Category Archives: MEMS

Defining and exploiting value proposition is an essential part of wearable technology’s journey from early adopters into mass markets, and sensor platforms enable the key value proposition in most wearable devices today. This is why made-for-wearable sensors are being developed around the world, and this is why IDTechEx Research finds that made-for-wearable sensors will represent 42% of all sensors in wearable devices in 2026, up from a measly 7% in 2015.

There will be a $5.5 billion market for sensors used in wearable technology applications by 2025, according to IDTechEx’s best-selling research report on the topic. With detailed coverage of the 15 most prominent sensor types in wearables today, this report gives a thorough overview of the technology, challenges and opportunities behind one of the key components behind the success of wearable technology.

Fig 1. First and second wave wearable sensors. Source: IDTechEx Research report "Wearable Sensors 2015-2025: Market Forecasts, Technologies, Players" (www.IDTechEx.com/wtsensors)

Fig 1. First and second wave wearable sensors. Source: IDTechEx Research report “Wearable Sensors 2015-2025: Market Forecasts, Technologies, Players” (www.IDTechEx.com/wtsensors)

Overcoming the barriers to adoptions

However, key hurdles must be surpassed in order for these sensor technologies to realize their full potential and penetrate key vertical markets. Healthcare is perhaps the best example, where regulatory processes and liability issues remain extremely prominent. Leading doctors admit that those who fail to adopt of technology in the form of digital health or otherwise will “fall by the way side” as advances occur. However, until all of the parties (device manufacturers, physicians, insurance companies, patients, and the lawyers of all the above) understand a clear system of liability, this remains a significant barrier to adoption.

New sensor technologies unlock new markets

Wearable sensor systems have already begun to unlock new markets. The textile and electronics industry has started to merge together around e-textiles. In the earliest products reaching the market, advances in low-energy communication can be paired with new made-for-wearable sensor types based on textiles and inks that are increasingly washable, comfortable and reliable. The current commercial focus here is on high value sport and fitness applications in the short term, but this will spread to wider industries including healthcare, home textiles, and industrial spaces in the next 2-5 years.

The IDTechEx report concludes that these sensor types will climb to huge volumes in the coming decade. As the number of wearable devices and the number of sensors per device both increase rapidly, sensors used to detect motion (stretching, deformation, etc.), force and pressure will be one of the largest winners, growing at 40% CAGR. The technology landscape here is in a period of divergence. Introduction of stretchable and washable inks, electroactive polymers, textile electrodes and printed piezoelectric sensors add to traditional techniques like inductive sensors using conductive elastomers or otherwise.

This broad technology landscape is a challenge for product designers. With many different materials come different requirements for connector types, electrical specifications, data algorithms and more. It will take some time for clear winners to emerge, and many large companies are still hedging their bets.

Fig 2. Technology landscape. Source: IDTechEx Research report "Wearable Sensors 2015-2025: Market Forecasts, Technologies, Players" (www.IDTechEx.com/wtsensors)

Fig 2. Technology landscape. Source: IDTechEx Research report “Wearable Sensors 2015-2025: Market Forecasts, Technologies, Players” (www.IDTechEx.com/wtsensors)

Sensor fusion

In 2015, half of all wearable sensors are based on MEMS technologies. Inertial measurement units (IMUs) are found in every smartwatch and fitness tracker, making the most of mature MEMS components that are reliable, familiar and cheap.

However, the challenge here is in turning raw data into useful, or ‘actionable’ data. Sensor fusion is the process of combining sensor outputs from multiple sensors to gain greater total insight. The most common example is using individual xyz acceleration and rotation data (e.g. from a 6-axis IMU) into motion data. This in turn can be used to count steps, differentiate between activity types, and so on. It is here that MEMS IMUs see more use cases. For example, they are used alongside optical sensors to manage motion artefacts experienced in optical heart rate monitoring. This was a far more traditional use of such components in physiological analytics, and now the wearable technology industry is beginning to come full circle.

To learn more about the trends with IMUs, stretch and pressure sensors, and all of the other prominent and emerging sensor types used in wearable technology today and in the future, see IDTechEx’s comprehensive report: Wearable Sensors 2015-2025: Market Forecasts, Technologies, Players.

Worldwide semiconductor fab equipment capital expenditure growth (new and used) for 2015 is expected to be 0.5 percent (total capex of US$35.8 billion), increasing another 2.6 percent (to a total of $36.7 billion) in 2016, according to the latest update of the quarterly SEMI World Fab Forecast report.

SEMI reports that in 2015, Korea outspent all other countries ($9.0 billion) on front-end semiconductor fab equipment, and is expected to drop to second place in 2016 as Taiwan takes over with the largest capex spending at $8.3 billion. In 2015, Americas ranked third in overall regional capex spending with about $5.6 billion and is forecast to increase only slightly to (5.1 percent) in 2016.

fab equipment spending 2016

In 2015, 80 to 90 percent of fab equipment spending went to 300mm fabs, while only 10 percent was for 200mm or smaller.  SEMI’’s recently published “Global 200mm Fab Outlook” provides more detail about past and future 200mm activities.

Examining fab equipment spending by product type, Memory accounts for the largest share in 2015 and 2016.  While 2015’s spending was dominated by DRAM, the SEMI World Fab Forecast reports that 2016 will be dominated by Flash, mainly 3D-related architectures.  Capacity for 3D-NAND will continue to surge. SEMI’’s report tracks 10 major 3D producing facilities, with a capacity expansion of 47 percent in 2015 and 86 percent in 2016.

The Foundry segment is next in terms of the largest share of fab equipment spending in 2015 and 2016.  In general, the foundry segment shows steadier, more predictable spending patterns than other device product segments. Coming in third place in fab equipment spending, MPU had lower spending in 2015.  Logic spending was very strong in 2015, with 90 percent growth, driven by SONY’s CMOS image sensors.

Throughout 2015, SEMI anticipates that there will be 1,167 facilities worldwide investing in semiconductor equipment in 2016, including 56 future facilities across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities. For further details, please reference to the latest edition of SEMI’s World Fab Forecast report.

Imec, the nano electronics research center and Coventor, a supplier of semiconductor process development tools, today announced the expansion of a joint development project to explore process variation issues in 7nm semiconductor technology.

For over a year, the joint team has been using Coventor’s semiconductor process modeling platform, SEMulator3D, to perform predictive modeling of semiconductor fabrication processes and to proactively analyze process variation issues in 7nm semiconductor technology.  The collaboration has now been expanded beyond logic-only devices to include 3D NAND Flash, STT-MRAM, and other device types.

“Leveraging Coventor’s technical expertise and its SEMulator3D platform has enabled us to solve real-world semiconductor integration and processing problems at the 7nm node,” said An Steegen, senior vice president of process technology at imec.   “Our joint collaboration is helping the entire semiconductor industry lower the risks associated with moving to the latest process technologies by providing customers with proven, tested process development platforms and advancing the availability, yield and cost of next-generation semiconductor technology.”

A highlight of the collaboration has been a massive process simulation experiment to explore the effect of process variability in 7nm BEOL (back end of line) fabrication processes.   Researchers used SEMulator3D to simulate an entire window of process variability, which would have required more than one million actual semiconductor wafers if conventional testing methods were used. This experiment was made possible by the robust virtual fabrication environment of SEMulator3D using a fully codified 7nm process flow, along with the ability to support parallel distributed computing and a novel algorithm for submitting variation cases to the simulator.  With these powerful tools, the team was able to produce key findings that will help advance 7nm semiconductor technology.

“We have worked with imec to accelerate the state of the art in semiconductor process technology useful in a broad range of next-generation devices such as Logic, 3D NAND Flash, STT-MRAM, and others,” said David Fried, Chief Technical Officer at Coventor. “By providing our customers with a comprehensive virtual fabrication environment, plus our combined expertise, Coventor and imec are reducing the time and cost associated with moving to these emerging semiconductor nodes.”

National Institute of Standards and Technology (NIST) researchers are seeing the light, but in an altogether different way. And how they are doing it just might be the semiconductor industry’s ticket for extending its use of optical microscopes to measure computer chip features that are approaching 10 nanometers, tiny fractions of the wavelength of light.

Using a novel microscope that combines standard through-the-lens viewing with a technique called scatterfield imaging, the NIST team accurately measured patterned features on a silicon wafer that were 30 times smaller than the wavelength of light (450 nanometers) used to examine them. They report that measurements of the etched lines–as thin as 16 nanometers wide–on the SEMATECH-fabricated wafer were accurate to one nanometer. With the technique, they spotted variations in feature dimensions amounting to differences of a few atoms.

Measurements were confirmed by those made with an atomic force microscope, which achieves sub-nanometer resolution, but is considered too slow for online quality-control measurements. Combined with earlier results, the NIST researchers write, the new proof-of-concept study* suggests that the innovative optical approach could be a “realistic solution to a very challenging problem” facing chip makers and others aiming to harness advances in nanotechnology. All need the means for “nondestructive measurement of nanometer-scale structures with sub-nanometer sensitivity while still having high throughput.

“Light-based, or optical, microscopes can’t “see” features smaller than the wavelength of light, at least not in the crisp detail necessary for making accurate measurements. However, light does scatter when it strikes so-called subwavelength features and patterned arrangements of such features. “Historically, we would ignore this scattered light because it did not yield sufficient resolution,” explains Richard Silver, the physicist who initiated NIST’s scatterfield imaging effort. “Now we know it contains helpful information that provides signatures telling us something about where the light came from.”

With scatterfield imaging, Silver and colleagues methodically illuminate a sample with polarized light from different angles. From this collection of scattered light–nothing more than a sea of wiggly lines to the untrained eye–the NIST team can extract characteristics of the bounced lightwaves that, together, reveal the geometry of features on the specimen.

Light-scattering data are gathered in slices, which together image the volume of scattered light above and into the sample. These slices are analyzed and reconstructed to create a three-dimensional representation. The process is akin to a CT scan, except that the slices are collections of interfering waves, not cross-sectional pictures.

“It’s the ensemble of data that tells us what we’re after,” says project leader Bryan Barnes.” We may not be able see the lines on the wafer, but we can tell you what you need to know about them–their size, their shape, their spacing.”

Scatterfield imaging has critical prerequisites that must be met before it can yield useful data for high-accuracy measurements of exceedingly small features. Key steps entail detailed evaluation of the path light takes as it beams through lenses, apertures and other system elements before reaching the sample. The path traversed by light scattering from the specimen undergoes the same level of scrutiny. Fortunately, scatterfield imaging lends itself to thorough characterization of both sequences of optical devices, according to the researchers. These preliminary steps are akin to error mapping so that recognized sources of inaccuracy are factored out of the data.

The method also benefits from a little advance intelligence–the as-designed arrangement of circuit lines on a chip, down to the size of individual features. Knowing what is expected to be the result of the complex chip-making process sets up a classic matchup of theory vs. experiment.

The NIST researchers can use standard equations to simulate light scattering from an ideal, defect-free pattern and, in fact, any variation thereof. Using wave analysis software they developed, the team has assembled an indexed library of light-scattering reference models. So once a specimen is scanned, the team relies on computers to compare their real-world data to models and to find close matches.

From there, succeeding rounds of analysis homes in on the remaining differences, reducing them until the only ones that remain are due to variations in geometry such as irregularities in the height, width, or shape of a line.

Measurement results achieved with the NIST approach might be said to cast light itself in an entirely new light. Their new study, the researchers say, shows that once disregarded scattered light “contains a wealth of accessible optical information.”

Next steps include extending the technique to even shorter wavelengths of light, down to ultraviolet, or 193 nanometers. The aim is to accurately measure features as small as 5 nanometers.

This work is part of a larger NIST effort to supply measurement tools that enable the semiconductor industry to continue doubling the number of devices on a chip about every two years and to help other industries make products with nanoscale features. Recently, NIST and Intel researchers reported using an X-ray technique to accurately measure features on a silicon chip to within fractions of a nanometer.

Scientists and engineers are engaged in a global race to make new materials that are as thin, light and strong as possible. These properties can be achieved by designing materials at the atomic level, but they are only useful if they can leave the carefully controlled conditions of a lab.

Researchers at the University of Pennsylvania have now created the thinnest plates that can be picked up and manipulated by hand.

Even though they are less than 100 nanometers thick, the researchers’ plates are strong enough to be picked up by hand and retain their shape after being bent and squeezed. Credit: University of Pennsylvania

Despite being thousands of times thinner than a sheet of paper and hundreds of times thinner than household cling wrap or aluminum foil, their corrugated plates of aluminum oxide spring back to their original shape after being bent and twisted.

Like cling wrap, comparably thin materials immediately curl up on themselves and get stuck in deformed shapes if they are not stretched on a frame or backed by another material.

Being able to stay in shape without additional support would allow this material, and others designed on its principles, to be used in aviation and other structural applications where low weight is at a premium.

The study was led by Igor Bargatin, the Class of 1965 Term Assistant Professor of Mechanical Engineering and Applied Mechanics in Penn’s School of Engineering and Applied Science, along with lab member Keivan Davami, a postdoctoral scholar, and Prashant Purohit, an associate professor of mechanical engineering. Bargatin lab members John Cortes and Chen Lin, both graduate students; Lin Zhao, a former student in Engineering’s nanotechnology master’s program; and Eric Lu and Drew Lilley, undergraduate students in the Vagelos Integrated Program in Energy Research, also contributed to the research.

They published their findings in the journal Nature Communications.

“Materials on the nanoscale are often much stronger than you’d expect, but they can be hard to use on the macroscale” Bargatin said. “We’ve essentially created a freestanding plate that has nanoscale thickness but is big enough to be handled by hand. That hasn’t been done before.”

Graphene, which can be as thin as a single atom of carbon, has been the poster-child for ultra-thin materials since it’s discovery won the Nobel Prize in Physics in 2010. Graphene is prized for its electrical properties, but its mechanical strength is also very appealing, especially if it could stand on its own. However, graphene and other atomically thin films typically need to be stretched like a canvas in a frame, or even mounted on a backing, to prevent them from curling or clumping up on their own.

“The problem is that frames are heavy, making it impossible to use the intrinsically low weight of these ultra-thin films,” Bargatin said. “Our idea was to use corrugation instead of a frame. That means the structures we make are no longer completely planar, instead, they have a three-dimensional shape that looks like a honeycomb, but they are flat and contiguous and completely freestanding.”

“It’s like an egg carton, but on the nanoscale,” said Purohit.

The researchers’ plates are between 25 and 100 nanometers thick and are made of aluminum oxide, which is deposited one atomic layer at a time to achieve precise control of thickness and their distinctive honeycomb shape.

“Aluminum oxide is actually a ceramic, so something that is ordinarily pretty brittle,” Bargatin said. “You would expect it, from daily experience, to crack very easily. But the plates bend, twist, deform and recover their shape in such a way that you would think they are made out of plastic. The first time we saw it, I could hardly believe it.”

Once finished, the plates’ corrugation provides enhanced stiffness. When held from one end, similarly thin films would readily bend or sag, while the honeycomb plates remain rigid. This guards against the common flaw in un-patterned thin films, where they curl up on themselves.

This ease of deformation is tied to another behavior that makes ultra-thin films hard to use outside controlled conditions: they have the tendency to conform to the shape of any surface and stick to it due to Van der Waals forces. Once stuck, they are hard to remove without damaging them.

Totally flat films are also particularly susceptible to tears or cracks, which can quickly propagate across the entire material.

“If a crack appears in our plates, however, it doesn’t go all the way through the structure,” Davami said. “It usually stops when it gets to one of the vertical walls of the corrugation.”

The corrugated pattern of the plates is an example of a relatively new field of research: mechanical metamaterials. Like their electromagnetic counterparts, mechanical metamaterials achieve otherwise impossible properties from the careful arrangement of nanoscale features. In mechanical metamaterials’ case, these properties are things like stiffness and strength, rather than their ability to manipulate electromagnetic waves.

Other existing examples of mechanical metamaterials include “nanotrusses,” which are exceptionally lightweight and robust three-dimensional scaffolds made out of nanoscale tubes. The Penn researchers’ plates take the concept of mechanical metamaterials a step further, using corrugation to achieve similar robustness in a plate form and without the holes found in lattice structures.

That combination of traits could be used to make wings for insect-inspired flying robots, or in other applications where the combination of ultra-low thickness and mechanical robustness is critical.

“The wings of insects are a few microns thick, and can’t thinner because they’re made of cells,” Bargatin said. “The thinnest man-made wing material I know of is made by depositing a Mylar film on a frame, and it’s about half a micron thick. Our plates can be ten or more times thinner than that, and don’t need a frame at all. As a result, they weigh as little as than a tenth of a gram per square meter.”

SEMI Foundation, created by global industry association SEMI to support education and career awareness in the field of high-tech, has announced the appointment of Leslie Tugman as its executive director. SEMI Foundation is known for its flagship program, SEMI High Tech U, which serves high school students interested in pursuing careers in science, technology, engineering and math. Plans are underway to expand SEMI Foundation’s activities under Tugman’s leadership to include workforce development programs.

“Leslie has been a key member of the SEMI Foundation team for the past 15 years, helping delivering over 190 High Tech U programs that have reached more than 6,000 students and teachers since the foundation’s inception in 2002,” said Art Zafiropoulo, chairman and CEO of Ultratech, and founding member of the SEMI Foundation board of directors. “Leslie’s thorough understanding of the High Tech U program and her passion and experience for workforce development will ensure continuity and quality of programs as we look to expand the foundation’s activities as part of our 2020 strategic initiatives.”

SEMI has long been at the center of the electronics supply chain representing its more than 1,900 corporate members.  As the electronics supply chain has become increasingly interdependent, SEMI’s platforms have been ever more relied on to bring the extended electronics supply chain together for collaboration.  Additionally, SEMI recently named FlexTech as a Strategic Association Partner providing this vital Flexible Hybrid Electronics community access to SEMI’s global platforms and adjacent opportunities for SEMI members. Now that the SEMI Foundation is a mature entity with established leadership, it is well-positioned to expand in complementary new directions.

“I am excited about this appointment, and look forward to the opportunity to work with the board and take the SEMI Foundation to the next level,” said Tugman. “The foundation is more than High Tech U; we are embarking on workforce development initiatives that address the pipeline for members in a near-term way.”

While with SEMI High Tech U, Tugman was president of WorkForce Resources, Inc.  Prior to that, she served as the business development director for Business Education Compact in Portland, Oregon, delivering workforce development programs focused on educator internships. Career milestones include deputy executive directorship of the Texas Water Development Board, and assistant land commissioner with the Texas General Land Office.

SEMI High Tech U provides secondary school students with an intensive, industry-led introduction to the high tech industry, potential career paths and education requirements to meet their goals.

SEMI High Tech U provides secondary school students with an intensive, industry-led introduction to the high tech industry, potential career paths and education requirements to meet their goals.

Students and teachers participate in hands-on activities that focus on topics including statistics, nanotechnology, solar and alternative energy technologies, electronics and mathematics. Students also work on soft skills and participate in mock job interviews with industry professionals.

Students and teachers participate in hands-on activities that focus on topics including statistics, nanotechnology, solar and alternative energy technologies, electronics and mathematics. Students also work on soft skills and participate in mock job interviews with industry professionals.

SITRI, a center for accelerating the development and commercialization of “More than Moore” solutions to power the Internet of Things, and Bosch China—through its subsidiary Bosch (China) Investment Ltd.—a global supplier of technology and services, announced today they have signed an agreement to collaborate on the study, development and promotion of solutions and applications for the rapidly growing IoT (Internet of Things) space. The agreement covers IoT applications such as smart home, wearable devices, smart city, Industry 4.0 and robotics.

The agreement facilitates the development of new paths to market for products destined for the rapidly growing China IoT market, for which some analysts have forecasted a CAGR of over 30 percent between now and 2019. It also opens the door to the possible future development of joint demonstration facilities to speed the commercialization ofIoT technologies and products.

“Innovation and applications in the IoT space are developing rapidly,especially in China,” said Dr. Charles Yang, President of SITRI. “Bringing together Bosch’s global technology leadership with SITRI’s unique platform for rapid incubation and commercialization of new IoT technologies will enable a fast start on designs that can be commercialized quickly forthis fast moving market.”

SITRI is emerging as the center for “More than Moore” commercialization and industry development, providing 360-degree solutions for companies and startups pursuing these new technologies, including investment, design, simulation, market engagement and company growth support. SITRI is associated with the Shanghai Institute of Microsystem and Information Technology (SIMIT) and the Chinese Academy of Sciences, and has established strong ties to a broad range of Chinese industry, research and university players. This ecosystem enables these new businesses to grow by quickly taking their innovations from concept to commercialization.

Researchers from North Carolina State University have discovered a new phase of solid carbon, called Q-carbon, which is distinct from the known phases of graphite and diamond. They have also developed a technique for using Q-carbon to make diamond-related structures at room temperature and at ambient atmospheric pressure in air.

Phases are distinct forms of the same material. Graphite is one of the solid phases of carbon; diamond is another.

“We’ve now created a third solid phase of carbon,” says Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and lead author of three papers describing the work. “The only place it may be found in the natural world would be possibly in the core of some planets.”

Q-carbon has some unusual characteristics. For one thing, it is ferromagnetic — which other solid forms of carbon are not.

“We didn’t even think that was possible,” Narayan says.

In addition, Q-carbon is harder than diamond, and glows when exposed to even low levels of energy.

“Q-carbon’s strength and low work-function — its willingness to release electrons — make it very promising for developing new electronic display technologies,” Narayan says.

But Q-carbon can also be used to create a variety of single-crystal diamond objects. To understand that, you have to understand the process for creating Q-carbon.

Researchers start with a substrate, such as such as sapphire, glass or a plastic polymer. The substrate is then coated with amorphous carbon — elemental carbon that, unlike graphite or diamond, does not have a regular, well-defined crystalline structure. The carbon is then hit with a single laser pulse lasting approximately 200 nanoseconds. During this pulse, the temperature of the carbon is raised to 4,000 Kelvin (or around 3,727 degrees Celsius) and then rapidly cooled. This operation takes place at one atmosphere — the same pressure as the surrounding air.

The end result is a film of Q-carbon, and researchers can control the process to make films between 20 nanometers and 500 nanometers thick.

By using different substrates and changing the duration of the laser pulse, the researchers can also control how quickly the carbon cools. By changing the rate of cooling, they are able to create diamond structures within the Q-carbon.

“We can create diamond nanoneedles or microneedles, nanodots, or large-area diamond films, with applications for drug delivery, industrial processes and for creating high-temperature switches and power electronics,” Narayan says. “These diamond objects have a single-crystalline structure, making them stronger than polycrystalline materials. And it is all done at room temperature and at ambient atmosphere – we’re basically using a laser like the ones used for laser eye surgery. So, not only does this allow us to develop new applications, but the process itself is relatively inexpensive.”

And, if researchers want to convert more of the Q-carbon to diamond, they can simply repeat the laser-pulse/cooling process.

If Q-carbon is harder than diamond, why would someone want to make diamond nanodots instead of Q-carbon ones? Because we still have a lot to learn about this new material.

“We can make Q-carbon films, and we’re learning its properties, but we are still in the early stages of understanding how to manipulate it,” Narayan says. “We know a lot about diamond, so we can make diamond nanodots. We don’t yet know how to make Q-carbon nanodots or microneedles. That’s something we’re working on.”

NC State has filed two provisional patents on the Q-carbon and diamond creation techniques.

Silicon Labs has announced the acquisition of Telegesis, a supplier of wireless mesh networking modules based on Silicon Labs’ ZigBee technology. A privately held company founded in 1998 and based near London, Telegesis has established itself as a ZigBee expert with strong momentum in the smart energy market, providing ZigBee module solutions to many of the world’s top smart metering manufacturers.

In its official release, Silicon Labs said this strategic acquisition accelerates Silicon Labs’ roadmap for ZigBee and Thread-ready modules and enhances the company’s ability to support customer needs with comprehensive mesh networking solutions ranging from wireless system-on-chip (SoC) devices to plug-and-play modules backed by best-in-class 802.15.4 software stacks and development tools. Telegesis modules integrate the antenna and provide a pre-certified RF design that reduces certification costs, compliance efforts and time to market. Customers can migrate later from modules to cost-efficient SoC-based designs with minimal system redesign and full software reuse.

The market for ZigBee modules is large and growing. According to IHS Technology, 20 percent of all ZigBee PRO integrated circuits shipping today are used in modules, and ZigBee module shipments are expected to grow at a compounded rate of 24.6 percent between now and 2019.

Telegesis exclusively uses Silicon Labs’ ZigBee technology in its module products, which are deployed in smart meters, USB adapters and gateways for smart energy applications. Additional target applications include home automation, connected lighting, security and industrial automation. The modules come with Silicon Labs’ rigorously tested, field-proven EmberZNet PRO ZigBee protocol stack, which sets the bar for ZigBee stack reliability and has been deployed in more connected products than any other ZigBee PRO stack. Telegesis also offers comprehensive development and evaluation kits to help developers streamline their ZigBee-based applications.

“The addition of Telegesis’s successful module business strengthens Silicon Labs’ position as the market leader in mesh networking solutions for the Internet of Things,” said James Stansberry, senior vice president and general manager of Silicon Labs’ IoT products. “The combination of Telegesis modules, Silicon Labs mesh networking SoCs, best-in-class 802.15.4 software stacks and easy-to-use wireless development tools provides customers with a seamless migration path from modules to SoCs and from ZigBee to Thread-based networks.”

“The Telegesis team is truly excited to become an integral part of Silicon Labs,” said Ollie Smith, director of business development at Telegesis. “Together, our hardware and software engineering teams will drive innovation in wireless mesh networking while giving customers a flexible choice of module and SoC-based designs leveraging both ZigBee and Thread technology.”

Trillium US Inc, headquartered in Clackamas, OR, has announced the acquisition of the Oxford Instruments – Austin division, formerly known as Austin Scientific, effective November 23rd, 2015.  Focused on the helium compression based vacuum and temperature management and control sector, Oxford Instruments-Austin provides cryo pump, cold head and compressor service, a range of new cryogenic pumps, cold heads and helium compressors, as well as a full line of related spare parts and accessories.

“The Oxford Instruments-Austin acquisition serves a number of purposes for Trillium,” announced Graham Stone, President and CEO of Trillium. “We acquire a significant range of complementary products while strengthening our existing service capabilities, allowing us to further leverage our customer relationships, while also taking us into new markets,” he added.

Trillium currently operates a 12,000 SF facility in North Austin servicing primarily rough vacuum pumps and blowers, while the existing 23,000 SF Oxford Instruments-Austin facility is located in South Austin. “We have been very encouraged with the depth of engineering and the high quality level at Oxford Instruments-Austin . Bringing them into the Trillium family will allow us to achieve significant synergies and a larger critical mass by consolidating our TX operations to a single South Austin location,” said Glen Murray, Trillium’s General Manager and VP-Operations.

Trillium has significantly grown its offerings over the past five years from providing repair service and refurbished equipment to also include new products and spare parts. This transition began as part of the merger with Hamburg, NJ’s United Vacuum in 2011, and continues now with this most recent acquisition. “Adding Oxford Instruments-Austin’s portfolio to our existing product line further enhances Trillium’s value to the customer,” added Rob Breisch, Trillium’s VP-Sales and Marketing. “Our new cryogenic customers can now rely on us to provide a broader range of vacuum products and services, and our existing customer base can take advantage of Oxford Instruments-Austin’s world class support for cryo pumps and helium compressors,” he explained.

The business integration is already underway and Trillium plans to transact from South Austin starting November 23rd.  “Our immediate focus and number one priority is to ensure this transition is implemented quickly and seamlessly for our customers,” stated Graham Stone. He added, “Later phases in the process will include business system migration and consolidation of the facilities.”

Trillium expects to complete the full transition by June 2016.