Category Archives: Online Magazines

Ten product categories, led by tablet MPUs and cellphone application MPUs, are forecast to exceed the 6% growth rate forecast for the total IC market this year, according to IC Insights’ 2013 McClean Report.  This report identifies and segments the total IC market into 34 major IC product categories.  Five categories are forecast to enjoy double-digit growth.  The number of categories with positive growth is expected to more than double to 22 in 2013 from 10 in 2012.

Consumer-driven mobile media devices, particularly smartphones and tablet computers, are forecast to keep the tablet MPU (50%) and cellphone application MPU (28%) segments at the top of the growth list for the third consecutive year.  Other IC categories that support mobile systems—including NAND flash (12%) and special-purpose logic devices—are expected to enjoy better-than-industry-average growth in 2013, as well.

Due to increasing demand for higher levels of precision in embedded-processing systems and the growth in connectivity using the Internet, the market for 32-bit MCUs is also forecast to outpace total IC market growth in 2013.  Embedded applications in medical/health systems and smartcards have helped boost the 32-bit MCU market.  In the automotive world, demand for 32-bit MCUs is being driven by “intelligent” car systems such as driver information systems and semi-autonomous driving features such as self-parking, advanced cruise controls, and collision-avoidance systems.  In the next few years, complex 32-bit MCUs are expected to account for over 25% of the processing power in vehicles.

After back-to-back years of steep declines in 2011 and 2012, the DRAM market is forecast to increase 9% in 2013, three points more than the total IC market.  DRAM unit growth is expected to increase only 2%, but the overall average selling price is forecast to jump 7% this year.  In five of the past six years (2007-2012) the DRAM market declined, which took its toll on weaker suppliers.  Fewer suppliers in the marketplace mean fewer competitors trying to undercut each other’s prices in order to gain marketshare and enhances the likelihood of a more stable pricing environment in the coming year.

Interestingly, in a world that is increasingly wireless, two IC categories of “wired” telecom ICs are forecast to grow faster than the total IC market.  Wired telecom—special purpose logic/MPR and wired telecom—application-specific analog are forecast to grow by 13% and 11%, respectively.

Telecom companies and network operators have been upgrading their long-haul and metropolitan-wide communications systems, which require many high-speed transmission ICs and other circuits. New 100Gb/s technology has been ready for deployment since 2009 and is being deployed now. Next-generation transmission technology and ICs for 1 trillion bits per second ("Terabit") networks are in development.

Telecom and network operators say data traffic is increasing more than 50% per year due to growing use of the Internet and video transmissions.  All wireless traffic eventually goes through high-speed cable transmission "backbone" networks—communications are routed over long distance via optical cable before getting to the cellular network on the other end.  All the mobile Internet, data, and video traffic has to go through a cable network and that is driving up the market for wired telecom—special-purpose logic/MPR and wired telecom—application-specific analog.  To a lesser degree, the wired telecom segments are growing on account of developing country markets where the use of landline phones is increasing.

Additional details on IC product markets are included in the 2013 edition of IC Insights’ flagship report, The McClean Report—A Complete Analysis and Forecast of the Integrated Circuit Industry, which features more than 400 tables and graphs in the main report.

solid state thin film batteryVarious power factors have impacted the advancement and development of micro devices. Power density, cell weight, battery life and form factor all have proven significant and cumbersome when considered for micro applications. Markets for solid state thin-film batteries at $65.9 million in 2012 are anticipated to reach $5.95 billion by 2019, according to a new report released by ReportsnReports.com. Market growth is a result of the implementation of a connected world of sensors.

The report points out that development trends are pointing toward integration and miniaturization. Many technologies have progressed down the curve, but traditional batteries have not kept pace. The technology adoption of solid state batteries has implications to the chip grid. One key implication is a drive to integrate intelligent rechargeable energy storage into the chip grid. In order to achieve this requirement, a new product technology has been embraced: solid state rechargeable energy storage devices are far more useful than non-rechargeable devices.

Thin film battery market driving forces include creating business inflection by delivering technology that supports entirely new capabilities. Sensor networks are creating demand for thin film solid state devices. Vendors doubled revenue and almost tripled production volume from first quarter. Multiple customers are moving into production with innovative products after successful trials.

A solid state battery electrolyte is a solid, not porous liquid. The solid is denser than liquid, contributing to the higher energy density. Charging is complex. In an energy-harvesting application, where the discharge is only a little and then there is a trickle back up, the number of recharge cycles goes way up. The cycles increase by the inverse of the depth of discharge. Long shelf life is a benefit of being a solid state battery. The fact that the battery housing does not need to deal with gases and vapors as a part of the charging/discharging process is another advantage of the solid state thin film battery.

Traditional lithium-ion (Li-Ion) technology uses active materials, such as lithium cobalt-oxide or lithium iron phosphate, with particles that range in size between 5 and 20 micrometers. Nano-engineering improves many of the failings of present battery technology. Re-charging time and battery memory are important aspects of nano-structures. Researching battery micro- and nanostructure is a whole new approach that is only just beginning to be explored.

Industrial production of nano batteries requires production of the electrode coatings in large batches so that large numbers of cells can be produced from the same material. Manufacturers using nano materials in their chemistry had to develop unique mixing and handling technologies.

Cymbet millimeter scale solid state battery applications are evolving. In the case of the intra-ocular pressure monitor, it is desirable to place microelectronic systems in very small spaces. Advances in ultra-low power integrated circuits, MEMS sensors and solid state batteries are making these systems a reality. Miniature wireless sensors, data loggers and computers can be embedded in hundreds of applications and millions of locations.

wafer revenues decreaseWorldwide silicon wafer revenues declined by 12 percent in 2012 compared to 2011, according to the SEMI Silicon Manufacturers Group (SMG) in its year-end analysis of the silicon wafer industry. Worldwide silicon wafer area shipments declined 0.1 percent in 2012 when compared to 2011 area shipments.

In 2012, silicon wafer area shipments totaled 9,031 million square inches (MSI), down from the 9,043 million square inches shipped during 2011. Revenues totaled $8.7 billion down from $9.9 billion posted in 2011.

"Much like semiconductor unit shipments, semiconductor silicon shipments started out the year strong; however, shipments weakened during the second half of the year,” said Byungseop Hong, chairman of SEMI SMG and director of Global Marketing at LG Siltron. “Despite challenges in the market, 300 mm volume shipments reached record levels.”

Read more: When will the semiconductor industry recover?

Annual Silicon* Industry Trends

 

2007

2008

2009

2010

2011

2012

Area Shipments (MSI)

8,661

8,137

6,707

9,370

9,043

9,031

Revenues ($B)

12.1

11.4

6.7

9.7

9.9

8.7

*Shipments are for semiconductor applications only and do not include solar applications

Silicon wafers are the fundamental building material for semiconductors, which in turn, are vital components of virtually all electronics goods, including computers, telecommunications products, and consumer electronics. The highly engineered thin round disks are produced in various diameters (from one inch to 12 inches) and serve as the substrate material on which most semiconductor devices or "chips" are fabricated.

This report was compiled and released by the the Silicon Manufacturers Group, which acts as an independent special interest group within the SEMI association. The group’s purpose is to facilitate collective efforts on issues related to the silicon industry, including the development of market information and statistics about the silicon industry and the semiconductor market.

SEMI is the global industry association with over 2,000 members, serving the nano- and microelectronics manufacturing supply chains. 

Imagers

Since 2010, there has been growth beyond expectations in the adoption of mobile devices, such as smart phones and tablets, which has called for larger volumes of CMOS image sensor chips to be produced. The resolution and miniaturization races are ongoing, and performance metrics are also becoming more stringent. In addition to the conventional pixel shrinkage, a “more than Moore” trend is increasingly evident. Resolutions of over 20 Mpixels are commercially available for mobile devices employing enhanced small-size pixels. Thanks to the innovative readout and ADC architectures embedded at the column and chip levels, data rates approaching 50Gb/s and a noise floor below single electron have been demonstrated. In addition to the conventional applications, ultra-low-power vision sensors, 3D, high-speed, and multispectral imaging are the front-running emerging technologies.

Back-side Illumination (BSI) is now the mainstream technology for high-volume, high-performance mobile applications, 1.12μm BSI pixels are available, and the industry is potentially moving towards 0.9μm pixel pitch and below. Additional innovative technologies outside of the traditional scaling include advanced 3D stacking of a specialized image sensor layer on top of deep-submicron digital CMOS (65nm 1P7M) using through silicon vias (TSVs) and micro-bumps. The importance of digital-signal-processing technology in cameras continues to grow in order to mitigate sensor imperfections and noise, and to compensate for optical limitations. The level of sensor computation is increasing to thousands of operations-per pixel, requiring high-performance and low-power digital-signal-processing solutions. In parallel with these efforts is a trend throughout the image sensor industry toward higher levels of integration to reduce system costs.

Ultra-low-power vision sensors are being reported in which more programmability and computation is performed at the pixel level in order to extract scene information such as object features and motion.

Lightfield/plenoptic commercial cameras, which have been available since 2010, are now gaining popularity and are being marketed for 3D imaging and/or all-in-focus 2D imaging. On-chip stereoscopic vision has been demonstrated through digital micro lenses (DML), paving the way to next-generation passive 3D imaging for mobile and entertainment applications, e.g. through gesture control user interfaces.

Significant R&D effort is being spent on active 3D imaging time-of-flight (TOF) applications to support requirements from autonomous driving, gaming, and industrial applications, addressing open challenges like background light immunity, higher spatial resolution, and longer distance range. Deep-submicron CMOS single-photon avalanche diodes (SPADs) have been developed by several groups using different technology nodes. They are now capable of meeting the requirements for high resolution, high timing accuracy by employing highly parallel time-to-digital-converters (TDCs) and small pixel pitch with better fill factor.

Ultra-high-speed image sensors for scientific imaging applications with up to 20Mfps acquisition speed have been demonstrated.

Multispectral imaging is gaining a lot of interest from the image sensor community: several research groups have demonstrated fully CMOS room-temperature THz image sensors, and a hybrid sensor capable of simultaneous visible, IR, and THz detection has been reported.

The share of CCDs continues to shrink in machine vision, compact DSC and security applications. Only for high-end digital cameras for astronomy and medical imaging do CCDs still maintain a significant market share.

Sensors & MEMS

A 4×4 array of sensing cells, developed by Dr. Peng Peng of Seagate Technology, from Flexible Microtactile Sensor for Normal and Shear Elasticity (IEEE Transactions on Industrial Electronics)

MEMS inertial sensors are finding widespread use in consumer applications to provide enhanced user interfaces, localization, and image stabilization. Accelerometers and gyroscopes are being combined with 3D magnetic-field sensors to form nine-degree-of-freedom devices, and pressure sensors will eventually add a 10th degree. The power consumption of such devices is becoming sufficiently low for the sensor to be on all the time, enhancing indoor navigation. There have been further advances in heterogeneous integration of MEMS with interface circuits in supporting increased performance, larger sensor arrays, reduced noise sensitivity, reduced size, and lower costs.

To address the stringent requirements of automotive, industrial, mobile, and scientific application, MEMS inertial sensors, pressure sensors and microphones are becoming more robust against electromagnetic interference (EMI), packaging parasitics, process voltage temperature (PVT) variations, humidity, and vibration.

Sensor interfaces achieve increasingly high resolution and dynamic range while maintaining or improving power or energy efficiency. This is achieved through techniques such as zooming, non-uniform quantization, and compensation for baseline values.

New calibration approaches, such as voltage calibration, are being adopted for BJT-based temperature sensors to reduce cost. In addition to thermal management applications (prevention of overheating in microprocessors and SoCs), temperature sensors are also increasingly co-integrated with other sensors (e.g. humidity, pressure, and current sensors) and MEMS resonators for cross-sensitivity compensation. Alternative temperature-sensing concepts find their way into applications with specific requirements not easily addressed by BJTs: thermal diffusivity-based sensing for high-temperature applications; thermistor-based and Q-based concepts for in-situ temperature sensing of MEMS devices and for ultra-low voltage operation.

MEMS oscillators continue to improve; phase noise is now low enough for demanding RF applications, 12kHz-to-20MHz integrated jitter is now below 0.5ps, and frequency accuracy is now better than 0.5ppm. Consumer applications are adopting new low-power and low-cost oscillators.

Biomedical

There have been continuous achievements in the area of ICs for neural and biopotential interfacing technologies. Spatial resolution of neural monitoring devices is being reduced utilizing the benefits of CMOS technology. IC providers are increasing their component offerings towards miniaturization of portable medical devices.

Telemedicine and remote-monitoring applications are expanding with support from IC manufacturing companies. The applications of such systems are not limited to services targeted for elderly or chronically ill patients; for example there are several technologies developed to enhance the way clinical trials are conducted by monitoring patient adherence and by improving data collection. Low power WiFi, and Bluetooth-low-energy is emerging as a standard wireless connection between portable communication services and wearable technology.

Smart biomolecular sensing is another major trend that marries solid-state and biochemical worlds together with the ultimate goal of enabling a more predictive and preventative medicine. With the help of the accuracy and parallelism enabled by CMOS technology, time, cost, and error rate of DNA sequencing may be significantly improved. Direct electronic readout may relax the need for complex biochemical assays. Similar trends are becoming increasingly evident in the space of proteomics and sample preparation.

Even for medical imaging, there is a trend from hospital imaging toward point-of-care and portable devices. A key example is in the space of portable high-resolution ultrasounds in which larger scientific imaging setups are being integrated onto the sensor by process technology (e.g. integrated spectral filters, CMUT). Another example is in the space of molecular imaging. The advent of silicon photomultipliers (SiPM) providing a solid-state alternative to PMTs enable the realization of PET scanners compatible with MRI, opening the way to new frontiers in the field of cancer diagnostics. More recently, SiPMs realized within deep-submicron CMOS technologies have allowed the integration at pixel- and chip-level of extra features, e.g. multiple timestamp extraction, allowing in perspective a dramatic reduction of the system cost.

Displays

The desire to put much higher-resolution and higher-definition displays into mobile applications is one of the display technology trends, and it is now opening a Full HD smartphone era.  440ppi high-definition displays are expected, even for 5-inch display sizes. Low-temperature polysilicon (LTPS) technology seems to have more merits over a-Si TFT technology. But a-Si TFT and oxide TFT technologies supported by compensating driver systems are being prepared to compete with it. Very-large-size LCD TVs over 84 inches, and UD (3840×2160) resolution are now the leading entertainment systems. 55-inch AMOLED TVs with Full HD resolution are also opening new opportunities in consumer applications.

As touch-screen displays for mobile devices become increasingly thin, capacitive touch sensors move closer to the display. The resulting in-cell touch displays come with reduced signal levels due to increased parasitics, and increased interference from the display and switched-mode chargers. Noise immunity is improved by adopting noise filtering and new signal modulation approaches.

This and other related topics will be discussed at length at ISSCC 2013, the foremost global forum for new developments in the integrated-circuit industry. ISSCC, the International Solid-State Circuits Conference, will be held on February 17-21, 2013, at the San Francisco Marriott Marquis Hotel.

large area flexible displaysTechnology directions in the field of large-area and low-temperature electronics focuses on lowering the cost-per-unit-area, instead of increasing the number of functions-per-unit-area that is accomplished in crystalline Si technology according to the well-known Moore’s law.

A clear breakthrough in research for large area electronics in the last decade has been the development of thin-filmtransistor, or TFT processes with an extremely low temperature budget of (<150°C) enabling manufacturing of flexible and inexpensive substrates like plastic films and paper.

The materials used for these developments have for a long time been carbon-based organic molecules like pentacene with properties of p-type semiconductors. More recently, air-stable organic n-type semiconductors and amorphous metal oxides, which are also n-type semiconductors, have emerged. The most popular metal oxide semiconductor is amorphous Indium Gallium Zinc Oxide, or IGZO, but variants exist, such as Zinc Oxide, Zinc Tin Oxide, and so on. The mobility of n- and p-type organic semiconductors has reached values exceeding 10 cm2Vs, which is already at par or exceeding the performance of amorphous silicon. Amorphous metal oxide transistors have typical charge carrier mobility of 10 to 20 cm2/Vs. Operational stability of all semiconductor materials has greatly improved, and should be sufficient to enable commercial applications, especially in combination with large-area compatible barrier layers to seal the transistor stack.

In the state-of-the-art p-type only, n-type only and complementary technologies are available. For the latter, all-organic implementations have been shown, but also hybrid solutions, featuring the integration of p-type organic with n-type oxide TFTs. Most TFTs are still manufactured with technologies from display-lines, using subtractive methods based on lithography. However, there is a clear emphasis on the development of technologies that could provide higher production throughput, based on different technologies borrowed from the graphic printing world like screen and inkjet printing. The feature sizes and spread of characteristics of printed TFT technologies are still larger than those made by lithography, but there is clear progress in the field.

The prime application for these TFT families are backplanes for active-matrix displays, including in particular flexible displays. Organic TFTs are well-suited for electronic paper-type displays, whereas oxide TFTs are targeting OLED displays. Furthermore, these thin-film transistors on foil are well-suited for integration with temperature or chemical sensors, pressure-sensitive foils, photodiode arrays, antennas, sheets capable of distributing RF power to appliances, energy scavenging devices, and so on, which will lead to hybrid integrated systems on foil. Early demonstrations include smart labels, smart shop shelves, smart medical patches, etc. They are enabled by a continuous progress in the complexity of analog TFT circuits targeting the interface with sensors and actuators, to modulate, amplify and convert analog signals as well as progress in digital TFT circuits and non-volatile memory to process and store information.

In line with this trend, ISSCC 2013 features three papers representing the latest state-of-the-art of organic thin-film transistor circuits. A front-end amplifier array for EMG measurement is demonstrated for the first time with organic electronics in paper 6.4. Transistor mismatch and power consumption of the amplifier are reduced by 92% and 56%, respectively, by selecting and connecting the transistors trough a post-inkjet printing. Papers 6.5 and 6.6 present advances in analog-to-digital converters for sensing applications. Papers 6.5 demonstrates the first ADC that integrates on the same chips resistors and printed n and p-type transistors. The ADC achieves an SNDR of 19.6dB, SNR of 25.7dB and BW of 2Hz. In Papers 6.6, an ADC made only with p-type transistors is presented that has the highest linearity without calibration and that is 14 times smaller than previous works using the same technology.

This and other related topics will be discussed at length at ISSCC 2013, the foremost global forum for new developments in the integrated-circuit industry. ISSCC, the International Solid-State Circuits Conference, will be held on February 17-21, 2013, at the San Francisco Marriott Marquis Hotel.

Tronics to produce break-through MEMS technologyTronics has recently launched a new large-scale MEMS project to industrialize CEA-Leti’s breakthrough M&NEMS, or Micro and Nano Electro-Mechanical Systems, technology. This technology is based on piezoresistive nanowires rather than pure capacitive detection, which will advance device performance and chip size. This project sets the stage for a new generation of combo sensors for motion sensing applications.

Within two years, the team will develop 6 DOF, 9 DOF and higher DOF devices, where all sensing elements are using the same M&NEMS technology. The goal is to achieve both significant surface reduction and performance improvement of the multi-DOF sensors. Beyond the smaller die size and the ultra-low power consumption, M&NEMS technology allows manufacturing of all the sensor’s axes with one unique technology platform. This high level of integration and commonality simplifies the associated control and readout electronic circuits, both in terms of design and operational efficiency.

In addition to investments by Tronics and its partners, a substantial portion of the project’s cost is supported by a 6.5 million euros grant provided by the French Ministry of Industry within its Nanoelectronique Industrial Support program.

To generate the volumes required by consumer applications, Tronics plans to support the technology all the way to high volume eight inch production maturity.

“This is the most exciting technological endeavor I have been involved in in the last 10 years,” Peter Pfluger, CEO of Tronics, said. “This technology truly has the potential to be disruptive in the motion sensing business.”

Tier one pilot customers and well-established industrial partners are involved in the initiative, to ensure its fit with market needs and its rapid convergence to actual products. Leading ASIC suppliers are also contributing their expertise to design a motion sensor chipset that fully leverages the M&NEMS strengths. Last but not least, data fusion software specialist Movea is providing its expertise to enable advanced motion capture capabilities, such as indoor navigation and dead-reckoning.

In the second article of the MEMS new product development blog, the importance of the first prototype will be discussed. Theoretical work is valuable and a necessary step in this process but nothing shows proof of principle and sells a design like a working prototype. It’s something people can touch, observe and investigate while distracting them from doubt associated with change. Building multiple prototypes in this first phase is equally important to begin validation early and show repeatability or provide evidence to change design and process directions.

The first prototypes should include both non functional and function samples. The non functional samples are used to test one or more characteristics such as burst strength of a pressure sensor element. Fully functional samples can be used to test multiple performance interactions. An interaction is likely to include how the packaging of a MEMS device influences its accuracy or how exposure to environmental conditions affect sensor performance over life. Let’s look at a few examples of how prototypes can influence proper decision making and expedite new product development.

When working with an OEM on the development of a MEMS sensor, the team hit a road block with the customer pursuing one design direction (for very specific reasons) and the sensor team trying to make a change to improve sensor performance in fluid drainage. The sensor package had two long, narrow ports of specific diameter and the customer was resistant to change because of envelope size constraints and the need to retrofit legacy products in the field. However, the diameter of the ports was the most important factor in improving drainage. Engineers on both sides threw around theories for months with no common ground achieved before a prototype was made. Then a prototype was built with several different size ports and a drainage study was completed. A video was made showing visual evidence of the test results. It turned out that making a 2 mm increase in port diameter resulted in full drainage with gravity where the previous design held fluid until it was vigorously shook.  When the customer saw the results of the prototype testing in the video, a solution to open port diameter was reached in just a days including a method to retrofit existing products in production.   

For another application, the engineering team needed to develop a method to prevent rotation of a MEMS sensor package. The customer requested that rotation be eliminated with a key feature added at the end of a threaded port. One method to achieve this is through broaching. This method involves cutting a circular blind hole, using a secondary tool to cut the material to a slightly different shape such a hexagon and then removing the remaining chip with a post drill operation. When the idea was first introduced, most experts stated it was crazy to attempt such a feature in hardened stainless steel and no quoted the business. However, the team built a prototype to test the idea. Our first prototype successfully broached 3 holes and then the tool failed due to a large chip in the tool’s tip. The team examined the failure and learned that the chip in the tool resulted from a sharp cutting edge. The material was also suboptimal for this broaching process but it was obtained quickly. Learning from these mistakes the team chose a more robust material and slightly dulled the cutting edge. These changes improved tool life from 3 to 92 broaches. This was a significant improvement but not to the point of a robust manufacturing process. Again learning from the prototype the team saw evidence heat was playing a role in the failure. This led the team to change to a more robust lubrication (something similar to the consistency of honey). This single, additional change improved tool life from 92 to over 1100 broaches and it was learned that increased tool life could be obtained with periodic sharpening and dulling the edge slightly. With further development, over 12,000 broaches were obtained in a single sharpening with tool life lasting over 96,000 broaches. Hence a prototype quickly showed proof of concept but also led to process and tool design changes that provided a successful solution.  

The last example is of a fully functional, prototype MEMS pressure sensor. Prior to building a prototype, analytical tools such as finite element analysis were used to predict interactions between the packaging and sense element when large external loads were applied to package extremities. These models are highly complex and often misuse of the tool by non experienced users results in team skepticism of the results. Colleagues may refer to work of this nature as "pretty pictures" but not very meaningful or doubtful at best. However, when performed properly with attention to meshing, material properties, boundary conditions, applied loads and solvers accurate results can be obtained. This allows for multiple design iterations analytically prior to the first prototype to ensure the sensor has the highest probability of achieving the desired performance. After finding a design solution where the packaging had less than 0.1% influence on the MEMS sense element performance, prototypes were built to validate both the optimized (slightly higher cost, better predicted performance) and a non optimized design (lower cost, lower predicted performance).  Upon validation of both prototypes the team found over 90% correlation between experimental and theoretical results. In addition, the first prototype (although having some flaws) was very functional and performed well enough to be used in a customer validation station.  With high correlation between theory and experimentation, the once questionable results were validated as trustworthy and further FEA could be performed for design optimization.

In each of the case studies reviewed above, it was seen that early prototypes led to a wealth of information for the engineering team and proof of principle. In some cases, proof of principle is not obtained and design / process direction needs to change which is equally valuable information. The first prototypes can also be extremely valuable for influencing colleagues, customers and managers to pursue a particular design or process direction when theory can be disputed at length. In the next article of the blog, critical design and process steps that lead to successful first prototypes will be discussed.   

 

Author Biography:

David DiPaola is Managing Director for DiPaola Consulting, a company focused on engineering and management solutions for electromechanical systems, sensors and MEMS products. A 16 year veteran of the field, he has brought many products from concept to production in high volume with outstanding quality. His work in design and process development spans multiple industries including automotive, medical, industrial and consumer electronics. Previously he has held engineering management and technical staff positions at Texas Instruments and Sensata Technologies, authored numerous technical papers and holds 5 patents. To learn more, please visit www.dceams.com.  

In the second of two installments, Linx Consulting reports a steady growth in semiconductor production, as released in The Econometric Semiconductor Forecast.  The first installment focused on regional developments that will affect semiconductor industry growth.

Semiconductor production to see steady growth after 2013

The weakness in economic growth spills into end products containing semiconductors in 2012 and early 2013.  Our model relating final demands to aggregate semiconductor production (measured by SEMI’s Million Square Inches of silicon processed, MSI) suggests weak demand was anticipated in 2012, and that by early 2013, enough improvement in end markets occurs to push growth up at a modest pace that averages slightly less than 6% for the full year.   By 2014, growth should recover to long-term potential growth for MSI of approximately 7%/year.

 

Figure 1: Aggregate semiconductor production from 1955 to present, with forecast to 2015.

Key assumptions driving this forecast include some solution to the fiscal cliff dilemma that permits US consumers and businesses to begin to return to more normal conditions.  Removing uncertainty drives a modest expansion US spending on technology goods of around 2.3%, up from the anemic 0.8% growth anticipated for 2012.  Most of that growth will occur in the second half of 2013, as it will take some time for businesses to analyze the new policy environment and then implement investment plans.  Inventory-shipment ratios for technology goods, which are spiking in the last half of 2012, are assumed to recede on a steady pace to more typical levels through 2013.  If shipments in IT goods do not develop as expected, the quarterly pattern above would most likely show a steeper decline in 2012Q4 and a further decline in 2013Q1, followed by strong gains in Q2 or Q3.

 

Figure 2: The difference between Segment Demand and Total Silicon Area (includes test and monitor wafers).

Strongest growth will remain in flash memories and logic devices

The overall picture of MSI growth breaks down into the expected performance of device segments and technology nodes.  Despite the shift to consumer electronics and mobile platforms, we expect growth to be concentrated in CMOS products with a continuing slowing of unit growth and analog and discrete devices.  Strongest growth will remain with flash memories, and advanced foundry logic devices targeted at tablets and phones.

In contrast with advanced memory and logic processing, approximately 56% of the market continues to be produced at design dimensions in excess of 100 nm on wafer sizes at 200 mm or smaller.  This market segment is extremely sensitive to economic volatility and has slowed significantly in the last four years.  Manufacturers of these devices are often capital constrained and extremely cost sensitive, leading to little process innovation and limited capacity expansion.

More silicon area at 32 nm produced in 2012 than any other node

On a technology basis, despite tight capital budgets, the introduction of devices at 28 and 22nm half pitches continues apace, and significant process challenges are driving increased complexity and resultant challenges in patterning, cleaning, CMP and deposition throughout the device manufacturing process.  2012 is forecast to have produced more silicon area at 32nm than any other node, and the introduction of low 20nm half pitches and flash has continued to grow startling rates. 

In total devices manufactured at 65nm and below continued to show strong area growth in 2012 of 14%, with devices at 90nm and above largely offsetting declines from 2011 with 8% growth in 2012, but flat performance on average.

 

 

Mitsubishi Electric Corporation announced this week that it has developed a prototype multi-wire electrical discharge processing technology to cut very hard four inch square polycrystalline silicon carbide (SiC) ingots into 40 pieces at once. The technology is expected to improve both the productivity of SiC slicing and the effective use of SiC material. Mitsubishi Electric aims to market its multi-wire electrical discharge slicer by fiscal 2015.

SiC is expected to be used increasingly in power semiconductors due to its superior energy-saving and CO2 emissions-reduction properties compared to silicon. Additionally, SiC, along with GaN, zinc oxide (ZnO) and silicon (Si) substrates are considered as the future LED substrates, thanks to low lattice mismatches.

The prevalence of SiC in the semiconductor industry has grown over the past few years, as Si substrates are relatively cheap and benefit from the long process history of semiconductor manufacturing on Si. Currently, Cree is producing epi-wafers using a SiC substrate.

Until now, sliced wafers have been produced through multi-wire saw with diamond particles because SiC is the third hardest compound on earth, but this method requires lengthy machining time and large kerf widths. The new parallel multi-wire electrical discharge machining method utilizes Mitsubishi Electric’s proven electrical discharge technology for difficult-to-cut material, and employs a dedicated power supply specially developed for SiC.

Key technologies of Mitsubishi Electric’s electrical discharge technology

Mitsubishi Electric’s electrical discharge technology provides a method of simultaneously cutting of SiC ingots into 40 pieces.  Forty wire electrodes with a diameter of 0.1 mm aligned at 0.6mm intervals are rotated to cut 40 slices at once, improving productivity. The non-contact, thermal process-wire electrical discharge method slices faster and at closer intervals compared to contact cutting (220 micro meters or less cut at a speed of 80 micro meters per minute). More wafer slices extracted per SiC ingot for improved efficiency.

The power supply dedicated to SiC slice processing allows for simultaneous wire cuts with even energy enabled by 40 electrically independent power feed contacts to wire electrodes. The power supply also means uninterrupted processing with even very thing (0.1mm) wire electrodes, thanks to a newly developed high-frequency power supply tailored to the characteristics of SiC material.

Packaging and assembly are key segments of the growing semiconductor supply chain in China. Based on our tracking of 139 companies, and considering numerous small companies not tracked in detail, there are over 200 companies competing in the packaging and assembly market in China. Although many are small companies manufacturing low-pin count devices, all of the world’s “Top 10” OSAT, Outsourced Semiconductor Assembly and Test, players have one or more assembly and testing facilities in China as shown below. Eight of the world top 10 IDM companies have assembly and test manufacturing facilities in China, and most entered into China earlier than the OSAT players, in the mid-1990s.

Top Ten OSAT Facilities in China

1)    ASE

2)    Amkor

3)    SPIL

4)    STATS ChipPAC

5)    Powertech

6)    UTAC

7)    ChipMOS

8)    JCET

9)    KYEC

10)    Unisem

In addition to the international companies, domestic subcontractor companies are increasingly joining the global outsourcing market. The assembly of small-size optoelectronic chips like CMOS image sensors is the most mature 3D through-silicon via platform at the moment and China players occupy an important place through transferring authorized technology from oversea partners. Also, domestic semiconductor equipment suppliers that previously focused on front-end tool development are applying their products in wafer level package and TSV assembly.

With the growth of semiconductor packaging industry in China, domestic packaging material suppliers are emerging with the industry and are now starting to serve the worldwide leading packaging houses. Given the emphasis on low-cost manufacturing, packaging houses will continue to evaluate China-based suppliers to realize lower material cost. On the other hand, to enhance their competitive power, stabilize sales and marketing channels, and reduce operational risk, China-headquartered material suppliers are forming partnerships with leading packaging houses. In the China Semiconductor Packaging Market Outlook 2012/2013 report, we discuss semiconductor packaging material segment market and supply in China, and include both manufacturing facilities owned by foreign companies and domestic companies.