Category Archives: Displays

Making a stellar debut, high-resolution liquid-crystal display (LCD) panels featuring resolutions of 300 pixels per inch (ppi) or more are appearing in media tablets for the first time this year, with shipments set to approach 13 million units.

Up from virtually zero in 2012, at least 12.6 million LCD tablet panels with 300-ppi-or-higher resolutions will ship in 2013, according to insights from the Display Materials & Systems Service at information and analytics provider IHS. Shipments will then more than double next year and continue to climb to 55.0 million units by 2017.

“Tablet makers want to differentiate their products, increase their market presence, boost demand and improve their profitability by offering high-performance displays,” said Sweta Dash, senior director for display research at IHS. “Display suppliers are supporting this trend with increased production of higher-pixel-density LCD panels that employ the latest technologies to pack more pixels into every inch of screen space. This will create a whole new class of displays with 300 ppi and higher resolution that will represent the new high end for the tablet business.”

Pixel proliferation

The new 300-ppi class will join existing 200-ppi categories to form a freshly expanded line of high-resolution displays. And while shipments of such panels will keep growing and increasingly rule the tablet space, lower-resolution panels of 100-150 and 151-200 ppi will see their markets decline or remain flat over the years.

Prior to 300 ppi, the highest resolution for tablets was in the 251- to 300-ppi range, where Apple’s 9.7-inch iPad 4 and the 9.0-inch Barnes & Noble nook HD+ belong. Panel shipments for this resolution segment are forecast this year to reach 67.2 million units, up 47 percent from 45.7 million in 2012.

Below that segment are tablet panels in the 200- to 251-ppi range, home to the 7.0-inch Amazon Kindle Fire HD and the 10.0-inch Google Nexus 10. Panel shipments here are projected this year at 22.8 million units, up 88 percent from 12.1 million.

SID and fancy displays

Examples of the new 300-ppi panel for tablets could be seen at the recent Society for Information Display (SID) conference in Vancouver, a prominent industry event where panel manufacturers discuss new technologies and advances in the field.

At the event in May, LG Display showed a 7-inch high-definition tablet panel of more than 300 ppi, while rival Samsung Electronics countered with a 10.1-inch 300-ppi tablet panel.

Taiwan’s Innolux also had its own offering—a 6-inch high-definition, low-temperature polysilicon panel at 368 ppi.

Some of the new high-resolution displays slated for release this year will make use of oxide thin film-transistor (TFT) technology, similar to what was glimpsed at SID. The technology is considered a next-generation solution for panels, due to the mechanism’s high transparency and low power consumption.

Notebook panels also to benefit

High-resolution displays will also be coming to LCD panels for notebook PCs, judging from the SID exhibits. Samsung unveiled a 13.3-inch notebook PC panel with 275 ppi—higher than the 227 ppi of the much lauded 13-inch Apple MacBook Pro with Retina Display. Meanwhile, LG Display presented a 14- inch notebook LCD panel featuring 221 ppi.

For the notebook business in particular, where sales have suffered as consumers defected to smartphones and tablets, high-resolution displays could be what mobile PC manufacturers need to entice consumers to replace their older laptops. The new displays can be deployed to make products stand out from the rest of the field, create new demand among consumers, and boost revenue and profitability, IHS believes.

In line with the theme of higher performance, glass companies were likewise at SID to demonstrate glass substrates, an important component of LCD panels, for enabling next-generation displays.

Both New York-based Corning and Japan’s Asahi Glass announced glass substrate products at the show, formulated for high-performance displays intended to improve quality and productivity.

Global inventory of liquid-crystal display television (LCD TV) panels is set to rise to its highest level in 19 months in August, with the elevated stockpiles expected to contribute to a decline in prices in the second half of the year.

Weeks of LCD TV panel inventory held by suppliers are set to increase to 5.0 in August, up from 4.9 in July and 4.8 in June, according to the IHS report entitled "LCD Industry Tracker – TV" from information and analytics provider IHS (NYSE: IHS). The last time the inventory reached this level was January 2012.

“LCD TV panel inventory is entering into above-normal territory in July and August,” said Ricky Park, senior manager for large-area displays at IHS. “Stockpiles are on the rise because of a delay in economic recovery for many areas of the world, along with growing uncertainty regarding domestic demand in China. The combination of a glut in panels and weak demand will cause price reductions to accelerate in the third quarter compared to the second.”

Average LCD TV panel prices are forecast to decline in a range from 3 to 6 percent in the third quarter, compared to a 1 to 2 percent decrease in the second quarter.

TV demand remains weaker than expected—not only in the developed markets such as North America and Europe but also in emerging markets.

Sino subsidy suspension

Panel inventories in China are on the rise due to a mix of industry and government factors.

For one, Chinese TV brands overstocked panels in the first half. Moreover, the government in Beijing has terminated its subsidy program for energy-saving TVs, a development expected to dampen demand in the second half.

In light of the weak demand and rising inventory, Chinese TV manufacturers are cutting panel orders. These domestic TV brands account for more than 80 percent of shipments in China, the world’s largest TV market.

With the exception of February during the Lunar New Year holiday when they disposed of more panels than they actually purchased, China’s Top 6 television makers increased their LCD panel purchases significantly every month in 2013 compared to the same periods in 2012. However, they plan to purchase 24 percent fewer panels in July and 25 percent less in August than they did during the same months in 2012.

With most of the top brands introducing new flagship models in the first half of 2013, smartphone buyers now have more choices than ever, a phenomenon that will contribute to an expected doubling in market shipments from 2012 to 2017.

Worldwide smartphone shipments will reach 1.5 billion units in 2017, up from 712 million in 2012, according to a new Mobile & Wireless Communications Report from information and analytics provider IHS Inc. Shipments this year are set to rise to 897 million units, up from 712 million in 2012, as shown in this figure.

In the years that follow, shipments of smartphones will expand at a compound annual growth rate (CAGR) of 15.8 percent, reaching 1.1 billion units in 2014, followed by 1.2 billion in 2015, and 1.4 billion in 2016.

“The volume of new flagship smartphone releases from top original equipment manufacturers (OEM) this year has been astounding,” said Wayne Lam, senior analyst for consumer and communications at IHS. “These include the new BlackBerry Z10, the aluminum uni-body HTC One, and an update to the Samsung Galaxy S4 featuring a Full HD 5-inch active matrix organic light emitting diode (AMOLED) display.”

On the other hand, Apple’s iPhone franchise appears to be stalling as first-quarter shipments of 37.4 million fell below expectations. With the next iPhone model not expected until the second half of the year, there is a real possibility that the full-year 2013 sales volume of the iPhone may be essentially flat at around 150 million units, compared to 134 million units in 2012.

“The possible slowing growth of the iPhone and the rapid pace of competitive smartphones releases speak to the ferocious nature of the handset business, especially now as the market continues to pivot from a market dominated by lower-end handsets known as feature phones to one that is increasingly smartphone-centric,” Lam said.

Outshipped

The trend of deeper smartphone penetration continued in the fourth quarter of 2012 and the first quarter this year, as smartphones outshipped feature phones in the overall branded cellphone market.

After a seasonally high fourth quarter, which saw total mobile handset shipments topping 400 million units for the first time, handset shipments in the first quarter of 2013 contracted by nearly 50 million units quarter-over-quarter, keeping with seasonal sales trends.

Samsung continued its strong growth in the first quarter with a sequential increase of 9 million units, while  brands such as Coolpad and Gionee outshipping the likes of HTC and Motorola in the first quarter.

Chinese smartphone OEMs were able to accomplish such growth on the back of a catalog of largely affordable smartphones, while Samsung rolled out a number of low-cost variants to its high-end flagship products.

These competitive forces, as well as changing consumer demand, will place pressures not only on Apple but also on other OEMs, IHS believes, forcing players to innovate and diversify smartphone offerings in order to continue growing.

Just innovate

Innovation in smartphone design is becoming a necessity for OEMs as consumers demand more immersive user experiences and visual content. Many smartphones, for instance, are moving to 5-inch or larger full HD displays to accommodate consumer desire for these experiences.

In parallel with an expanded display, the overall footprint of smartphones is likewise increasing because of larger batteries, which will then allow for more powerful processors, associated memory and sensors.

But these expanded features come at a cost to OEMs, driving up the dollar content of electronics and pushing the bill- of-materials (BOM) cost for the devices. Still, as variations in smartphone designs increase, opportunities to win design slots multiply as well for component suppliers—developments that bode well for the overall smartphone supply chain.

Battered by the nonstop onslaught of media tablets, the mobile PC market in 2013 delivered the worst second-quarter performance in 11 years, according to preliminary data provided by a PC Dynamics Market Brief from information and analytics provider IHS (NYSE: IHS).

Worldwide mobile PC shipments in the second quarter shrank a steep 6.9 percent compared to the first three months of the year, based on initial findings. This represented the first time the industry experienced a sequential decline since the second quarter of 2002. At that time, mobile PC shipments contracted 3.7 percent after the dot.com bust flattened global demand.

In the 10 years between those two low points, the mobile PC space had always strengthened in the second quarter as shipments recovered from a normally soft start to the year. Excluding 2002 and this year, growth for every second quarter during the intervening years had ranged from 0.5 percent to as much as 6.5 percent, as shown in the attached figure. Just last year, the industry enjoyed a 3.9 percent increase for the period.

The depressed results are not confined to the second quarter alone. When the overall first half is considered, 2013 has made history as having the poorest performance since 2003, posting a harsh 11.2 percent contraction compared to the same six-month period a year ago. How much the market has fallen can be seen by the magnitude of growth attained in the previous years. Only three years ago in 2010, mobile PC shipments surged by 41.7 percent in the first half.

“Representing devices such as traditional notebook PCs as well as the new thinner ultrathin/Ultrabook laptops, the mobile PC industry on the whole is struggling to find any momentum for growth as upheavals rock the market,” said Craig Stice, senior principal analyst for compute platforms at IHS. “In particular, more nimble devices like media tablets have taken over among consumers given their ease of use and unique form factor. Meanwhile, innovation in PCs has stagnated, and the recent influx of low-cost tablets has further eaten into an already decimated mobile PC space. With such dire numbers, many are wondering whether this signifies the start of more record declines for mobile PCs, or if the industry has hit rock-bottom.”

High hopes for low costs

An infusion of lower-cost PCs that deliver higher performance but consume less power than current laptops could save the market, IHS believes. Processors like Bay Trail from Intel Corp. and Temash from rival chipmaker Advanced Micro Devices Inc. can go beyond what traditional entry-level processors have been able to provide, and PC makers are contemplating a new class of performance PCs that would incorporate the new processors at affordable prices.

Hopes also remain alive within the industry on prospects for the much more expensive ultrathin and Ultrabook PC models, where growth could still be expected if their prices come down and if consumers can get used to the new Windows 8 operating system after a rocky launch.

The PC that refreshes

With everything considered, a PC refresh buying cycle is more than likely to occur, IHS believes.

‘Despite the broad appeal of media tablets, the devices won’t be able to fully replace PCs, and consumers will continue to need the computational power of personal computers,” Stice said. “If a new low-cost PC offering strong performance can become available on the market and meet consumer expectations, then PCs could be set for more growth—not like the glory days of the 2000s—but growth nonetheless.”

A year to forget

Despite this, 2013 is very likely a write-off at this point. Even with growth expected to occur in the second half, it’s too late given the depressed first-half results that any positive expansion could occur in both the mobile PC segment and the overall PC market.

A full downturn is projected for total PC shipments in 2013, which would make this the second consecutive year of decline, after the contraction of the market last year for the first time since 2001.

SEMI honored 14 industry leaders for their outstanding accomplishments in developing standards for the microelectronics and related industries. The SEMI Standards awards were announced at a reception held during SEMICON West 2013.

The 2013 SEMI International Standards Excellence Award, inspired by Karel Urbanek, is the most prestigious award in the SEMI Standards Program. Yesterday, it was awarded to Dr. Larry Hartsough of UA Associates.  Hartsough has been actively involved in SEMI Standards for over 20 years, serving in a variety of leadership positions. With over 30 years’ experience in the industry in the areas of thin-film deposition, equipment design and plasma processing of materials, he was instrumental in the development of cluster tool and 300mm interface Standards for semiconductor equipment. Additionally, Hartsough’s expertise in patent litigation was invaluable in guiding the Physical Interfaces and Carriers Committee on intellectual property issues. Long-term, committed leaders like Hartsough provide continuity and excellence to the SEMI Standards Program. The Award recognizes the leadership of Karel Urbanek, a SEMI Board of Directors member who was a key figure in the successful globalization the Standards Program.

In addition, the recipients of four major North American SEMI Standards awards were announced:

The Merit Award recognizes Standards Program Member major contributions to the semiconductor, PV, and related industries through the SEMI Standards Program.  Award winners typically take on a very complex problem at the task force level, gain industry support, and drive the project to completion. This year, seven Program Members were presented with the Merit Award for their contributions to the semiconductor, PV, 3D-IC, and HB-LED industries: 

  • Contribution to the PV Industry: Existing SEMI test methods did not provide the ability to measure a broad range of trace elemental impurities in silicon feedstock for solar cells. Through the International PV Analytical Test Methods Task Force, Hugh Gotts (Air Liquide Electronics U.S.) led the development of SEMI PV49-0613, Test Method for the Measurement of Elemental Impurity Concentrations in Silicon Feedstock for Silicon Solar Cells by Bulk Digestion, Inductively Coupled-Plasma Mass Spectrometry.
  • Contribution to the HB-LED Industry: The 150mm sapphire wafers used for manufacturing HB-LED devices are thicker than standard silicon wafers used in the semiconductor industry— making it difficult to use the same cassettes and standards. SEMI HB-LED Equipment Automation Task Force leaders, Jeff Felipe (Entegris) and Daniel Babbs (Brooks Automation) led the development of SEMI HB2-0613, Specification for 150mm Open Plastic and Metal Wafer Cassettes Intended for Use for Manufacturing HB-LED Devices. This cassette standard also enables standardization of load ports and transport systems, resulting in both direct and indirect cost savings throughout the whole supply chain.
  • Contributions to the 3DS-IC Industry: Establishing common understanding and precise communication between stakeholders is important in any manufacturing supply chain, including 3DS-IC. North America 3DS-IC Inspection & Metrology Task Force leaders, David Read (NIST) and Victor Vartanian (SEMATECH), led the successful development of the first 3DS-IC standard published by SEMI, SEMI 3D1-0912: Terminology for Through Silicon Via Geometrical Metrology. It provides consistent terminology for metrology issues important to through silicon vias (TSV), including: pitch, top CD, top diameter, top area, and more. Read and Vartanian were also responsible for the successful development of two other 3DS-IC SEMI Standards — SEMI 3D4 (Bonded Wafer Stack Metrology) and SEMI 3D5 (TSV Metrology).
  • Ilona Schmidt (Corning) was the key developer of SEMI 3D2-0113, Specification for Glass Carrier Wafers for 3DS-IC Applications.  SEMI 3D2 describes dimensional, thermal, and wafer preparation characteristics for glass starting material that will be used as carrier wafers in a temporary bonded state.
  • Contribution to the Semiconductor Industry: Manufacturing equipment is complex, which makes it susceptible to operating errors due to electromagnetic interference (EMI).  SEMI E33 provides recommendations to help assure that manufacturing equipment will operate reliably without failures caused by electromagnetic interference (EMI).  This desired characteristic is generally known as electromagnetic compatibility (EMC). Last year SEMI E33 went through an extensive revision led by technical expert Vladimir Kraz (BestESD Technical Services).

The Leadership Award recognizes Program Members’ outstanding leadership in guiding the SEMI Standards Program.  Since the formation of the HB-LED Technical Committee in late 2010, Julie Chao (Silian Sapphire) and David Joyce (GT Advanced Technologies) have led the Wafer Task Force in defining the physical geometry of wafers used in HB-LED manufacturing.  Their efforts resulted in SEMI HB1-0113, Specifications for Sapphire Wafers Intended for Use for Manufacturing High Brightness-Light Emitting Diode Devices— SEMI’s first HB-LED standard. As task force leaders, Chao and Joyce fostered industry collaboration, travelling to global SEMI events and attracting new key stakeholders, ensuring global input and consensus.

The Honor Award, given to an individual who has demonstrated long-standing dedication to the advancement of SEMI Standards, recognized Richard Allen (NIST/SEMATECH). From his involvement in the Microlithography/Micropatterning Committee to his current leadership in the 3DS-IC and MEMS/NEMS Committees, Allen has been a long-standing and active participant in the SEMI Standards Program.  He joined the 3DS-IC committee shortly after it was formed in late 2010 as serves as committee chairman. He also leads the Bonded Wafer Stacks Task Force, Inspection & Metrology Task Force and Thin Wafer Handling Task Force). His contributions have been instrumental in the publication of four SEMI 3DS-IC Standards to date.

The Corporate Device Member Award recognizes the participation of the user community. This year, three Program Members were presented with the Corporate Device Member Award for their contributions to EHS and 3DS-IC. This year’s Corporate Device Member Awards were presented to Paul Schwab (Texas Instruments), Urmi Ray (Qualcomm), and Raghunandan Chaware (Xilinx).  The award is presented to individuals from device manufacturers.

As co-leader of the S8 Ergonomics Task Force, Paul Schwab (Texas Instruments) provided end-user perspective in the revision of SEMI S8, Safety Guideline for Ergonomics Engineering of Semiconductor Manufacturing Equipment. Schwab significantly improved the Supplier Ergonomics Success Criteria (SESC) checklist criteria, making the Document easier to use by the industry.

Another example of the importance of end-user input was in the development of SEMI’s third 3DS-IC Standard – SEMI 3D3-0613, Guide for Multiwafer Transport and Storage Containers for 300mm, Thin Silicon Wafers on Tape Frames. North America 3DS-IC Thin Wafer Handling Task Force Leaders Urmi Ray (Qualcomm) and Raghunandan Chaware (Xilinx) played integral roles in the development of SEMI 3D3-0613, providing vital end-user perspective for shipping thin wafers on tape frames so that they arrive undamaged at their final destination.

The SEMI Standards Program, established in 1973, covers all aspects of microelectronics process equipment and materials, from wafer manufacturing to test, assembly and packaging, in addition to the manufacture of photovoltaics, flat panel displays and micro-electromechanical systems (MEMS). Over 3,700 volunteers worldwide participate in the program, which is made up of 23 global technical committees. Visit www.semi.org/standards  for more information about SEMI Standards.

 

 

BOE Technology Group announced that it has placed significant orders for advanced Gen 8.5 and Gen 5.5 display production equipment from Applied Materials for use in multiple facilities. BOE selected these systems because of their ability to produce faster, smaller thin film transistors for the next era of high definition televisions and high pixel density displays for future mobile devices. Applied Materials is providing a full suite of advanced deposition equipment including the leading-edge Applied  PiVot PVD  and PECVD systems, which are capable of supporting critical new technologies such as metal oxide and LTPS.

"BOE continues to execute on its manufacturing capacity and technology initiatives and appreciates the strong cooperative relationship with Applied Materials in developing and creating value in support of the world’s largest TV and mobile display market," said Mr. Liu Xiaodong, executive vice president, chief operation officer of BOE. "Over the past year we have achieved key high-volume Gen 8.5 production and yield milestones, which demonstrate our leadership in growing this strategic industry in China. We are pleased to work with Applied Materials to implement the new technologies needed to continue meeting the high quality, high performance screens consumers have come to expect and demand."

"Applied Materials is delighted to play an important role in BOE’s growth strategy and is committed to providing the leading-edge technologies to enable its continued success," said Ali Salehpour, group vice president, general manager, Applied Materials Energy and Environmental Solutions and Display Business Group. "There is a major shift taking place in the display industry toward adopting new materials, and BOE selecting Applied Materials equipment validates the technology differentiation and productivity gains we provide to our customers. Together, BOE and Applied are enabling consumers to experience displays with world-class color, clarity and brightness."

The Applied PiVot PVD and PECVD systems selected by BOE provide a high-performance, cost-effective path to manufacturing stunning high resolution amorphous silicon, metal oxide and LTPS displays.  These systems can significantly increase production and achieve the same economies of scale that enabled the cost of LCD TVs to fall by more than 95 percent over the past decade and brought large-area LCD televisions within the reach of billions of consumers around the globe.

Applied Materials, Inc. provides equipment, services and software to enable the manufacture of advanced semiconductor, flat panel display and solar photovoltaic products. Our technologies help make innovations like smartphones, flat screen TVs and solar panels more affordable and accessible to consumers and businesses around the world.

SEMI today announced that Ajit Manocha, CEO of GLOBALFOUNDRIES, has been selected to receive the “SEMI Outstanding EHS Achievement Award — Inspired by Akira Inoue.” The Environment, Health and Safety (EHS) Award is sponsored by SEMI and will be presented on July 9 at 9:00am during the SEMICON West 2013 Opening Keynote and Ceremonies in San Francisco.

“We are pleased to present this award to Ajit Manocha for his outstanding contribution and commitment to EHS issues," said Denny McGuirk, president and CEO of SEMI.  “Ajit joins a distinguished group of semiconductor executives who have been honored by our industry for notable EHS achievement and leadership.”

“Excellence in Environment, Health and Safety is not only a mandate that we set for ourselves, but a fundamental expectation of our customers and the communities where we operate,” Manocha said. “Corporate responsibility is fundamental to our culture and our value proposition to our customers, the communities in which we live and do business, and our full range of global stakeholders.”

Manocha heads GLOBALFOUNDRIES Executive Stewards Council (ESC), the leadership forum for strategic direction and accountability for risk management, corporate responsibility and sustainability.  Manocha’s leadership has resulted in significant EHS achievements at GLOBALFOUNDRIES. Those cited by the Award committee in the selection of Manocha include:

  • Zero-Incident Safety Culture — GLOBALFOUNDRIES safety goal is to continually reduce all injuries and Manocha continually challenged the EHS and project management teams to achieve zero incidents. For example, Manocha ensured that there was a strong focus on safety metrics in the executive project reviews of the new Fab 8 in Malta, New York. GLOBALFOUNDRIES’ Singapore Fabs all received “Silver Awards” for Health and Safety presented by the Workplace Safety and Health Council and supported by the Singapore Ministry of Manpower.
  • Commitment to Eco-Efficiency in Foundry Operations — In 2012, GLOBALFOUNDRIES set corporate environmental goals to reduce GHG emissions 40 percent by 2015, electricity consumption 35 percent by 2015 and water consumption 10 percent by 2015, all normalized to a manufacturing index and compared to 2010.  Fab 8 incorporates multiple energy efficiency measures, waste heat recovery, and “idle mode” for abatement systems and vacuum pumps. Fab 1 in Dresden is powered by two energy-efficient tri-generation power plants that provide electricity, heating and cooling to fab operations, GLOBALFOUNDRIES’ Singapore utilizes reclaimed NEWater for incoming supply and achieved an energy reduction of 50 GWh in 2012, with a 2013 goal of a further 57 GWh reduction.
  • WSC Commitment to Best Practices for Perfluoro-Compound (PFC) Reduction — At the 2012 annual CEO meeting of the World Semiconductor Council (WSC), Manocha led the discussion of EHS topics, urging his fellow CEOs to take action to protect the environment, conserve resources, and achieve the WSC’s PFC reduction goal. GLOBALFOUNDRIES’ newest U.S. fab, Fab 8, meets the WSC Best Practice commitment for PFC emission reduction, and Fab 1 has incorporated best practices for PFC reduction since 1999.
  • WSC Commitment to a “Conflict-Free Supply Chain” — At the 2013 WSC meeting, Manocha  championed a “Conflict-free Supply Chain” policy to address concerns related to sourcing tantalum, tungsten, tin and gold from “conflict regions” of the Democratic Republic of Congo and adjoining countries. The WSC subsequently adopted such a policy. For its part, GLOBALFOUNDRIES has already met customer requests for “Tantalum Conflict-free” products in 2012.

In addition to receiving the EHS Award at SEMICON West, Manocha will deliver the Opening Keynote for the event on July 9 at 9:00am at Moscone Center (Esplanade Hall, Keynote Stage) in San Francisco, Calif.  For more information about SEMICON West — including registration and keynote attendance —   visit http://www.semiconwest.org.

The “Outstanding EHS Achievement Award — Inspired by Akira Inoue” is sponsored by the EHS Division of SEMI. The award is named after the late Akira Inoue, past president of Tokyo Electron Limited and a strong advocate of EHS. Inoue also served on the SEMI Board of Directors. The award recognizes individuals in industry and academia who have made significant contributions by exercising leadership or demonstrating innovation in the development of processes, products or materials that reduce EHS impacts during semiconductor manufacturing.

Past recipients of the SEMI EHS Akira Inoue Award include: Richard Templeton (president and CEO, Texas Instruments), Atsutoshi Nishida (president and CEO, Toshiba), Dr. Jong-Kap Kim (chairman and CEO, Hynix Semiconductor), Dr. Morris Chang (chairman and CEO, TSMC) and other prominent industry leaders.

 

 

Boosted by orders from unbranded, white-box Chinese manufacturers, global demand for tablet panels is exceeding expectations, spurring IHS to increase its forecast for displays by six percent for 2013.

A total of 262 million displays for tablets are forecast to be shipped in 2013, compared to the previous forecast of 246 million, according to the May Edition of the “LCD Industry Tracker—Tablet” report from information and analytics provider IHS. This will represent 69 percent growth from 155 million in 2012.

“Competitive dynamics in the tablet market have changed dramatically this year as Chinese white-box smartphone makers have entered the tablet market in droves,” said Ricky Park, senior manager for large-area displays at IHS. “These companies are producing massive quantities of low-end tablets that appeal to consumers in China and other developing economies. Because of this, the white-box manufacturers are driving up demand for tablet panels, particularly smaller displays using the older twisted nematic (TN) technology, rather than the newer screens using in-plane switching (IPS).”

Unbranded tablet makers purchased 40 percent of all tablet panels in April, up from just 17 percent in the first quarter of 2012.

Partly because of the rise of white-box makers, shipments of smaller 8- and 9-inch tablet displays will rise by nearly 200 percent in 2013. In contrast, larger displays in the 9-, 10- and 11-inch range will suffer a five percent decline.

The boom in white-box tablets is being driven the introduction of turnkey designs offered by processor makers. The designs make it easy for new, inexperienced market entrants to offer tablet products.

The Chinese white-box manufacturers hold certain advantages over the major incumbent tablet manufacturers. The white-box manufacturers are able to produce tablets at lower cost, more quickly and with greater flexibility in production. These companies also have the capability to manufacture both unbranded tablets, and make products for the major brands on a contract manufacturing basis.

Such white-box players also have been agile enough to take advantage of the current high availability and low-cost of tablet panels. Makers of displays for the shrinking PC market have switched over to the tablet market, spurring a glut that has depressed pricing. As prices have fallen, the white-box makers have demonstrated enough flexibility to boost production of low-cost tablets.

“Playing to their strengths, the white-box manufacturers are set to continue to increase their presence in tablets and propel the expansion of the overall tablet market,” Park said.

IHS believes the strong growth of tablet panel demand continued in the second quarter. The arrival of more turnkey tablet design solutions will drive up demand for 7- and 8-inch panels throughout the year.

The 8-inch panels are becoming an increasingly large segment of the tablet market, with a display area more appealing to users than the 7-inch size. In all, the 8-inch panels accounted for 11 percent of panel shipments in April, with Samsung and Acer having recently launched new tablets in that size. With more introductions likely coming in the third quarter, IHS expects a substantial market share for the 8-inch by the end of this year.

The market for larger-sized, 10-inch and bigger tablet panels may begin to enjoy a recovery in shipments with the launch of the new Intel Corp. Atom microprocessor, code-named Bay Trail. This new device could help reduce the cost of x86 microprocessor-based tablets and improve battery life. Bay Trail also could generate opportunities for hybrid-form tablets that include keyboards.

The x86 tablets, with Microsoft Corp.’s new Windows 8 operating system, would have functionality better suited to the needs of the commercial and business worlds than either the Google Android- or the Apple  iOS-based tablets, which are designed with the consumer in mind.

 

The future is bright for the future semiconductor and IT industry, according to Samsung exec Yoon Woo (Y.W.) Lee. In a keynote talk at The ConFab, Mr. Lee described a future with dramatic advances in almost every field, including healthcare, nano, energy and the environment, all powered by semiconductors. The end result:  a smarter, healthier and cleaner planet. Mr. Lee, who is widely credited with the success of Samsung’s semiconductor business, is now an Executive Advisor at Samsung Electronics Co., Ltd. He previously held positions at Vice Chairman and CEO, Chairman of the Board of Directors, and Chief Technology Officer at Samsung Electronics.

Mr. Lee noted two major trends in the world’s population: more people living in cities, and a greater number of elderly. “There will be 500 cities with over 1 million people by 2015,” Mr. Lee said. “Such a trend will stimulate the IT industry.” According to UN projections, more than 400 of these cities will be in developing countries. The number of "megacities" of 10 million people or more also will increase. Worldwide by 2015, 22 cities will be this big, all but five in developing countries. “Asia continues to grow into the largest economy in the world,” Lee said.

By 2020, most of the rich world will be a “super-aged” society, Lee added. A country can be described as an aging society when people aged sixty-five or above make up more than 7% of the total population (as in China). When the elderly make up more than 20% of the population, the country has a super-aging society.

“From a business perspective, bio and healthcare holds great potential,” Lee said. He also spoke on the importance of global sustainability, which he said will face strain. “There are finite reserves of oil. We must also address global warming which is behind extreme weather conditions.”

Lee said much of the remarkable progress in fields such as mobile computing and medicine has been possible due to the advancement of IT, and semiconductors in particular. “The industry strives for greater performance, lower power, and smaller form factor to enable this technology migration,” he said.

He noted that new innovations, such as nanowires and transistors with III-V channels, are being developed for 10nm chips, and said the use of new TSV technology “will raise transfer speed, function less power and reduce size.”

He also predicted that optical interconnects would soon be required. “Exascale computing will require optical interconnection to communicate between the CPU and memory chip,” he said.

He also gave a nod to MEMS devices, saying nanostructures would be used to switch mechanical energy such as background noise and wind into electric energy. “Our movement will be converted into electricity that charges most of our mobile device in the future,” he said.

As part of his presentation, Lee asked the audience to imagine what it would be like in the year 2025, when we will experience a smarter world, a healthier life and a cleaner planet. Among the advances expected:

  • A light field 3D camera that easily captures three dimensional information, color and depth data simultaneously from different viewpoints in order to generate an accurate real-life picture.
  • Tangible interaction technology that will enable the user to directly touch and freely manipulate three dimensional images in open space. One will be able to actually feel the shape, the temperature and even the texture of a real object.
  • Displays in the form of a contact lens. Augmented reality on such lenses will inform you of traffic and weather conditions.
  • With thermochromic materials, it will be easy to check what’s inside the fridge. When exposed to heat, these thermal sensitive molecules lose their alignment and by transmitting light more readily the material becomes semi-transparent.
  • A terahertz medical mirror that exploits terahertz antenna technology to enable real-time medical diagnosis, or remote treatment with nanotechnology allowing the system to be miniaturized for household or portable use.
  • Using intra-operative optical spectroscopic imaging, tissue can be analyzed without waiting for the pathology lab. By 2025, the aggregate medical data from patients worldwide will reach 6 zettabytes (1021 bytes), roughly equivalent to 6 quadrillion books. From the use huge volume of databases, we can find similar cases by analyzing the organ, physiological and molecular level data, using this “big data” to optimize medical diagnoses.
  • Clean and inexhaustible energy based on hydrogen, from sunlight and water will provide electricity and heat without releasing greenhouse gases.
  • Batteries will be entirely redesigned to utilize abundant and affordable substances such as magnesium or sodium, taking increasingly important roles in the future of large scale power storage.
  • Next generation microorganisms can biodegrade waste and transform these products into highly concentrated raw materials. This technology can also be used to inexpensively produce new plastic materials for many applications.

Lee concluded with a call for collaboration, which he said is critical in intra-regional trade and development. “Countries will need to lower risk and boost efficiency through closer cooperation along the supply chain, forging alliances, devising common standards, and undertaking joint R&D,” he said.

Imec presents a CMOS image sensor capable of capturing 12-bit 4,000×2,000 pixel progressive images at 60 frames per second (fps). Based on a stagger-laced dual exposure, the image sensor developed with Panasonic, was processed using imec’s 130nm CMOS process on 200mm silicon wafers to deliver high-speed and high-quality imaging, at reduced output bit rate.

The number of pixels on image sensors in video and still cameras keeps increasing, along with the frame rate and bit resolution requirements of the images. 4K2K will be the next-generation broadcasting format, offering an increase by a factor of two in both horizontal and vertical resolution compared to current state-of-the-art High Definition TV. 

The image sensor chip is a floating diffusion shared 4T pixel imager, with a pitch of 2.5 micron and a conversion gain of 70 μV/e-, which allows for both a classical rolling shutter or stagger-laced scanning mode. The 4K2K 60-fps imaging performance is realized by 12-bit column-based delta-sigma A/D converters. The stagger-laced scanning method improves imaging sensitivity and realizes a 50 percent reduction in output data rate by alternating the readout of two sets of horizontal pixel pairs arranged in two complementary checkerboard patterns. Additionally, the overall power consumption of the imager is less than two Watts.

“This is an important milestone for imec to demonstrate our capability to co-design, prototype and manufacture high performance CMOS image sensors in our 200mm CMOS fab,” commented Rudi Cartuyvels, senior vice president of Smart Systems  and Energy Technologies at imec.