI”), embedded memory, and others. Such consolidation of technologies will broaden the overall technology portfolios and enlarge the areas of future development for both SMIC and LFoundry.

Dr. Tzu-Yin Chiu, the CEO and Executive Director of SMIC said, “The successful completion of the LFoundry srl acquisition agreement is an important step in our global strategy. Both SMIC and LFoundry will mutually benefit from the shared technology, products, human talents and complementary markets. This will additionally expand our production scale and allows us to service the automotive IC market and for LFoundry to enter into China’s consumer electronics market, thus bolstering our overall development and growth. Through the acquisition, communication and cooperation in the semiconductor industry between China and Europe has been further enhanced, and contributes to the mutual success of the integrated circuit industry in both regions. In the future SMIC will continue to enhance, strengthen, and further expand leadership in the global semiconductor ecosystem.”

Sergio Galbiati, the Managing Director of MI and Chairman of LFoundry srl, said, “This is the beginning of a new era for LFoundry and our Italian fab. We are pleased to become part of a very strong worldwide player, SMIC. Together we can further improve LFoundry’s strength on optical sensor related technology, which is well recognized worldwide, and continue to contribute to the growth of technology in Europe, thanks to our partnerships with many relevant players. The agreement with SMIC will enable us to have a stronger level playing field in Europe.”

Günther Ernst, the Managing Director of LFE and CEO of LFoundry srl, said, “We have made significant efforts in achieving technology excellence. The agreement with SMIC will further enable us to better use our own manufacturing capacity and have access to SMIC’s extremely diverse technology offerings while taking advantage of SMIC’s commercial network and overall capacity. As part of SMIC, LFoundry will continue to pioneer technology to help our customers achieve success and drive value for our partners and employees around the world. We look forward to working closely with the SMIC team to ensure a smooth transition.”

Brite Semiconductor, Inc.(Brite), an ASIC/SoC design and turnkey solution provider, today announced the collaborative development of an industrial machine-to-machine (M2M) system on chip (SoC) with Semitech Semiconductor, a provider of power line communications (PLC) solutions that enable the transformation of the electricity grid into a smart grid. This SoC is designed to support M2M communication in the global industrial and energy transmission market via PLC/wireless modes.

Backed by a successful track record that includes numerous ASIC designs, Brite has developed a Cadence Tensilica-based communication core architecture SoC that integrates DSP, memory, PLC AFE, RF transceiver and high-speed interface IPs with DDR and USB. This provides a market-defining dual-mode PLC/wireless communication system to achieve interactive M2M communication. This SoC will be manufactured using an advanced process with strategic partner SMIC, and will contain Semitech’s integrated PLC/wireless IP. The resulting product will provide high reliability and quality, ensuring it can be adopted by a broad range of industrial applications.

Semitech develops a dual-mode communication core (DMCC) for PLC/wireless and will apply this IP to Brite’s SoC-based system. By leveraging its abundant experience in M2M communication and expanding its proven PLC core, Semitech provides a total DMCC solution (including architecture, digital modules and algorithms) that can simultaneously support reliable wireless and PLC connectivity for the M2M market.

“This collaboration represents an important milestone for Brite, as designing an industrial SoC product for the emerging M2M market has been a goal of ours,” said Jerry Ardizzone, senior vice president of worldwide sales and marketing for Brite Semiconductor. “The primary application for the Brite and Semitech collaboration will be smart meters, and we will develop additional solutions for broader industrial applications including smart home, smart grid and automotive.”

“The next evolutionary step for smart grid applications is to move toward heterogeneous PLC/wireless networks, while accommodating aggressive cost and power budgets,” noted Zeev Collin, CEO of Semitech Semiconductor. “Our existing PLC architecture and the extensive experience of our team in narrowband communication across different media make it possible to take this step. Partnering with Brite puts us at the leading edge of the M2M market and will ensure that we yield a superior product.”

With a surface resembling that of plants, solar cells improve light-harvesting and thus generate more power. Scientists of KIT (Karlsruhe Institute of Technology) reproduced the epidermal cells of rose petals that have particularly good antireflection properties and integrated the transparent replicas into an organic solar cell. This resulted in a relative efficiency gain of twelve percent. An article on this subject has been published recently in the Advanced Optical Materials journal.

Biomimetics: the epidermis of a rose petal is replicated in a transparent layer which is then integrated into the front of a solar cell. Credit: Illustration: Guillaume Gomard, KIT

Biomimetics: the epidermis of a rose petal is replicated in a transparent layer which is then integrated into the front of a solar cell. Credit: Illustration: Guillaume Gomard, KIT

Photovoltaics works in a similar way as the photosynthesis of plants. Light energy is absorbed and converted into a different form of energy. In this process, it is important to use a possibly large portion of the sun’s light spectrum and to trap the light from various incidence angles as the angle changes with the sun’s position. Plants have this capability as a result of a long evolution process – reason enough for photovoltaics researchers to look closely at nature when developing solar cells with a broad absorption spectrum and a high incidence angle tolerance.

Scientists at the KIT and the ZSW (Center for Solar Energy and Hydrogen Research Baden-Württemberg) now suggest in their article published in the Advanced Optical Materials journal to replicate the outermost tissue of the petals of higher plants, the so-called epidermis, in a transparent layer and integrate that layer into the front of solar cells in order to increase their efficiency.

First, the researchers at the Light Technology Institute (LTI), the Institute of Microstructure Technology (IMT), the Institute of Applied Physics (APH), and the Zoological Institute (ZOO) of KIT as well as their colleagues from the ZSW investigated the optical properties, and above all, the antireflection effect of the epidermal cells of different plant species. These properties are particularly pronounced in rose petals where they provide stronger color contrasts and thus increase the chance of pollination. As the scientists found out under the electron microscope, the epidermis of rose petals consists of a disorganized arrangement of densely packed microstructures, with additional ribs formed by randomly positioned nanostructures.

In order to exactly replicate the structure of these epidermal cells over a larger area, the scientists transferred it to a mold made of polydimethylsiloxane, a silicon-based polymer, pressed the resulting negative structure into optical glue which was finally left to cure under UV light. “This easy and cost-effective method creates microstructures of a depth and density that are hardly achievable with artificial techniques,” says Dr. Guillaume Gomard, Group Leader “Nanopothonics” at KIT’s LTI.

The scientists then integrated the transparent replica of the rose petal epidermis into an organic solar cell. This resulted in power conversion efficiency gains of twelve percent for vertically incident light. At very shallow incidence angles, the efficiency gain was even higher. The scientists attribute this gain primarily to the excellent omnidirectional antireflection properties of the replicated epidermis that is able to reduce surface reflection to a value below five percent, even for a light incidence angle of nearly 80 degrees. In addition, as examinations using a confocal laser microscope showed, every single replicated epidermal cell works as a microlense. The microlense effect extends the optical path within the solar cell, enhances the light-matter-interaction, and increases the probability that the photons will be absorbed.

“Our method is applicable to both other plant species and other PV technologies,” Guillaume Gomard explains. “Since the surfaces of plants have multifunctional properties, it might be possible in the future to apply multiple of these properties in a single step.” The results of this research lead to another basic question: What is the role of disorganization in complex photonic structures? Further studies are now examining this issue with the perspective that the next generation of solar cells might benefit from their results.

Despite slower growth for the automotive industry and exchange rate fluctuations, the automotive semiconductor market grew at a modest 0.2 percent year over year, reaching $29 billion in 2015, according to IHS (NYSE: IHS), a global source of critical information and insight.

A flurry of mergers and acquisitions last year caused the competitive landscape to shift, including the merger of NXP and Freescale, which created the largest automotive semiconductor supplier in 2015 with a market share of 14.3 percent, IHS said. The acquisition of International Rectifier (IR) helped Infineon overtake Renesas to secure the second-ranked position, with a market share of 9.8 percent. Renesas slipped to third-ranked position in 2015, with a market share of 9.1 percent, followed by STMicroelectronics and Texas Instruments.

“The acquisition of Freescale by NXP created a powerhouse for the automotive market. NXP increased its strength in automotive infotainment systems, thanks to the robust double-digit growth of its i.MX processors,” said Ahad Buksh, automotive semiconductor analyst for IHS Technology. “NXP’s analog integrated circuits also grew by double digits, thanks to the increased penetration rate of keyless-entry systems and in-vehicle networking technologies.”

NXP will now target the machine vision and sensor fusion markets with the S32V family of processors for autonomous functions, according to the IHS Automotive Semiconductor Intelligence Service Even on the radar front, NXP now has a broad portfolio of long- and mid-range silicon-germanium (SiGe) radar chips, as well as short-range complementary metal-oxide semiconductor (CMOS) radar chips under development. “The fusion of magnetic sensors from NXP, with pressure and inertial sensors from Freescale, has created a significant sensor supplier,” Buksh said.

The inclusion of IR, and a strong presence in advanced driver assistance systems (ADAS), hybrid electric vehicles and other growing applications helped Infineon grow 5.5 percent in 2015. Infineon’s 77 gigahertz (GHz) radar system integrated circuit (RASIC) chip family strengthened its position in ADAS. Its 32-bit microcontroller (MCU) solutions, based on TriCore architectures, reinforced the company’s position in the powertrain and chassis and safety domains.

The dollar-to-yen exchange rate worked against the revenue ranking for Renesas for the third consecutive year. A major share of Renesas business is with Japanese customers, which is primarily conducted in yen. Even though Renesas’ automotive semiconductor revenue fell 12 percent, when measured in dollars, the revenue actually grew by about 1 percent in yen. Renesas’ strength continues to be its MCU solutions, where the company is still the leading supplier globally.

STMicroelectronics’ automotive revenue declined 2 percent year over year; however, a larger part of the decline can be attributed to the lower exchange rate of the Euro against the U.S. dollar in 2015, which dropped 20 percent last year. STMicroelectronics’ broad- based portfolio and its presence in every growing automotive domain of the market helped the company maintain its revenue as well as it did. Apart from securing multiple design wins with American and European automotive manufacturers, the company is also strengthening its relationships with Chinese auto manufacturers. Radio and navigation solutions from STMicroelectronics were installed in numerous new vehicle models in 2015.

Texas Instruments has thrived in the automotive semiconductor market for the fourth consecutive year. Year-over-year revenue increased by 16.6 percent in 2015. The company’s success story is not based on any one particular vehicle domain. In fact, while all domains have enjoyed double-digit increases, infotainment, ADAS and hybrid-electric vehicles were the primary drivers of growth.

IHS_Auto_Semis_Ranking_2015

Other suppliers making inroads in automotive

After the acquisition of CSR, Qualcomm rose from its 42nd ranking in year 2014, to become the 20th largest supplier of automotive semiconductors in 2015. Qualcomm has a strong presence in cellular baseband solutions, with its Snapdragon and Gobi processors; while CSR’s strength lies in wireless application ICs — especially for Bluetooth and Wi-Fi. Qualcomm is now the sixth largest supplier of semiconductors in the infotainment domain.

Moving from 83rd position in 2011 to 37th in 2015, nVidia has used its experience, and its valuable partnership with Audi, to gain momentum in the automotive market. The non-safety critical status of the infotainment domain was a logical stepping stone to carve out a position in the automotive market, but now the company is also moving toward ADAS and other safety applications. The company has had particular success with its Tegra processors.

Due to the consolidation of Freescale, Osram entered the top-10 ranking of automotive suppliers for the first time in 2015. Osram is the global leader in automotive lighting and has enjoyed double-digit growth over the past three years, thanks to the increasing penetration of light-emitting diodes (LEDs) in new vehicles.

EV Group (EVG), a supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology and semiconductor markets, today announced that, for the fourth successive year, it has earned all three awards resulting from VLSIresearch Inc.’s annual Customer Satisfaction Survey. For 2016, EVG was ranked as one of the 10 BEST Focused Chip Making Equipment Suppliers, having steadily increased its overall ratings since 2013. EVG was also cited as one of THE BEST Suppliers of Fab Equipment and received a RANKED 1st award in Specialty Fab Equipment.

According to VLSIresearch, EVG excelled in the supplier performance categories, which include trust in supplier, technical leadership, recommended supplier, partnering and commitment. Moreover, EVG scored well across the board, increasing its scores in eight of the 15 total categories. The milestones in this year’s rankings continue: 2016 is the 14th consecutive year that EVG has been listed among “THE BEST” suppliers, and the fourth year in which EVG was the highest ranked supplier of wafer bonding equipment.

“EVG continues to rank highly and grow its position on our annual survey, thanks to its strong, global customer-focused strategy,” noted G. Dan Hutcheson, VLSIresearch CEO and chairman. “The company’s approach integrates an emphasis on high-volume manufacturing with its long-running commitment to technology invention, innovation and implementation. The results of our annual survey exemplify EVG’s continued success in delivering leading wafer bonding and lithography solutions.”

Hermann Waltl, executive sales and customer support director at EV Group, stated, “Ensuring our customers’ success is paramount to EVG’s business. Receiving recognition from our customers with these three coveted awards for the fourth year in a row is a true honor, and we thank them for their participation in VLSIresarch’s annual customer satisfaction survey. We look forward to continuing not only to meet but to exceed their requirements through a comprehensive approach of providing leading-edge technology, extensive process technology teams and world-class development and production services around the globe.”

Nowadays, our world is in search of cleaner energy sources to power our increasing industrial and economical needs. Solar energy is becoming an alternative source to fossil fuels, however, due to the accelerating pace at which we are consuming energy, we need to develop ubiquitous PV technologies that can be employed everywhere: on buildings, clothes, consumer electronics and wearables. This necessitates ultra-thin film, low-cost and ideally flexible solar cells without compromising the environment during production, use, or disposal.

Most of us know that the most common inorganic solar cells, displayed over roof tops and in solar farms, are made of silicon. However, the production of silicon solar cells can be expensive and energy demanding and the final modules are heavy and bulky. Many lower-cost thin film solar cells, alternative to silicon, are composed of toxic elements such as lead or cadmium, or contain scarce elements such as indium or tellurium.

Now ICFO researchers Dr. Maria Bernechea, Dr. Nicky Miller, Guillem Xercavins, David So, and Dr. Alexandros Stavrinadis, led by ICREA Prof. at ICFO Gerasimos Konstantatos have found a solution to this increasing problem. They have fabricated a solution-processed, semi-transparent solar cell based on AgBiS2 nanocrystals, a material that consists of non-toxic, earth-abundant elements, produced in ambient conditions at low temperatures. These crystals have shown to be very strong panchromatic absorbers of light and have been further engineered to act as effective charge-transporting medium for solution-processed solar cells.

This image shows a semi-transparent solar cell based on AgBiS2 nanocrystal. Credit: ICFO

This image shows a semi-transparent solar cell based on AgBiS2 nanocrystal. Credit: ICFO

What is special about these cells? As researcher Dr. Maria Bernechea comments, “They contain AgBiS2 nanocrystals, a novel material based on non-toxic elements. The chemical synthesis of the nanocrystals allows exquisite control of their properties through engineering at the nanoscale and enables their dissolution in colloidal solutions. The material is synthesized at very low temperatures (100ºC), an order of magnitude lower than the ones required for silicon based solar cells.´´

The team of researchers at ICFO developed these cells through a low temperature hot-injection synthetic procedure. They first dispersed the nanocrystals into organic solvents, where the solutions showed to be stable for months without any losses in the device performance. Then, the nanocrystals were deposited onto a thin film of ZnO and ITO, the most commonly used transparent conductive oxide, through a layer-by-layer deposition process until a thickness of approximately 35nm was achieved.

“A very interesting feature of AgBiS2 solar cells is that they can be made in air at low temperatures using low-cost solution processing techniques without the need for the sophisticated and expensive equipment required to fabricate many other solar cells. These features give AgBiS2 solar cells significant potential as a low-cost alternative to traditional solar cells.” as Dr. Nicky Miller states.

These cells, in this first report, have already achieved power conversion efficiencies of 6.3%, which is on par with the early reported efficiencies of currently high performance thin film PV technologies. This highlights the potential of AgBiS2 as a solar-cell material that in the near future can compete with current thin film technologies that rely on vacuum-based, high-temperature manufacturing processes.

As ICREA Prof at ICFO Gerasimos Konstantatos concludes, “This is the first efficient inorganic nanocrystal solid-state solar cell material that simultaneously meets demands for non-toxicity, abundance and low-temperature solution processing. These first results are very encouraging, yet this is still the beginning and we are currently working on our next milestone towards efficiencies > 12%”.

The results obtained from this study, which was financially supported by European Commission within the NANOMATCELL project, signifies a turning point in the concept and production of solar cells, moving from silicon cells to low-cost environmentally friendly solar cells that will definitely imply a safer and more sustainable world for the future.

Leading companies within critical industry segments answer questions about the state of technology preparedness for the Internet-of-Things.

BY ED KORCZYNSKI, Senior Technical Editor

The Internet-of-Things (IoT) is expected to add new sensing and communications to improve the functionality of all manner of things in the world: bridges sensing and reporting when repairs are needed, parts automatically informing where they are in storage and transport, human health monitoring, etc. Solid-state and semiconducting materials for new integrated circuits (IC) intended for ubiquitous IoT appli- cations will have to be assembled at low-cost and small- size in High Volume Manufacturing (HVM). Micro-Electro- Mechanical Systems (MEMS) and other sensors are being combined with Radio-Frequency (RF) ICs in miniaturized packages for the first wave of growth in major sub-markets.

To meet the anticipated needs of the different IoT application spaces, we asked leading companies within critical industry segments about the state of technology preparedness:

  • Commercial IC HVM – GLOBALFOUNDRIES,
  • Electronic Design Automation (EDA) – Cadence and Mentor Graphics,
  • IC and complex system test – Presto Engineering.

Korczynski: Today, ICs for IoT applications typically use 45nm/65nm-node which are “Node -3” (N-3) compared to sub-20nm-node chips in HVM. Five years from now, when the bleeding-edge will use 10nm node technology, will IoT chips still use N-3 of 28nm-node (considered a “long-lived node”) or will 45nm-node remain the likely sweet-spot of price:performance?

Timothy Dry, product marketing manager, GLOBALFOUNDRIES
In five years’ time, there will be a spread of technology solutions addressing low, middle, and high ends of IoT applications. At the low end, IoT end nodes for applica- tions like connected smoke detectors, security sensors will be at 55, 40nm ULP and ULL for lowest system power, and low cost. These applications will be typically served by MCUs

In the mid-range, applications like smart-meters and fitness/medical monitoring will need systems that have more processing power

High-end products like smart-watches, learning thermo- stats, home security/monitoring cameras, and drones will require MPU-class IC products (~2000DMIPs) and run high-order operating systems (e.g. Linux, Android). These products will be made in leading-edge nodes starting at 22FDX, 14FF and migrating to 7FF and beyond. Design for lowest dynamic power for longest battery life will be the key driver, and these products typically require human machine Interface (HMI) with animated graphics on a high resolution displays. Connectivity will include BLE, WiFi and cellular with strong security.

Steve Carlson, product management group director, Cadence
We have seen recent announcements of IoT targeted devices at 14nm. The value created by Moore’s Law integration should hold, and with that, there will be inherent advan- tages to those who leverage next generation process nodes. Still, other product categories may reach functionality saturation points where there is simply no more value obtained by adding more capability. We anticipate that there will be more “live” process nodes than ever in history.

Jon Lanson, vice president worldwide sales & marketing, Presto Engineering
It is fair to say that most IoT devices will be a heterogeneous aggregation of analog functions rather than high power digital processors. Therefore, and by similarity with Bluetooth and RFID devices, 90nm and 65nm will remain the mainstream nodes for many sub-vertical markets, enabling the integration of RF and analog front-end functions with digital gate density. By default, sensors will stay out of the monolithic path for both design and cost reasons. The best answer would be that the IoT ASIC will follow eventually the same scaling as the MCU products, with embedded non-volatile memories, which today is 55-40nm centric and will move to 28nm with industry maturity and volumes.

Korczynski: If most IoT devices will include some manner of sensor which must be integrated with CMOS logic and memory, then do we need new capabilities in EDA-flows and burn-in/ test protocols to ensure meeting time-to-market goals?

Nicolas Williams, product marketing manager, Mentor Graphics

If we define a typical IoT device as a product that contains a MEMS sensor, A/D, digital processing, and a RF-connection to the internet, we can see that the funda- mental challenge of IoT design is that teams working on this product need to master the analog, digital, MEMS, and RF domains. Often, these four domains require different experience and knowledge and sometimes design in these domains is accomplished by separate teams. IoT design requires that all four domains are designed and work together, especially if they are going on the same die. Even if the components are targeting separate dice that will be bonded together, they still need to work together during the layout and verification process. Therefore, a unified design flow is required.

Stephen Pateras, product marketing director, Mentor Graphics
Being able to quickly debug and create test patterns for various embedded sensor IP can be addressed with the adoption of the new IEEE 1687 IP plug-and-play standard. If a sensor IP block’s digital interface adheres to the standard, then any vendor-provided data required to initialize or operate the embedded sensor can be easily and quickly mapped to chip pins. Data sequences for multiple sensor IP blocks can also be merged to create optimized sequences that will minimize debug and test times.

Jon Lanson, vice president worldwide sales & marketing, Presto Engineering
From a testing standpoint, widely used ATEs are generally focused on a few purposes, but don’t necessarily cover all elements in a system. We think that IoT devices are likely to require complex testing flows using multiple ATEs to assure adequate coverage. This is likely to prevail for some time as short run volumes characteristic of IoT demands are unlikely to drive ATE suppliers to invest R&D dollars in creating new purpose-built machines.

Korczynski: For the EDA of IoT devices, can all sensors be modeled as analog inputs within established flows or do we need new modeling capability at the circuit level?

Steve Carlson, product management group director, Cadence
Typically, the interface to the physical world has been partitioned at the electrical boundary. But as more mechanical and electro-mechanical sensors are more deeply integrated, there has been growing value in co-design, co-analysis, and co-optimization. We should see more multi-domain analysis over time.

Nicolas Williams, product marketing manager, Mentor Graphics
Designers of IoT devices that contain MEMS sensors need quality models in order to simulate their behavior under physical conditions such as motion and temperature. Unlike CMOS IC design, there are few standardized MEMS models for system-level simulation. State of the art MEMS modeling requires automatic generation of behav- ioral models based on the results of Finite Element Analysis (FEA) using reduced-order modeling (ROM). ROM is a numerical methodology that reduces the analysis results to create Verilog-A models for use in AMS simulations for co-simulation of the MEMS device in the context of the IoT system.

Korczynski: For test of IoT devices which may use ultra-low threshold voltage transistors, what changes are needed compared to logic test of a typical “low-power” chip?

Steve Carlson, product management group director, Cadence
Susceptibility to process corners and operating conditions becomes heightened at near-threshold voltage levels. This translates into either more conservative design sign-off criteria, or the need for higher levels of manufacturing screening/tests. Either way, it has an impact on cost, be it hidden by over-design, or overtly through more costly qualification and test processes.

Jon Lanson, vice president worldwide sales & marketing, Presto Engineering
We need to make sure that the testability has also been designed to be functional structurally in this mode. In addition, sub-threshold voltage operation must account for non-linear transistor characteristics and the strong impact of local process variation, for which the conventional testability arsenal is still very poor. Automotive screening used low voltage operation (VLV) to detect latent defects, but at very low voltage close to the transistor threshold, digital becomes analog, and therefore if the usual concept still works for defect detection, functional test and @speed tests require additional expertise to be both meaningful and efficient from a test coverage perspective.

Korczynski: Do we have sufficient specifications within “5G” to handle IoT device interoperability for all market segments?

Rajeev Rajan, Vice President of Internet of Things (IoT) at GLOBALFOUNDRIES
The estimated timeline for standardization availability of 5G is around 2020. 5G is being designed keeping three classes of applications in mind: Enhanced Mobile Broadband, Massive IoT, and Mission-Critical Control. Specifically for IoT, the focus is on efficient, low-cost communication with deep coverage. We will start to see early 5G technologies start to appear around 2018, and device connectivity, interoperability and marshaling the data they generate that can apply to multiple IoT sub-segments and markets is still very much in development.

Korczynski: Will the 1st-generation of IoT devices likely include wide varieties of solution for different market-segments such as industrial vs. retail vs. consumer, or will most device use similar form-factors and underlying technologies?

Rajeev Rajan, Vice President of Internet of Things (IoT) at GLOBALFOUNDRIES
If we use CES 2016 as a showcase, we are seeing IoT “Things” that are becoming use-case or application-centric as they apply to specific sub-segments such as Connected Home, Automotive, Medical, Security, etc. There is definitely more variety on the consumer front vs. industrial. Vendors / OEMs / System houses are differentiating at the user- interface design and form-factor levels while the “under- the-hood” IC capabilities and component technologies that provide the atomic intelligence are fairly common.

Steve Carlson, product management group director, Cadence
Right now it seems like everyone is swinging for the fence. Everyone wants the home-run product that will reach a billion devices sold. Generality generally leads to sub-optimality, so a single device usually fails to meet the needs and expectations of many. Devices that are optimized for more specific use cases and elements of purchasing criteria will win out. The question of interface is an interesting one.

Korczynski: Will there be different product life-cycles for different IoT market-segments, such as 1-3 years for consumer but 5-10 years for industrial?

Rajeev Rajan, Vice President of Internet of Things (IoT) at GLOBALFOUNDRIES
That certainly seems to be the case. According to Gartner’s market analysis for IoT, Consumer is expected to grow at a faster pace in terms of units compared to Enterprise, while Enterprise is expected to lead in revenue. Also the churn-cycle in Consumer is higher / faster compared to Enterprise. Today’s wearables or smart-phones are good reference examples. This will however vary by the type of “Thing” and sub-segment. For example, you expect to have your smart refrigerator for a longer time period compared to smart clothing or eyewear. As ASPs of the
“Things” come down over time and new classes of products such as disposables hit the market, we can expect even larger volumes.

Jon Lanson, vice president worldwide sales & marketing, Presto Engineering
The market segments continue to be driven by the same use cases. In consumer wearables, short cycles are linked to fashion trends and rapid obsolescence, where consumer home use has longer cycles closer to industrial market requirements. We believe that the lifecycle norms will hold true for IoT devices.

Korczynski: For the IoT application of infrastructure monitoring (e.g. bridges, pipelines, etc.) long-term (10-20 year) reliability will be essential, while consumer applications may be best served by 3-5 year reliability devices which cost less; how well can we quantify the trade-off between cost and chip reliability?

Steve Carlson, product management group director, Cadence
Conceptually we know very well how to make devices more reliable. We can lower current densities with bigger wires, wecanrunatcoolertemperatures,andsoon. Thedifficulty is always in finding optimality for a given criterion across the, for practical purposes, infinite tradeoffs to be made.

Korczynski: Why is the talk of IoT not just another “Dot Com” hype cycle?

Rajeev Rajan, Vice President of Internet of Things (IoT) at GLOBALFOUNDRIES
I participated in a panel at SEMICON China in Shanghai last month that discussed a similar question. If we think of IoT as a “brand new thing” (no pun intended), then we can think of it as hype. However if we look at the IoT as as set of use-cases that can take advantage of an evolution of Machine-to-Machine (M2M) going towards broader connectivity, huge amounts of data generated and exchanged, and a generational increase in internet and communication network bandwidths (i.e. 5G), then it seems a more down-to-earth technological progression.

Nicolas Williams, product marketing manager, Mentor Graphics
Unlike the Dot Com hype, which was built upon hope and dreams of future solutions that may or may not have been based in reality, IoT is real business. For example, in a 2016 IC Insights report, we see that last year $63.4 billion in revenue was generated for IoT systems and the market is growing at about 20% CAGR. This same report also shows IoT semiconductor sales of over $15 billion in 2015 with a CAGR of 21.1%.

Jon Lanson, vice president worldwide sales & marketing, Presto Engineering
It is the investment needed up front to create sensing agents and an infrastructure for the hardware foundation of the IoT that will lead to big data and ultimately value creation.

Steve Carlson, product management group director, Cadence
There will be plenty of hype cycles for products and product categories along the way. However, the foundational shift of the connection of things is a diode through which civili- zation will only pass through in one direction.

In collaboration with the National Institute of Information and Communications Technology (NICT), Associate Professor Hiroyuki Ito and Professor Kazuya Masu, et al., of the Tokyo Institute of Technology, developed a new algorithm and circuit technology allowing high-frequency piezoelectric resonators to be used for phase locked loops (PLL). It was confirmed that these operate with low noise and have an excellent Figure of Merit (FoM) compared to conventional PLLs.

This technology allows high-frequency piezoelectric resonators to be used in place of crystal oscillators which was a problem for realizing compact and low-cost radio modules. This greatly contributes to the creation of compact, low-cost, high-speed radio communication systems for the IoT age. High-frequency piezoelectric resonators are compact, can be integrated, have an excellent Q value, and oscillators that use these have excellent jitter performance. High-frequency piezoelectric resonators had greater issues with resonance frequency variance and temperature dependability compared to crystal resonators. However, these issues were resolved by the development of a PLL that uses a channel adjustment technique, which is a new algorithm.

A prototype was fabricated by a silicon CMOS process with a minimum line width of 65 nm, and a maximum frequency output of approximately 9 GHz was achieved with a phase fluctuation of only 180 femtoseconds. Power consumption was 12.7 mW. This performance is equivalent to a PLL Figure of Merit (FoM) of -244 dB, and it has the world’s top-class performance as a fractional-N PLL. This can contribute to the realization of compact, low-cost, high-speed radio communication systems.

The study results will be announced in local time June 17 in “The 2016 Symposium on VLSI Circuits” to be held in Hawaii from June 14.

ams acquires CCMOSS


June 16, 2016

ams, a manufacturer of high performance sensor and analog solutions, has signed an agreement to acquire 100% of the shares in Cambridge CMOS Sensors Ltd (CCMOSS), a developer of micro hotplate structures for gas sensing and infrared applications, in an all-cash transaction.

CCMOSS’ micro hotplates are MEMS structures that are used in gas sensors for volume applications in the automotive, industrial, medical, and consumer markets. The company’s deep expertise in this area is highly synergetic with ams’ technology leadership in MOX gas sensing materials to detect gases like CO, NOx, and VOCs. CCMOSS’ manufactures these MEMS structures on CMOS wafers allowing the creation of complete monolithically integrated CMOS sensor ICs. This makes CCMOSS’ solutions highly cost-efficient, besides offering other significant advantages over competing technologies like low power consumption, small footprint and the ability to integrate additional sensor modalities like relative humidity, temperature, and pressure.

In addition, CCMOSS commands a portfolio of IR technology comprising high performance IR radiation sources and detectors for sensor applications. Highly complementary to ams’ spectral sensing strategy for next generation optical sensor technologies, CCMOSS’ IR sensing is based on the same monolithic CMOS structures as for gas sensing, enabling miniaturized implementations and efficient integration with other on-chip functions. Applications include CO2 gas sensing and human presence detection and will extend into spectroscopic identification of organic materials.

Founded in 2008 as a spin-off from Cambridge University, with the start of technology development dating back to 1994 in collaboration with the University of Warwick, CCMOSS has built an outstanding expertise in micro hotplate design and manufacturing for gas and infrared sensing over more than 20 years. CCMOSS’ corporate headquarters are located in Cambridge, UK, and the company has 33 employees. The Cambridge region has become a center of innovation for sensor technologies globally so ams values the ability to gain direct access to this attractive ecosystem going forward. CCMOSS currently has product revenues on a small scale but is not yet profitable.

The parties to the transaction, which is expected to close within a week given that no regulatory approvals are needed, have agreed to keep the consideration confidential. ams plans to fully integrate CCMOSS’ activities into its existing environmental sensor business, which has development locations in Eindhoven, the Netherlands, and Reutlingen, Germany.

Alexander Everke, CEO of ams, commented on the transaction, “The addition of CCMOSS makes ams the clear leader in gas and infrared sensor technology worldwide, and completes ams’ portfolio of products and technologies for the environmental sensor market. This highly strategic acquisition is therefore another key step in making ams the world’s leading provider of sensor solutions for consumer, automotive, industrial, and medical applications.”

Researchers at the Texas Analog Center of Excellence(TxACE), a Semiconductor Research Corporation(SRC)-funded research effort centered at the University of Texas at Dallas (UT Dallas), are working to develop an affordable electronic nose that can be used in breath analysis for a wide range of health diagnosis.

While devices that can conduct breath analysis using compound semiconductors currently exist, they are bulky and too costly for commercial use, said Dr. Kenneth O, one of the principle investigators of the effort and director of TxACE. The UT Dallas researchers and collaborators at the Ohio State University and Wright State University determined that using CMOS integrated circuits technology will make the electronic nose affordable. CMOS is the integrated circuits technology that is used to manufacture the bulk of electronics that have made possible the smartphones, tablets and other electronic devices used in daily life.

Their research on the CMOS electronic nose was presented today in a paper entitled 200-280GHz CMOS Transmitter for Rotational Spectroscopy and Demonstration in Gas Spectroscopy and Breath Analysis, at the 2016 IEEE Symposia on VLSI Technology and Circuits in Hawaii.

“Smell is one of the senses of humans and animals, and there have been many efforts to build an electronic nose,” said Dr. Navneet Sharma, the lead author of paper. “We have demonstrated that you can build an affordable electronic nose that can sense many different kinds of smells. When you’re smelling something, you are detecting chemical molecules in the air. Similarly, an electronic nose detects chemical compounds using rotational spectroscopy.”

The rotational spectrometer generates and transmits electromagnetic waves over a wide range of frequencies and analyzes how the strength of waves are attenuated to determine what chemicals are present as well as their concentrations in a sample. The system can detect low levels of chemicals present in human breath.

“Think about where breath comes from,” said Professor Philip Raskin, M.D., of University of Texas, Southwestern. “Parts come from gases in your stomach, so this involves the digestive system. Molecules in breath also come from the blood when it comes into contact with the air in the lungs. The breath test is really a blood test without taking blood samples. Breath contains information about practically every part of your body.”

“This is the really opportune moment for the development of these breath sensors, rooted in enabling confluence of semiconductor innovation and system designs rooted in molecular spectroscopy,” said Professor Ivan Medvedev of Wright State University, another member of team. “The device can detect gas molecules with far more specificity and sensitivity than currently used breathalyzers, which can confuse acetone for ethanol in the breath. The distinction is important, for example, for patients with Type 1 diabetes who have high concentrations of acetone in their breath.”

“If you think about the industry around sensors that emulate our senses, it’s huge,” O said. “Imaging applications, hearing devices, touch sensors — what we are talking about here is developing a device that imitates another one of our sensing modalities and making it affordable and widely available. The possible use of the electronic nose is almost limitless. Think about how we use smell in our daily lives.”

The researchers envision the CMOS-based device will first be used in industrial settings and then in doctors’ offices and hospitals. As the technology matures, they could become household devices. The need for blood work and gastrointestinal tests could be reduced, and diseases could be detected earlier — lowering the costs of health care.

The researchers are working toward construction of a prototype programmable electronic nose that can be made available for beta testing sometime in early 2018.

The Texas Analog Research Center and this work are supported in large part by SRC and Texas Instruments. Additional support was provided by Samsung Global Research Outreach.

“SRC and its members, including Texas Instruments, Intel, IBM, Freescale, Mentor Graphics, ARM and GLOBALFOUNDRIES, have been following this work for several years,” said Dr. David Yeh, SRC senior director. “We are excited by the possibilities of the new technology and are working to rapidly explore its uses and applications. It is a significant milestone, but there is still much more research needed for this to reach its potential.”

TxACE, created in 2008 under the umbrella of the SRC, is the largest analog circuit design research center based in an academic institution. The center focuses on analog and mixed signal integrated circuits engineering that improve public safety and security, enhance medical care and help the U.S. become more energy independent.

The research team includes UT Dallas doctoral students Navneet Sharma, Zhong Qian and Jing Zhang; Dr. Mark Lee, professor and head of physics; Dr. David Lary, associate professor of physics; Dr. Hyunjoo Nam, assistant professor of bioengineering, Dr. Rashaunda Henderson, associate professor of electrical engineering; and Dr. Wooyeol Choi, assistant research professor. Other team members include Prof. Philip Raskin, M.D. of UT Southwestern, Professor Frank C. De Lucia, C. F. Neese, and J. P. McMillan of Ohio State University, and Professor Ivan R. Medvedev and R. Schueler of Wright State University.