Category Archives: Displays

The glass slimming market topped $600 million in value in 2012 and is forecast to continuously grow to surpass $1 billion in 2014, according to a new report released by Displaybank.

 

Slimness and lightness are key competitive factors of consumer IT devices that use flat panel displays such as TFT-LCD and OLED. Display makers are responding to market changes by slimming down the glass substrate used in consumer goods as part of an effort to reduce the weight and thickness of finished goods, while finding ways to select the less heavy hardware at the same time.

Reducing the thickness of a glass substrate to cut its weight has proven to be the most effective way to make a flat panel display thinner and lighter. However, if a glass substrate used in the TFT or cell manufacturing process starts off as a thin sheet, it runs into many difficulties because of the variables arising from the LCD module, or OLED manufacturing process. Thus, it is essential to slim the glass substrate through chemical and physical methods at the time when the cell production process is completed. This process is called glass slimming.

The glass slimming industry requires both chemical materials and process technologies. The glass slimming process can be divided into a chemical etching method, in which the glass substrate of laminated LCD panels is chemically etched after TFT process and color filter process are completed, and a physical polishing method. The general trend these days is moving towards chemical etching.

This report analyzes glass slimming technologies, which are processes used to reduce the glass thickness and weight after TFT LCD or OLED panels are made, and provides the industry outlook and forecasts.

At this week’s International Image Sensor Workshop (IISW 2013, Snowbird, Utah, June 12-16 2013), imec and Holst Centre presented a large-area fully-organic photodetector array fabricated on a flexible substrate. The imager is sensitive in the wavelength range suitable for x-ray imaging applications.

Because of their very high absorption coefficient, organic semiconductors allow extremely thin active layers (10 to 50 nm). Also, given their low processing temperature, they can be processed on foils. As a result, organic imagers can be more robust and light-weight compared to their traditional counterparts and may be used for conformal coating of randomly shaped substrates. Moreover, the wide variety of organic molecules available ensures that the properties of the active layer can be tuned to applications requiring specific wavelength ranges.

The presented imager is sensitive in the wavelength range between 500 and 600nm, making it compatible with typical scintillators and therefore suitable for x-ray imaging applications. It was fabricated by thermally evaporating an ultrathin (submicron) photosensitive layer of small, organic molecules (SubPc/C60) on top of an organic readout circuit. A semi-transparent top contact enables front-side illumination. The readout backplane was manufactured on six-inch foil-laminated wafers. It consists of pentacene-based thin-film transistors (TFTs) in arrays of 32×32 pixels with varying pitch (1 mm and 200 µm). To prevent degradation of the organic semiconductors in the air, the photodetector array is encapsulated. The imager was characterized under illumination with a calibrated green light-emitting diode (LED), yielding a linearly increasing photocurrent from the incident power of 3 µW/cm2. Dark current density is below 10-6 A/cm2 at a bias voltage of -2V.

organic, flexible imager
Fully-organic, flexible imager developed by imec, Holst Centre and Philips Research

“This latest achievement is a significant step forward in not only finding the optimal materials, but pinpointing the best ways to process materials into reliable organic circuits and systems with state-of-the-art performance,” said Paul Heremans, technology director at the imec/Holst Centre. “Once again, we’re proud to demonstrate how imec’s top-notch research leads to relevant industrial solutions, and subsequently brings added value to our partners’ businesses.”

This research results are presented in collaboration with Philips Research, at the (2013 International Image Sensor Workshop (IISW), sponsored by the International Image Sensor Society (IISS), June 12-16, 2013.

The global semiconductor foundry United Microelectronics Corporation announced the opening of its UMC Korea office. UMC intends for this office to help expand regional business and provide local support to customers. In its official release, UMC said the proximity of its new office to its Korean customers will create working synergies that will help expedite engagement and support, thus shortening time-to-market for Korea-based customers designing and manufacturing on UMC process technologies.

Steve Wang, vice president in charge of Asia sales division at UMC said, "Korean companies have been deeply involved in the global IC supply chain as high-tech applications become increasingly mobile with more demands on power saving, portability, and performance. We see this as a great opportunity to partner with Korea based IC companies as they can take advantage of UMC’s expertise in power management, display driver, touch panel IC, and leading-edge process technologies as well as our flexible, collaborative foundry working model. We look forward to creating new opportunities with Korea-based customers with the opening of UMC’s new Korea office."

In addition to opening its Korea office, UMC was the first independent foundry to introduce a Korean language website.

ISORG and Plastic Logic have co-developed the first conformable organic image sensor on plastic, with the potential to revolutionize weight/power trade-offs and optical design parameters for any systems with a digital imaging element. First mechanical samples will be publicly unveiled at LOPE-C 2013 (ISORG / CEA booth B0-509) from June 12 to 13 in Munich, Germany.

The collaboration is based on the deposition of organic printed photodetectors (OPD), pioneered by ISORG, onto a plastic organic thin-film transistor (OTFT) backplane, developed by the technology leader, Plastic Logic, to create a flexible sensor with a 4×4 cm active area, 375um pitch (175um pixel size with 200um spacing) and 94 x 95 = 8 930 pixel resolution.

organic image sensor

The backplane design, production process and materials were optimized for the application by Plastic Logic to meet ISORG’s requirements. The result, a flexible, transmissive backplane, represents a significant breakthrough in the manufacture of new large area image sensors and demonstrates the potential use of Plastic Logic’s unique flexible transistor technology to also move beyond plastic displays. Combined with ISORG’s unique organic photodetector technology, it opens up the possibilities for a range of new applications, based around digital image sensing, including smart packaging and sensors for medical equipment and biomedical diagnostics, security and mobile commerce (user identification by fingerprint scanning), environmental, industrial, scanning surfaces and 3D interactive user interfaces for consumer electronics (printers, smartphones, tablets, etc.).

ISORG’s CEO, Jean-Yves Gomez stated: “We are extremely pleased to showcase our disruptive photodiode technology in a concrete application for imaging sensing. The ability to create conformal and large area image sensors, which are also thinner, lighter and more robust and portable than current equipment is of increasing importance, especially in the medical, industrial and security control sectors.”

Indro Mukerjee, CEO Plastic Logic said: “I am delighted that Plastic Logic can now demonstrate the far-reaching potential of the underlying technology. Our ability to create flexible, transmissive backplanes has led us not only to co-develop a flexible image sensor, but is also key to flexible OLED displays as well as unbreakable LCDs.”

Sapphire is currently used in some exotic, luxury phones. However, the sapphire price reduction combined with the massive adoption of touch screens in smartphones have stimulated the interest of cell phone OEMS for this material. Crystal growth equipment manufacturer GTAT is leading the charge and recently created a lot of buzz around this application and on the OEM front. Apple is rumored to have conducted an extended due diligence.

Adoption of sapphire in mobile display covers represents the single largest opportunity. It remains, however, uncertain. Yole Développement sees four major challenges: technology, supply chain, cost and market acceptance. Crystal growth and finishing technologies still need to be optimized in order to guarantee stable performance and reduce the price gap with chemically strengthened glass like Corning’s Gorilla. Yole Développement’s analyst estimates that the current cost of manufacturing a sapphire display cover is around $22 but could drop to $12 and ultimately below $10. It remains to be seen if the bill of material increase vs. the $3 glass display cover will be absorbed by the OEM in exchange for increased market share or if the consumer will value the increased durability brought in by the sapphire cover and accept paying a premium.

sapphire substrate use

It is difficult to predict the success of sapphire in this application. However, Yole Développement expects that some OEMs will probe the market and introduce some models featuring sapphire by late 2013 – early 2014. Initial customer reaction will have a strong influence on the future of the technology. If successful, strong market traction could ease the funding for the more than $1.5 billion in capex needed to serve this industry and set up the supply chain to serve this application.

Glass cover lens manufacturers might seize the opportunity. Because of their vast existing glass finishing capacity that could be converted to process sapphire and their privileged access to leading smartphone OEMs, those companies could beat established sapphire finishing companies into this market. However, another scenario would see collaborations between some leading sapphire and cover lens makers in order to pool technical knowledge, capacity and customer access under the push of some smartphone OEMs.

In any case, if this opportunity materializes, it will transform the sapphire industry with new players emerging, and overall production capacity increasing by a factor of more than 7x.

Defense semiconductor and other applications represent 25% of the sapphire industry revenue

“These applications will bring in revenue of $240 million in 2013 and, excluding the display cover opportunity, will increase at a nine percent CAGR to US$366 million in 2018. Watch windows are currently the single largest application with revenue of US$120 million in 2012. Most applications are fairly mature with relatively low growth opportunity with the exception of the emerging mobile device camera lens cover and the aerospace market, driven by the F-35 jet fighter program and the emergence of sapphire-based transparent armors,” explains Eric Virey, senior analyst, Compound Semiconductors, at Yole Développement.

Most applications have their own “eco-systems” with preferred material vendors, finishing companies, growth technologies and barrier of entrance. The defense market, for example, is characterized by strong technical barriers in both growth and finishing, combined with export restrictions and national preferences. The semiconductor market is also fairly concentrated with two companies, Saint-Gobain Crystals and Gavish which both hold the bulk of the market due to their technology for growing the large sapphire tubes used in many plasma tools. However, competition is increasing on simpler parts like viewports and lift pins.

Industry transformation could open the door for new applications

Driven by the promise of large volumes for the LED industry, sapphire crystal growth and manufacturing capacity has increased by more than 8x in the last five years. In just the last two years, more than 80 companies have announced their intention to enter the industry, bringing the potential number of players to 130+ with more than 50 of these potential new entrants located in China.

The entrance of aggressive new players with large idle capacity is likely to challenge established players in many applications. Yole Développement expects those players to initially enter domestic and international markets with low barrier of entrance and later expand their reach as their technology matures.

Excess capacity and increased competition have created a challenging environment for sapphire makers. However, they also drove prices down dramatically and stimulated technology improvements to further reduce cost and improve capability (crystal sizes, shapes …). Yole Développement expects that ultimately, this will be favorable for the industry: lower price and improved crystal growth and finishing capabilities will open the door to a large gamut of new applications where sapphire has been considered for its performance but never adopted because of its cost.

Demand for flexible displays is set to undergo massive growth during the next seven years, with a broad variety of applications—ranging from smartphones to giant screens mounted on buildings—driving a nearly 250 times expansion in shipments from 2013 through 2020.

Global shipments of flexible displays are projected to soar to 792 million units in 2020, up from 3.2 million in 2013, according to a new IHS report entitled “Flexible Display Technology and Market Forecast.”  Market revenue will rise to $41.3 billion, up from just $100,000 during the same period.

Flexible displays hold enormous potential, creating whole new classes of products and enabling exciting new applications that were impractical or impossible before,” said Vinita Jakhanwal, director for mobile and emerging displays and technology at IHS. “From smartphones with displays that curve around the sides, to smart watches with wraparound screens, to tablets and PCs with roll-out displays, to giant video advertisements on curved building walls, the potential uses for flexible displays will be limited only by the imagination of designers.”

Generation flex

IHS classifies flexible displays into four generations of technology. The first generation is the durable display panels that are now entering the market. These panels employ a flexible substrate to attain superior thinness and unbreakable ruggedness. However, these displays are flat and cannot be bent or rolled.

Second-generation flexible displays are bendable and conformable, and can be molded to curved surfaces, maximizing space on small form-factor products like smartphones.

The third generation consists of truly flexible and rollable displays that can be manipulated by end users. These displays will enable a new generation of devices that save space and blur the lines separating traditional product categories, such as smartphones and media tablets.

The fourth generation consists of disposable displays that cost so little that they can serve as a replacement for paper.

Starting small

With their thin, light and unbreakable nature, flexible displays initially are expected to be used in smaller-sized products, such as mobile phones and MP3 players. However, once large-size displays are available, flexible technology will be used in bigger screen-size platforms, such as laptops, monitors and televisions.

The largest application for flexible displays during the next several years will be personal electronic devices. This segment will be led by smartphones, with shipments climbing to 351 million units by 2020, up from less than 2 million this year.

Flexible stars at SID

Flexible displays were a major topic at the Society for Information Display (SID) Display Week event in Vancouver in May.

During an SID keynote address, Kinam Kim, president and CEO of Samsung Display Co., discussed his company’s flexible organic light-emitting diode (OLED) display technology. Kim said that the technology will be suitable for wearable electronics devices like Google Glass.

Also at SID, LG Display showed a 5-inch OLED panel constructed out of plastic that was both flexible and unbreakable.

Furthermore, Corning at SID showed its Willow Glass, which can be used as with both OLEDs and liquid-crystal displays (LCD) in mobile devices such as smart phones, tablets and notebook PCs. Because of its thinness, strength and flexibility, Willow Glass could enable future displays to be wrapped around a device or a structure.

IHS predicts OLEDs will be the leading flexible display technology during every year for the foreseeable future, accounting for 64 percent of shipments in 2020.

Shipments of television sets in the United States declined by 11 percent in the first quarter of 2013 compared to one year earlier, according to a TV Systems Intelligence update from information and analytics provider IHS.

U.S. TV shipments dropped to 6.6 million units, down from 7.4 million a year ago in the first quarter of 2012. Liquid-crystal display televisions (LCD TV) decreased by 7 percent, while plasma plunged 39 percent, as presented in the attached figure.

However, the news was not all bad: The average selling price (ASP) for LCD TVs increased 3 percent, driven by a recovery in consumer confidence and a focus on replacing main TV sets with more full-featured products and larger screen sizes.

The fall in the United States reflected the worldwide decrease of television shipments during the first quarter. However, global TV shipments declined far lower, down by less than 2 percent.

The contraction in global volumes was driven by the decline in the remaining markets for bulky analog cathode ray tube (CRT) sets as well as by the reduction in plasma demand. Other factors responsible for the decrease included a widespread cutback in LCD TV manufacturing volumes by major Japanese vendors, and a repositioning of the market toward fewer, larger-sized TV sets in the mature markets.

Consumers spend more as feature demand increases

As a result of the ASP increase for LCD TVs, revenue was relatively stable by comparison, with total TV revenue dropping by 11 percent in line with total shipments, while LCD TV revenue declined significantly less than shipments, by 4 percent.

For brands relying on the LCD market, this creates an opportunity to expand their margins in the highly competitive TV market.

“The U.S. market is starting to reposition toward higher-end TV sets,” said Veronica Thayer, analyst for consumer electronics & technology at IHS. “Now that most homes have at least one flat-panel TV, consumers have become more discerning in their tastes and place more value on features like light-emitting diode (LED) backlighting, supersized screens and interactive smart TVs.”

Supersized LCD TVs and LED lead the way

Supersized LCD TV sets larger than 50 inches in the diagonal dimension accounted for 27 percent of U.S. LCD TV unit shipments in the first quarter, up from 15 percent one year before.

Furthermore, these large sets represented over half of all U.S. LCD TV revenue, at 53 percent, up sharply from 39 percent one year earlier.

For top television manufacturers, such high-cost sets represent an opportunity to maintain pricing despite declining unit sales in the United States.

Primarily because of increased shipments of 50-inch and 60-inch sets, the ASP for LCD TVs in the United States increased year-on-year in the first quarter. The ASP stood at $704, up from $682 one year earlier.

Meanwhile, LED-backlit sets increased their share of U.S. TV unit shipments to 72 percent, up from 37 percent during the first quarter of 2012. LED sets accounted for 76 percent of total TV revenue, up from 52 percent.

Samsung and Vizio remain the top US TV brands in Q1

In terms of competitive positioning, Samsung Electronics Co. Ltd. earned the highest revenue from the U.S. market for all types of televisions and in the key LCD TV segment, despite strong gains by Vizio Inc.

South Korea’s Samsung during the first three months of 2013 accounted for 31 percent of overall U.S. television market revenue, up from 30 percent during the same period in 2012. The company also expanded its share of U.S. LCD TV revenue to 28 percent, up from 27 percent one year earlier.

Meanwhile, Vizio increased its share of TV revenue sharply, rising to 16 percent, up from 11 percent in 2012. The U.S.-based company also boosted its portion of U.S. LCD TV revenue to 18 percent, up from 14 percent one year earlier, due to the increase in number of large-screen-size TV models offered, particularly the very successful 60-inch, and helped by the brand’s entry into Best Buy.

In terms of volume, the squeeze on the total number of shipped TVs still favored Samsung, with 1.6 million units in the first quarter this year. However, Vizio managed to edge out Samsung on U.S. LCD TV volume during the period by a few thousand units.

“Samsung has retained its position as the leading premium television brand in the United States by capitalizing on demand for premium features, but Vizio is making strong moves in volumes and larger-sized models, although its current revenue is still lower,” Thayer added. “Ultimately, feature-rich sets and large screen sizes lead to higher TV ASPs, which can provide an opportunity for manufacturers to regain margins.”

 

The smartphone is a subset of the total cellphone handset marketplace. One basic difference between an enhanced cellphone and a smartphone is the ability of the smartphone to incorporate third-party applications. Smartphones also typically connect to leading-edge cellular network services and are at the forefront of the convergence of data, telecom, and consumer-oriented functions (such as video games, camera, music player, mobile TV, etc.) in a single handheld device.  Most smartphones include touchscreens with built-in wireless modems and GPS/GNSS, and are capable of Web browsing, sending and receiving e-mail, voice recognition, video and audio streaming, running office applications, and over-the-air synching with a PC.

Many in the cellphone industry believe new smartphone designs are reaching the point where they have enough performance to become the primary computing device for many consumers.  If so, the market could be on the verge of entering into “the post-PC era,” as previously identified by the late Steve Jobs, who stirred up controversy with his provocative prediction in June 2010.

The new consumer/Web emphasis in the cellphone market has been a challenge for a number of top-ranked smartphone suppliers (e.g., RIM, Nokia, etc.), which have struggled to refocus their handset designs, software platforms, and business strategies to address the current phase of the fast-growing smartphone segment.

Figure 1 shows that total smartphone shipments grew 47% in 2012 to 712 million units, after surging by 67% to 485 million in 2011.  Moreover, smartphone shipments are forecast to grow by another 37% in 2013 and fall only 25 million units shy of 1.0 billion.  Smartphones are expected to account for over 50% of quarterly shipments for the first time ever in 2Q13.  In fact, smartphone shipments are forecast to reach 300 million units in 4Q13 and represent 60% of total cellphones shipped that quarter.  Smartphones are expected to surpass the 50% penetration level on an annual basis this year and hold 85% of total cellphone shipments in 2016.

In contrast to smartphones, total cellphone unit shipments grew only 1% in 2012 and are forecast to grow only 3% in 2013 (Figure 2).  As shown, non-smartphone cellphone sales were flat in 2011 but showed a 17% decline in 2012.  Moreover, IC Insights expects another 20% drop in non-smartphone handset sales in 2013.

 

Between 2011 and 2016, smartphone shipments are expected to rise at a very strong CAGR of 29% to 1,760 million units in the final year of the forecast period (the 2011-2016 CAGR for non-smartphone unit shipments is -24%).  Overall, the smartphone 2011-2016 unit shipment CAGR is greater than 7x the expected CAGR for total cellphone unit shipments in that same five-year timeframe (4%).

Competition in smartphones intensified in 2012 as suppliers rolled out new handset designs with larger touch-screen displays, more powerful processors, better operating systems, higher-resolution cameras, and new radio-modem connections to the faster “4G” cellular networks, which were quickly spreading in the U.S., South Korea, Europe, and Japan.  In the next few years, new high-speed “4G” networks are planned for China, India, Brazil, the Middle East, and other fast-growing developing markets.

Samsung and Apple dominated the smartphone market in 2012 and are expected to do so again in 2013.  In total, these two companies shipped 354 million smartphones (218 million for Samsung and 136 million for Apple) and held a combined 50% share of the total smartphone market last year.  For 2013, these two companies are forecast to ship 480 million smartphones (300 million for Samsung and 180 million for Apple) and see their combined smartphone unit marketshare slip only one percentage point to 49%.

In 2012, smartphone sales from China-based ZTE, Lenovo, and Huawei surged.  Combined, the three top-10 China-based smartphone suppliers shipped about 80 million smartphones in 2012, more than a 3x increase from the 24 million smartphones these three companies shipped in 2011.  Moreover, these three companies are forecast to ship 142 million smartphones in 2013 and together hold a 15% share of the worldwide smartphone market.  In contrast to the success of the large China-based smartphone suppliers, IC Insights expects RIM and HTC to continue to struggle in the smartphone marketplace in 2013 with both companies forecast to show a double-digit decline in smartphone unit shipments as compared to 2012.

Smartphone suppliers under pressure include Nokia, RIM, and HTC, each of which registered steep double-digit year-over-year declines in smartphone sales in 2012.  Until several years ago, Nokia held a 50% marketshare in smartphones, but in 2008 and 2009, the company saw its share fall below 40% due to increased competition from suppliers targeting consumers with interactive touch-screen handsets that are capable of running multimedia applications.  In 2012, Nokia’s smartphone shipments declined by 55% (to only 35 million units) and represented only a 5% share of the total smartphone market.  Other smartphone producers that have fallen on hard times recently include RIM and HTC.  While each of these companies had about a 10% share of the 2011 smartphone market, IC Insights forecasts that each of them will have only about a 3% share of the 2013 smartphone market.

 Report Details:  IC Market Drivers 2013

IC Market Drivers 2013—A Study of Emerging and Major End-Use Applications Fueling Demand for Integrated Circuits examines the largest, existing system opportunities for ICs and evaluates the potential for new applications that are expected to help fuel the market for ICs.

IC Market Drivers is divided into two parts.  Part 1 provides a detailed forecast of the IC industry by system type, by region, and by IC product type through 2016.  In Part 2, the IC Market Drivers report examines and evaluates key existing and emerging end-use applications that will support and propel the IC industry through 2016.  Some of these applications include the automotive market, cellular phones (including smartphones), personal/mobile computing (including tablets and Ultrabooks), wireless networks, digital imaging, and a review of many applications to watch—those that may potentially provide significant opportunity for IC suppliers later this decade.  The 2013 IC Market Drivers report is priced at $3,190 for an individual-user license and $6,290 for a multi-user corporate license.

Shipments in March of large-sized liquid crystal displays (LCD) exceeded total production when measured in terms of area, the result of a deliberate move by panel manufacturers to digest accumulated inventory, according to an LCD Fab and Inventory Management Tracker from information and analytics provider IHS.

Large-sized LCD displays in March reached a total shipment area of 11.3 million square meters, a metric showing the expanse of shipped panels during the period and distributed among the panels’ four major applications for TVs, notebooks, monitors and tablets. In comparison, production area measuring the spread and breadth of manufactured panels equated to 11.0 million square meters—approximately 340,000 square meters less than the total shipment area.

“March represented the first time in four months that shipments outpaced production for large-sized LCD panels,” said Ricky Park, senior manager for large-area displays at IHS. “The last time the same phenomenon took place—when shipment was higher than production—occurred in November 2012, an understandable occurrence as manufacturers raced to pump out more displays in time for the December holiday season and Lunar New Year holiday season in China. In March, panel suppliers applied the same tactic to chip away at creeping inventory, the upshot of shipments falling below production levels from December 2012 to February 2013.”

After March, however, the current dynamic took a different turn. Pending final figures, forecasts show that production would catch up to shipments starting in April as both indices reach 11.0 million square meters, with production then exceeding shipments beginning in May, as shown in the figure below. The new movement starts as the industry ramps up for the higher demand anticipated in the second half of this year.

shipments of large-sized LCD display panels

Calculated efforts pay off

For all the vicissitudes of the market, panel manufacturers need to continually negotiate a delicate balancing act—between making sure there is enough inventory, and preventing the inventory at hand from ballooning and crossing into dangerous oversupply. A potent weapon in their arsenal is to turn the screws on production, intentionally limiting manufacturing capacity in fabs, while continually shipping out panels taken from both current assembly and leftover inventory in their possession. Constant vigilance is required in an industry where oversupply is usually the norm, with panel manufacturers always striving to perfect their game.

Utilization rates are also adjusted to achieve targets. In March, utilization rose to 80 percent from 72 percent in February, but the pace of fabrication remained lower than was originally intended, estimated at 82 percent and consistent with the plan to keep production lower than shipments. Fab utilization rates were expected to remain unchanged in April and then jump to 83 percent in May—again in keeping with plans for production to start growing and overtake shipments.

Even so, panel manufacturers are not expected to exceed 85 percent utilization and risk producing more than the channel can swallow. Inventory has been particularly problematic because of slow demand, but manufacturers are also careful that pricing doesn’t drop further even with anemic demand plaguing the system.

Tablet panels continue to reign

Overall, shipments for large-area LCD displays during the first quarter this year compared to year-ago levels fell for monitors and notebooks, but rose for TVs and tablets. Monitor panel shipments were down 17 percent to 38.7 million units, while notebooks suffered an even larger 20 percent contraction to 43.2 million units. Shipments for TV panels, however, climbed 10 percent to 55.9 million units, while tablets posted an outsized 175 percent increase to 60.3 million units.

The reason for such disparate movements is not hard to guess. Monitors and notebooks have been under a cloud for some time, overshadowed among consumers by more appealing devices like smartphones and tablets. TVs, while a mature commodity in advanced markets like the United States, Europe and other highly industrialized countries, continue to enjoy increasing demand in the vast China market, compensating for any losses that may occur elsewhere.

Tablets are in even more fortunate circumstances. The devices continue to shine with blockbuster sales, their powerful status also demonstrated in unbeatable panel shipment numbers.

Transparent electrodes refer to oxide degenerate semiconductor electrodes that possess a high level of light transmittance (more than 85 percent) in the visible light spectrum, and low resistivity (less than 1×10-3 Ω-㎝) at the same time. Transparent electrodes are key materials in the IT industry, used in flat displays, photovoltaics, touch panels, and transparent transistors, which need light transmission and current injection/output simultaneously. Up until now, sputtered ITOs (SnO2-doped In2O3) have been widely used.

Recently with the remarkable development in flexible photoelectronic technologies, such as flexible displays, photovoltaics and electric devices, more attention is being put on flexible transparent electrode technology, which can be produced on a flexible substrate rather than the conventional glass substrate. ITO tends to be vulnerable to the substrate’s bending, and thus CNT-, graphene-, and silver-based transparent electrodes as well as polymer transparent electrodes are suggested to replace the ITO.

The usage of transparent electrodes vary: they are used as electrode materials for LCDs, OLEDs, PDPs and transparent displays, while they are used as touch sensors for resistive and capacitive touch panels. They are also used as electrodes for a-Si, CIGS, CdTe, and DSSC photovoltaics.

Displaybank published the “Transparent Electrode Technology Trends and Market Forecast 2013” report. It covers the technological developments related to transparent electrodes and business activities as well as its market forecast up to 2020.

The overall transparent electrode market is forecast to grow to $5.1 billion by 2020, from $1.9 billion in 2012. By market size, display and touch sensor markets are deemed to be the largest. In the display segment, the flexible display will expand to make up 11 percent in 2019, thereby making way for transparent electrodes to replace the ITO and oxide transparent electrodes. In 2020, the oxide transparent electrode is forecast to make up 8 percent of the total market, and silver-based materials or carbon nanotubes will most likely be the strong candidates.

In terms of production cost, the touch sensor market is the best for the transparent electrode to enter, particularly compared to the display market. But the next generation transparent electrode applied to touch sensors will not reach 10 percent of the total market until 2020. It is because the alternative to the ITO must have the same level of properties as the ITO at low production cost. Strategic collaboration with major brands will be inevitably required. Currently, there is no next generation electrode that can perform on a similar level as the ITO and that is able to be mass produced. But if the flexible display market opens up earlier than expected, next generation transparent electrodes will likely replace ITOs at a faster rate.