Category Archives: Online Magazines

Demand for flexible displays is set to undergo massive growth during the next seven years, with a broad variety of applications—ranging from smartphones to giant screens mounted on buildings—driving a nearly 250 times expansion in shipments from 2013 through 2020.

Global shipments of flexible displays are projected to soar to 792 million units in 2020, up from 3.2 million in 2013, according to a new IHS report entitled “Flexible Display Technology and Market Forecast.”  Market revenue will rise to $41.3 billion, up from just $100,000 during the same period.

Flexible displays hold enormous potential, creating whole new classes of products and enabling exciting new applications that were impractical or impossible before,” said Vinita Jakhanwal, director for mobile and emerging displays and technology at IHS. “From smartphones with displays that curve around the sides, to smart watches with wraparound screens, to tablets and PCs with roll-out displays, to giant video advertisements on curved building walls, the potential uses for flexible displays will be limited only by the imagination of designers.”

Generation flex

IHS classifies flexible displays into four generations of technology. The first generation is the durable display panels that are now entering the market. These panels employ a flexible substrate to attain superior thinness and unbreakable ruggedness. However, these displays are flat and cannot be bent or rolled.

Second-generation flexible displays are bendable and conformable, and can be molded to curved surfaces, maximizing space on small form-factor products like smartphones.

The third generation consists of truly flexible and rollable displays that can be manipulated by end users. These displays will enable a new generation of devices that save space and blur the lines separating traditional product categories, such as smartphones and media tablets.

The fourth generation consists of disposable displays that cost so little that they can serve as a replacement for paper.

Starting small

With their thin, light and unbreakable nature, flexible displays initially are expected to be used in smaller-sized products, such as mobile phones and MP3 players. However, once large-size displays are available, flexible technology will be used in bigger screen-size platforms, such as laptops, monitors and televisions.

The largest application for flexible displays during the next several years will be personal electronic devices. This segment will be led by smartphones, with shipments climbing to 351 million units by 2020, up from less than 2 million this year.

Flexible stars at SID

Flexible displays were a major topic at the Society for Information Display (SID) Display Week event in Vancouver in May.

During an SID keynote address, Kinam Kim, president and CEO of Samsung Display Co., discussed his company’s flexible organic light-emitting diode (OLED) display technology. Kim said that the technology will be suitable for wearable electronics devices like Google Glass.

Also at SID, LG Display showed a 5-inch OLED panel constructed out of plastic that was both flexible and unbreakable.

Furthermore, Corning at SID showed its Willow Glass, which can be used as with both OLEDs and liquid-crystal displays (LCD) in mobile devices such as smart phones, tablets and notebook PCs. Because of its thinness, strength and flexibility, Willow Glass could enable future displays to be wrapped around a device or a structure.

IHS predicts OLEDs will be the leading flexible display technology during every year for the foreseeable future, accounting for 64 percent of shipments in 2020.

Shipments of television sets in the United States declined by 11 percent in the first quarter of 2013 compared to one year earlier, according to a TV Systems Intelligence update from information and analytics provider IHS.

U.S. TV shipments dropped to 6.6 million units, down from 7.4 million a year ago in the first quarter of 2012. Liquid-crystal display televisions (LCD TV) decreased by 7 percent, while plasma plunged 39 percent, as presented in the attached figure.

However, the news was not all bad: The average selling price (ASP) for LCD TVs increased 3 percent, driven by a recovery in consumer confidence and a focus on replacing main TV sets with more full-featured products and larger screen sizes.

The fall in the United States reflected the worldwide decrease of television shipments during the first quarter. However, global TV shipments declined far lower, down by less than 2 percent.

The contraction in global volumes was driven by the decline in the remaining markets for bulky analog cathode ray tube (CRT) sets as well as by the reduction in plasma demand. Other factors responsible for the decrease included a widespread cutback in LCD TV manufacturing volumes by major Japanese vendors, and a repositioning of the market toward fewer, larger-sized TV sets in the mature markets.

Consumers spend more as feature demand increases

As a result of the ASP increase for LCD TVs, revenue was relatively stable by comparison, with total TV revenue dropping by 11 percent in line with total shipments, while LCD TV revenue declined significantly less than shipments, by 4 percent.

For brands relying on the LCD market, this creates an opportunity to expand their margins in the highly competitive TV market.

“The U.S. market is starting to reposition toward higher-end TV sets,” said Veronica Thayer, analyst for consumer electronics & technology at IHS. “Now that most homes have at least one flat-panel TV, consumers have become more discerning in their tastes and place more value on features like light-emitting diode (LED) backlighting, supersized screens and interactive smart TVs.”

Supersized LCD TVs and LED lead the way

Supersized LCD TV sets larger than 50 inches in the diagonal dimension accounted for 27 percent of U.S. LCD TV unit shipments in the first quarter, up from 15 percent one year before.

Furthermore, these large sets represented over half of all U.S. LCD TV revenue, at 53 percent, up sharply from 39 percent one year earlier.

For top television manufacturers, such high-cost sets represent an opportunity to maintain pricing despite declining unit sales in the United States.

Primarily because of increased shipments of 50-inch and 60-inch sets, the ASP for LCD TVs in the United States increased year-on-year in the first quarter. The ASP stood at $704, up from $682 one year earlier.

Meanwhile, LED-backlit sets increased their share of U.S. TV unit shipments to 72 percent, up from 37 percent during the first quarter of 2012. LED sets accounted for 76 percent of total TV revenue, up from 52 percent.

Samsung and Vizio remain the top US TV brands in Q1

In terms of competitive positioning, Samsung Electronics Co. Ltd. earned the highest revenue from the U.S. market for all types of televisions and in the key LCD TV segment, despite strong gains by Vizio Inc.

South Korea’s Samsung during the first three months of 2013 accounted for 31 percent of overall U.S. television market revenue, up from 30 percent during the same period in 2012. The company also expanded its share of U.S. LCD TV revenue to 28 percent, up from 27 percent one year earlier.

Meanwhile, Vizio increased its share of TV revenue sharply, rising to 16 percent, up from 11 percent in 2012. The U.S.-based company also boosted its portion of U.S. LCD TV revenue to 18 percent, up from 14 percent one year earlier, due to the increase in number of large-screen-size TV models offered, particularly the very successful 60-inch, and helped by the brand’s entry into Best Buy.

In terms of volume, the squeeze on the total number of shipped TVs still favored Samsung, with 1.6 million units in the first quarter this year. However, Vizio managed to edge out Samsung on U.S. LCD TV volume during the period by a few thousand units.

“Samsung has retained its position as the leading premium television brand in the United States by capitalizing on demand for premium features, but Vizio is making strong moves in volumes and larger-sized models, although its current revenue is still lower,” Thayer added. “Ultimately, feature-rich sets and large screen sizes lead to higher TV ASPs, which can provide an opportunity for manufacturers to regain margins.”

 

Advanced packaging technology is undergoing dramatic changes as the smart phones and new sensor technologies demand continued improvements in form and function.  To address these massive changes, SEMICON West will feature a number of programs on new packaging technologies and processes with speakers from leading chip makers, equipment manufacturers, and material suppliers.

According to IDC, forecasts semiconductor revenues will log a compound annual growth rate (CAGR) of 4.1 percent from 2011-2016, but revenues for 4G phones will experience annual growth over 100 percent for the same period. NanoMarkets estimates that the global market for “Internet of Things” sensors will reach $1.6 billion this year and grow to a value of $17.6 billion by the end of the decade as sensors become increasingly connected to the Internet directly or through hubs.  Both trends will significantly impact semiconductor and microelectronics packaging.  Demand for equipment and related tools in the 3D-IC and wafer-level packaging area alone is forecasted to grow from approximately $370 million in 2010 to over $2.5 billion by 2016, according to Yole Developpment.

To address these changes, SEMICON West 2013 (register at www.semiconwest.org/registration), held on July 9-11 in San Francisco, will feature a number of programs on new packaging applications, requirements, technologies, and products, including:

  • Generation Mobile:  Enabled by IC Packaging Technologies — Speakers from ASE, UBM Tech Insights, Amkor Technology, SK Hynix, and Universal Scientific Industrial will present on the latest advances in wafer-level packaging, new materials, and multi-die integration, including new System-in-Package (SiP) and Package-on-Package (PoP) methods. Location: Moscone Center (North Hall), TechXPOT North, Tuesday, July 9, 10:30am-12:30pm.
  • “THIN IS IN": Thin Chip & Packaging Technologies as Enablers for Innovations in the Mobility Era — IEEE/CPMT will hold a technical workshop on the overall trend of maximum functional integration in the smallest and thinnest package with lowest packaging costs with speakers from Intel, Cisco, ASE, Micron, SK Hynix, Nanium, Kyocera and more. Location: San Francisco Marriott Marquis, Tuesday, July 9, 1:30-4:45pm.
  • Advancing 2.5D and 3D Packaging through Value Engineering — Speakers from Altera, Amkor, ASE, ASET, KPMG, UMC, STATS ChipPAC and more will take a critical look at 2.5D implementations and the current outlook for 3D packages, including tools and technologies for heterogeneous stacks. Location: Moscone Center (North Hall), TechXPOT North, Wednesday, July 10, 1:00-3:30pm.
  • MEMS & Sensor Packaging for the Internet of Things— This session will feature speakers from all parts of the ecosystem to address how future visions of a pervasive interconnected world will be realized through the heterogeneous integration of MEMS and ICs.  The program will feature keynote speaker Janusz Bryzek from Fairchild Semiconductor, and speakers from VTT Research, Fraunhofer IZM, Robert Bosche, EV Group, Dai Nippon Printing, and more. Location: Moscone Center (North Hall), TechXPOT North, Thursday, July 11, 10:30am-1:00pm.

In addition to the packaging programs, SEMICON West 2013 will also feature over 560 exhibitors with the latest innovation on microelectronics manufacturing, including over 150 exhibitors with equipment and technology solutions for advanced packaging.  Other programs and exhibitors at West will address lithography, advanced materials and processes, silicon photonics, test, LED and MEMS manufacturing, and other subjects.  For more information on SEMICON West and to register, visit www.semiconwest.org

CEA-Leti will present recent advances and a preview of future developments in micro- and nanotechnologies, followed by workshops on key technical fields, during Leti Innovation Days, June 25-28, on the MINATEC campus.

The gathering incorporates Leti’s two-day Annual Review, now in its 15th year. That event provides an update of developments from Leti’s labs and its success in transferring technology to industry.

The 15th Annual Review kicks off on June 25th with two plenary sessions:

  • Envisioning the Future, chaired by Leti CEO Laurent Malier, will include insights from industry leaders into the technological innovations that will shape the future.
  • Enabling the Future, chaired by Pierre-Damien Berger, Leti VP of business development and communication. Presentations will include Leti’s latest developments and the key enabling technologies that will drive advancements in a broad range of sectors.

June 26th presentations by Leti specialists and partners will cover security and safety, environment and health, green IT and nanoelectronics.

“This year’s review powerfully highlights the wide-ranging strengths of Leti’s offer, from continuous innovation to technology transfer and support for SMEs,” said Leti CEO Laurent Malier. “Leti last year demonstrated a new FD-SOI solution that offers a 40 percent improvement in power consumption and a 30 percent frequency improvement, at lower costs. Transferred to manufacturing, it delivered the first application processor product dedicated to smartphones exceeding 3 GHz. We also particularly expanded our actions for SMEs, with a specific initiative allowing them to benefit from the expertise of our researchers and engineers and to access our state-of-the-art equipment.”

The Annual Review will be followed on June 27-28 by five in-depth workshops on design for 3D, memory, photonics, imaging and nanopackaging.

Leti Innovation Days participants will include international and European decision-makers: CEOs, CTOs, marketing and strategy directors, R&D managers, IT and semiconductor companies, innovative SMEs, end-user companies, research institutes, startups and international press. Represented industries include advanced microelectronics, green IT, memory, imaging, LEDs and lighting, safety and security, and healthcare and the environment.

 

Much has been said of the 450mm transition.  But the description of this inflection is something of a misnomer.  Though everyone desires a smooth, coordinated and orderly conversion, it may be a little less placid than the term “transition” implies.  Rather, I suggest calling it the 450mm “transformation.”   Because, even for the segments that continue manufacturing semiconductor devices on 300mm and 200mm silicon wafers, the industry will change dramatically with the introduction of 450mm wafer processing. The 450mm era will impact industry composition, supply chain dynamics, capital spending concentration, future R&D capabilities and many other facets of today’s semiconductor manufacturing industry — not the least of which are the fabs, wafers and tools with which chips are made.

The shift to 450mm will take a several years to manifest and numerous complexities are being skillfully managed by multiple organizations and consortia.   For those reasons, the evolutionary tone of “transition” seems appropriate. However, once the changeover occurs, in hindsight, most in the industry will recognize that they participated in something transformational.

No transformation occurs in isolation and other factors will contribute to the revolutionary qualities of 450mm.  Market factors, new facilities design, next generation processing technology, the changing dynamics of node development and new materials integration will simultaneously affect the industry landscape.

While reading about the implications of 450mm is valuable, I believe that there is much to learn by being a part of the discussion. How is this future transformation being envisioned and acted on today?  I hope that you will join us — at our “live” event, where you will have the opportunity to hear first-hand information… direct from well-informed experts in the industry.

SEMICON West offers this opportunity with “Must See” 450mm events to mark on your calendar…

….450 Consortia plans, timelines and status; equipment development; critical standards; future-looking fab facilities and EHS issues; executive perspective, and vital R&D capabilities will all be covered at SEMICON West.

Wafer Standards

The transition to 450mm manufacturing is accompanied by the development of various standards aimed at achieving cost, efficiency and technology improvements. Some standards are a product of the deliberate consensus-based SEMI International Standards program, which has produced over 15 essential 450mm-specific standards to-date.  Additionally, consortia, customers and suppliers organize complementary efforts to align common approaches to transition solutions.

Potential revisions in the 450mm wafer specification are under consideration.  At least two issues are currently being evaluated by the industry and both portend significant ramifications for wafer suppliers, equipment makers and those technologies that interface with the wafer.

First, the wafer orientation method may be revised to eliminate the orientation “notch” on the perimeter of the substrate. The notch was introduced in the 300mm transition as an alternative to the flat.  However, both equipment suppliers and IC makers, through a constructive and collaborative dialog, have concluded that eliminating the notch can potentially improve the die yield, tool performance and cost.

Secondly, reduction of the wafer edge exclusion area — that peripheral portion of the silicon on which no viable device structure occurs — also offers potential yield advantages.  The current 450mm wafer specification (SEMI E76-0710), originally published in 2010, calls for a 2mm edge exclusion zone.  IC makers believe that reduction of this area to a 1.5mm dimension offers the cost equivalence of a 1 percent yield increase.  Though a percent may sound trivial, it is represents substantial increased value over time.

These and other wafer-related issues will be key topics at SEMICON West and will be thoroughly reviewed on Wednesday, July 10 at the SEMI Standards program entitled “Silicon Wafers — Future Standardization to Enable the Transition.” Materials will be presented by expert speakers including authoritative customers participating in the Global 450 Consortium (G450C), which includes Samsung, TSMC, IBM, Intel and GLOBALFOUNDRIES.

Facilities and EHS

Wafer transitions offer one of the rare periods when new approaches can be developed and integrated into facilities plans.  During the 300mm transition, significant developments occurred in factory automation and wafer handling. Similarly, the 450mm transition is a window to update the industry approach to a number of fab systems. Rising energy costs, water scarcity, and climate change will continue to present both challenges and opportunities for semiconductor manufacturing in the 450mm era. These sustainability concerns are driving demand for tools that can more reliably and cost-effectively achieve a shared vision of resource balance.

Along with cost and efficiency improvements, IC makers and consortia driving the transition to 450mm manufacturing expect to achieve similar or better environmental performance. Larger footprints and resource demands from 450mm facilities in conjunction with mandates for environmentally aware operations are compelling fabs and suppliers to consider sustainability and systems integration at greater levels than ever before. 

Experts in fab facilities, energy, water and equipment engineering will discuss the implications of 450mm to environment, health and safety during the SEMICON West 450mm Manufacturing EHS Forum on Wednesday, July 10.

Included in the presentations are perspectives from the Facility 450 Consortium (F450C) including Ovivo, Edwards and M+W Group.  A holistic Site Resource Model that provides semiconductor manufacturers visibility into effective reduction of total energy and water demands for individual systems, as well as for the entire facility will be reviewed by CH2M Hill. The model is an integrated analytical approach to assess and optimize a semiconductor facility’s thermal energy, electrical energy, and water demand, as well as the cost associated with these resources.

Also, the bigger, heavier and taller equipment envisioned for 450 entails new considerations for installation, movement and maintenance.  Making sure these issues don’t detract from the other cost saving achievements is a key consideration for facilities planning.  G450C representatives will review the status of component lift analysis currently underway. The solutions potentially alter fab facilities dimensions, tool engineering and service regimes.

450 TechXPOT

The SEMICON West 450mm Transition Forum covers the latest updates from those closest to the action.  The event occurs on Thursday, July 11 at the South Hall TechXPOT located in Moscone Center.  Paul Farrar, general manager of Global 450mm Consortium will provide an update and status on G450C. Hamid Zarringhalam, executive vice president, Nikon Precision, will review the challenges and status of 450mm lithography — which is shaping up to be one of the most uncertain yet critical 450mm planning considerations. Chris Richard, a partner at PricewaterhouseCoopers, LLC will talk about “Improving Semiconductor Equipment Vendor Profitability during the 450mm Transition.”

Then, SEMI will host a discussion among the world’s foremost 450mm tool experts from leading equipment companies.  The discussion panel will include: Kirk Hasserjian, corporate vice president, Silicon Systems Group, Applied Materials, Inc., Brian Trafas, Ph.D., chief marketing officer, KLA-Tencor; Mark Fissel, vice president, 450mm Program, Lam Research Corporation; and Akihisa Sekiguchi, Ph.D., vice president and general manager of SPE Marketing, Tokyo Electron Limited.  We have a few provocative topics to review with panel members.  If you have questions or topics you want addressed by those at the front line of the 450mm transformation, feel free to send us your suggestions.

In summary, a transformation will occur in IC manufacturing with the introduction of larger wafers, but it begins with serious engineering that is occurring now.  Attend SEMICON West to learn more about wafer specifications, EHS and facilities— considerations and business strategies for success and be better prepared for the numerous implications of 450mm era.

Learn more about it here: www.semiconwest.org. Register now at www.semiconwest.org/registration.

 

 

Fab equipment spending will grow two percent year-over-year  (US$ 32.5 billion) for 2013 and about 23 to 27 percent in 2014 ($41 billion) according to the May edition of the SEMI World Fab Forecast. Fab construction spending, which can be a strong indicator for future equipment spending, is expected to grow 6.5 percent ($6.6 billion) in 2013, followed by a decline of 18 percent ($5.4 billion) in 2014. The new World Fab Forecast report covers fab information on over 1,140 facilities, including such details as capacities, technology nodes, product types, and spending for construction and equipment for any cleanroom wafer facility by quarter.

Fab equipment spending for the second half of 2013 is expected to be much stronger with a 32 percent growth rate or $18.5 billion compared to the first half of 2013. The equipment spending increase in the second half is attributed to growing semiconductor demand and improving average selling price for chips. 2014 is expected to have about 23 to 27 percent growth year-over-year (YoY) to reach about $41 billion, which would be an all-time record.

Looking at product types, the largest amounts of spending on fab equipment in 2013 will come from the foundry sector, which increases by about 21 percent. This is driven mainly by capex increases by TSMC. The memory sector is expected to have an increase of only one percent — after a 35 percent decline in the previous year. The MPU sector is expected to grow by about five percent. A double-digit increase in the Analog sector in 2013 will still translate into low absolute dollar amounts, compared to the other sectors.  

 

Construction spending is a good indicator for more equipment spending.  Fab construction spending in 2013 is expected to be almost 15 percent growth YoY ($6.6 billion) with 38 known construction projects. Top spenders for fab construction in 2013 are TSMC and Samsung, who plan to spend between $1.5 and $2 billion each, followed by Intel, Globalfoundries and UMC. The SEMI World Fab Forecast report reveals more detail.

2014 shows a decline of about 18 percent ($5.4 billion) in construction spending with only 21 construction projects expected to be on-going. These construction projects include large fabs; some are 450mm-ready. 

Since the last fab database publication at the end February 2013 SEMI’s worldwide dedicated analysis team has made 389 updates to 324 facilities (including Opto/LED fabs) in the database. The latest edition of the World Fab Forecast lists 1,144 facilities (including 310 Opto/LED facilities), with 61 facilities with various probabilities starting production this year and in the near future. Seventeen new facilities were added and 8 facilities were closed.

The SEMI World Fab Forecast uses a bottom-up approach methodology, providing high-level summaries and graphs; and in-depth analyses of capital expenditures, capacities, technology and products by fab. Additionally, the database provides forecasts for the next 18 months by quarter.

The smartphone is a subset of the total cellphone handset marketplace. One basic difference between an enhanced cellphone and a smartphone is the ability of the smartphone to incorporate third-party applications. Smartphones also typically connect to leading-edge cellular network services and are at the forefront of the convergence of data, telecom, and consumer-oriented functions (such as video games, camera, music player, mobile TV, etc.) in a single handheld device.  Most smartphones include touchscreens with built-in wireless modems and GPS/GNSS, and are capable of Web browsing, sending and receiving e-mail, voice recognition, video and audio streaming, running office applications, and over-the-air synching with a PC.

Many in the cellphone industry believe new smartphone designs are reaching the point where they have enough performance to become the primary computing device for many consumers.  If so, the market could be on the verge of entering into “the post-PC era,” as previously identified by the late Steve Jobs, who stirred up controversy with his provocative prediction in June 2010.

The new consumer/Web emphasis in the cellphone market has been a challenge for a number of top-ranked smartphone suppliers (e.g., RIM, Nokia, etc.), which have struggled to refocus their handset designs, software platforms, and business strategies to address the current phase of the fast-growing smartphone segment.

Figure 1 shows that total smartphone shipments grew 47% in 2012 to 712 million units, after surging by 67% to 485 million in 2011.  Moreover, smartphone shipments are forecast to grow by another 37% in 2013 and fall only 25 million units shy of 1.0 billion.  Smartphones are expected to account for over 50% of quarterly shipments for the first time ever in 2Q13.  In fact, smartphone shipments are forecast to reach 300 million units in 4Q13 and represent 60% of total cellphones shipped that quarter.  Smartphones are expected to surpass the 50% penetration level on an annual basis this year and hold 85% of total cellphone shipments in 2016.

In contrast to smartphones, total cellphone unit shipments grew only 1% in 2012 and are forecast to grow only 3% in 2013 (Figure 2).  As shown, non-smartphone cellphone sales were flat in 2011 but showed a 17% decline in 2012.  Moreover, IC Insights expects another 20% drop in non-smartphone handset sales in 2013.

 

Between 2011 and 2016, smartphone shipments are expected to rise at a very strong CAGR of 29% to 1,760 million units in the final year of the forecast period (the 2011-2016 CAGR for non-smartphone unit shipments is -24%).  Overall, the smartphone 2011-2016 unit shipment CAGR is greater than 7x the expected CAGR for total cellphone unit shipments in that same five-year timeframe (4%).

Competition in smartphones intensified in 2012 as suppliers rolled out new handset designs with larger touch-screen displays, more powerful processors, better operating systems, higher-resolution cameras, and new radio-modem connections to the faster “4G” cellular networks, which were quickly spreading in the U.S., South Korea, Europe, and Japan.  In the next few years, new high-speed “4G” networks are planned for China, India, Brazil, the Middle East, and other fast-growing developing markets.

Samsung and Apple dominated the smartphone market in 2012 and are expected to do so again in 2013.  In total, these two companies shipped 354 million smartphones (218 million for Samsung and 136 million for Apple) and held a combined 50% share of the total smartphone market last year.  For 2013, these two companies are forecast to ship 480 million smartphones (300 million for Samsung and 180 million for Apple) and see their combined smartphone unit marketshare slip only one percentage point to 49%.

In 2012, smartphone sales from China-based ZTE, Lenovo, and Huawei surged.  Combined, the three top-10 China-based smartphone suppliers shipped about 80 million smartphones in 2012, more than a 3x increase from the 24 million smartphones these three companies shipped in 2011.  Moreover, these three companies are forecast to ship 142 million smartphones in 2013 and together hold a 15% share of the worldwide smartphone market.  In contrast to the success of the large China-based smartphone suppliers, IC Insights expects RIM and HTC to continue to struggle in the smartphone marketplace in 2013 with both companies forecast to show a double-digit decline in smartphone unit shipments as compared to 2012.

Smartphone suppliers under pressure include Nokia, RIM, and HTC, each of which registered steep double-digit year-over-year declines in smartphone sales in 2012.  Until several years ago, Nokia held a 50% marketshare in smartphones, but in 2008 and 2009, the company saw its share fall below 40% due to increased competition from suppliers targeting consumers with interactive touch-screen handsets that are capable of running multimedia applications.  In 2012, Nokia’s smartphone shipments declined by 55% (to only 35 million units) and represented only a 5% share of the total smartphone market.  Other smartphone producers that have fallen on hard times recently include RIM and HTC.  While each of these companies had about a 10% share of the 2011 smartphone market, IC Insights forecasts that each of them will have only about a 3% share of the 2013 smartphone market.

 Report Details:  IC Market Drivers 2013

IC Market Drivers 2013—A Study of Emerging and Major End-Use Applications Fueling Demand for Integrated Circuits examines the largest, existing system opportunities for ICs and evaluates the potential for new applications that are expected to help fuel the market for ICs.

IC Market Drivers is divided into two parts.  Part 1 provides a detailed forecast of the IC industry by system type, by region, and by IC product type through 2016.  In Part 2, the IC Market Drivers report examines and evaluates key existing and emerging end-use applications that will support and propel the IC industry through 2016.  Some of these applications include the automotive market, cellular phones (including smartphones), personal/mobile computing (including tablets and Ultrabooks), wireless networks, digital imaging, and a review of many applications to watch—those that may potentially provide significant opportunity for IC suppliers later this decade.  The 2013 IC Market Drivers report is priced at $3,190 for an individual-user license and $6,290 for a multi-user corporate license.

Fraunhofer Institute for Solar Energy Systems ISE has joined forces with EV Group (EVG) to develop equipment and process technology to enable electrically conductive and optically transparent direct wafer bonds at room temperature.  The new solutions, developed in partnership with Fraunhofer ISE based on EVG’s recently announced ComBond technology, aim to enable highly mismatched material combinations like gallium arsenide (GaAs) on silicon, GaAs on indium phosphide (InP), InP on germanium (Ge) and GaAs on gallium antimonide (GaSb).  Direct wafer bonding provides the ability to combine a variety of materials with optimal properties for integration into multi-junction solar cells, which can lead to new device architectures with unparalleled performance.

"Using direct semiconductor bond technology developed in cooperation with EVG, we expect that the best material choices for multi-junction solar cell devices will become available and allow us to increase the conversion efficiency toward 50 percent," stated Dr. Frank Dimroth, Head of department III-V – Epitaxy and Solar Cells of Fraunhofer ISE.  "We are excited to partner with EVG, a leading supplier of wafer bonding equipment, to develop industrial tools and processes for this application."

Fraunhofer ISE has developed III-V multi-junction solar cells for more than 20 years and has reached record device efficiencies of up to 41 percent with its metamorphic triple-junction solar cell technology on Ge.  Higher efficiencies require the development of four- and five-junction solar cells with new material combinations to span the full absorption range of the sun’s spectrum between 300-2000 nm.  Integration of III-V solar cells on silicon opens another opportunity to reduce manufacturing cost, especially when combined with modern substrate lift-off technologies.  Direct wafer-bonding is expected to play an important role in the development of next-generation III-V solar cell devices with applications in space as well as in terrestrial concentrator photovoltaics (PV).

"We are excited about refining our new process technology together with Fraunhofer ISE, the largest solar energy research institute in Europe," stated Markus Wimplinger, corporate technology development and IP director for EVG.  "Fraunhofer ISE’s broad expertise in the area of PV, specifically in concentrated PV cell manufacturing and photonics, will allow us to characterize bonding interfaces with respect to PV applications on our new ComBond equipment platform."    

EVG’s ComBond technology has been developed in response to market needs for more sophisticated integration processes for combining materials with different lattice constant and coefficient of thermal expansion (CTE).  The process and equipment technology enables the formation of bond interfaces between heterogeneous materials—such as silicon to compound semiconductors, compound semiconductors to compound semiconductors, Ge to silicon and Ge to compound semiconductors—at room temperature, while achieving excellent bonding strength.  The ComBond technology will be commercially available later this year on a new 200-mm modular platform currently in development, called EVG580 ComBond, which will include process modules that are designed to perform surface preparation processes on both semiconductor materials and metals. 

In addition to PV, other potential application areas for processes developed in cooperation between EVG and Fraunhofer ISE include light emitting diodes (LEDs) and silicon photonics.

Bosch has reached a significant manufacturing milestone. Since the start of production in 1995, the company has manufactured well in excess of three billion MEMS sensors. It took Bosch 13 years to manufacture the first billion, another three years to reach two billion, and only a further 18 months to cross the three-billion mark. In 2012, some 600 million sensors emerged from its wafer fab in Reutlingen, Germany – or 2.4 million each working day.

Bosch supplies sensors for a wide range of applications in the consumer electronics and automotive industries. These sensors measure pressure, acceleration, rotary motion, mass flow, and the earth’s magnetic field. Bosch has been at the forefront of MEMS technology since it first emerged, and today it generates more sales in the extremely dynamic MEMS sensor market than any other supplier.

“It’s no longer possible to imagine automotive or consumer electronics without MEMS sensors. In the future, they will act as the eyes and ears for systems and objects connected via the internet of things and services,” says Klaus Meder, president of the Bosch Automotive Electronics division.

The first application for MEMS sensors was in automotive electronics and Bosch has been producing these precision sensors for use in vehicles since 1995. A yaw-rate sensor that records the rotary movements of the car around its vertical axis is at the heart of ESP, for example, and today each modern vehicle is home to up to 50 MEMS sensors. In an automotive context, the key considerations for MEMS are their reliability and robustness, as the sensors have a direct impact on the safety of road users. Size and energy consumption are much less important factors.

But the picture is quite different when it comes to smartphones or games consoles, which is why Bosch shrunk its sensors over the years to just one fiftieth of their former size. The latest generation of these sensors unites a host of functions in a casing measuring just a few square millimeters. Meanwhile the sensors’ energy consumption has been reduced by a factor of 100. Of all the suppliers in the market, Bosch claims to be the only one producing sensor types for so many different applications. The company holds or has applied for a total of well over 1,000 patents.

Bosch Sensortec GmbH in Reutlingen was founded in 2005. This Bosch subsidiary recently brought the world’s first 9-axis sensor to market. The BMX055 is capable of measuring acceleration, yaw rate, and the earth’s magnetic field in all three spatial directions at the same time, which makes it suitable for a whole range of potential applications. The sensor can be put to work wherever there is a need to pinpoint a mobile device’s spatial location and position – or its orientation relative to the earth’s magnetic field – and can be integrated into even the smallest devices.

By Dr. Zhihong Liu, Executive Chairman, ProPlus Design Solutions, Inc., San Jose, Calif.

Random process variations and layout-dependent effects are a fact of life for designers working at the more advanced process nodes and become critical at 45nm. Besides random and systematic variation effects, reliability effects, such as bias-temperature-instability (BTI), also become prevalent, introducing another dimension of variations that impact parametric yield.

These variations are unavoidable and, in fact, increasing as we move to more advanced nodes, where circuit designers encounter yield problems and need to spend extra effort on variation analysis for yield and performance trade-off. 

On one side, foundries have to double or even triple their efforts to make complicated model libraries to characterize different types of variations, despite having to cover variation sources across the full statistical space –– an impracticality.

Conversely, efficiently running variation analysis with the best use of foundry models becomes critical for circuit designers, and is one of the more challenging aspects of system-on-chip (SoC) design that project teams face daily.

This means design-for-yield (DFY) considerations are more important than ever. And yet, we as an industry may not fully understand device modeling and its impact on DFY results. This is due in large measure to no clear definition of DFY. Some people are confused by DFY and design-for-manufacturing (DFM), and consider DFY a foundry’s responsibility or do not know what the role of DFY is. The value of DFY highly relies on how “good” the foundry models are and how efficient the tool can leverage model information to run needed analysis, such as statistical circuit simulations.

Foundry models can never be perfect, but represent process information that a DFY analysis requires. Designers need to have an appropriate expectation on models, especially for advanced technologies, and also understand model limitations. With this understanding, extracting information from models and making good use of this information together with DFY tools is becoming more critical.

Of course, DFY is not a new phenomenon and tools being categorized for DFY have been available commercially for some time now. They haven’t been widely adopted because they have not provided enough value to project teams due to the lack of information or confidence in the analysis results. Statistical simulation, such as Monte Carlo analysis, has been costly and time consuming, even for a 3s problem. Designers either skip Monte Carlo or often run a small number of samples that can limit the confidence level, making DFY analysis results unreliable and less valuable. Other types of analysis, including process-voltage-temperature (PVT) analysis, also run into similar problems if designers want to cover all corner cases that can easily increase up to hundreds of corners. A faster simulation engine, intelligent statistical analysis algorithms, and better use of foundry model information are the key components that EDA companies need to provide to make DFY tools more practical and reliable.

The final key would be on the application side. Circuit designers need to understand when and where they can apply DFY on top of their traditional design flow, and how to leverage DFY to achieve an optimal yield versus performance-power-area (PPA) trade-off.

Please join Solid State Technology’s own Pete Singer who will moderate a panel discussion on this topic, “Learn the Secrets of Design for Yield,” during the 50th Design Automation Conference (DAC). It will be held Wednesday, June 5, from 1:30 p.m. until 2:15 p.m. in Booth #509 on the Exhibit Floor at the Austin Convention Center in Austin, Texas.

A panel of foundry experts will weigh in with their opinions: Dr. Min-Chie Jeng from Taiwan Semiconductor Manufacturing Co. (TSMC); Dr. Luigi Capodieci from GLOBALFOUNDRIES; and Dr. Bruce McGaughy from ProPlus Design Solutions, Inc. They will share best practices and techniques to manage these sub-nanometer effects to improve manufacturability and yield. You can expect some insights into how foundries handle variations and how models are created. They will discuss how EDA companies handle variations in their tools, making variation analysis faster yet still reliable. And finally, attendees can expect to get some guidance and advice on how to better use foundry models and how to better use DFY tools in real designs.

As an organizer, along with Tom Wong of GLOBALFOUNDRIES, I expect to learn plenty and will share some of the conclusions in future blogs, including whether design for yield is the same as design for manufacturing.

About Zhihong Liu

Dr. Zhihong Liu is executive chairman of ProPlus Design Solutions, Inc. He was most recently corporate vice president for CSV R&D at Cadence Design Systems Inc. Dr. Liu co-founded BTA Technology Inc. in 1993 and invented BSIMPro, the leading SPICE modeling product. He also served as the president and chief executive officer of BTA Technology Inc. and later Celestry Design Technology Inc., acquired by Cadence in 2003. Dr. Liu holds a Ph.D. degree in Electrical Engineering from the University of Hong Kong and co-developed the industry’s first standard model (BSIM3) for IC designs as one of the main contributors at the University of California at Berkeley.