Category Archives: LEDs

Tech spending still going strongIT spending remained broadly strong throughout a difficult end to 2012, as business confidence waned in the shadow of the "fiscal cliff,” economic growth declined in much of Europe, and economies in Asia/Pacific struggled to cope with reduced exports, according to the latest International Data Corporation (IDC) Worldwide Black Book. In spite of these headwinds, worldwide IT spending recorded annual growth of 5.9% in 2012 in constant currency terms, keeping pace with the 5.8% growth recorded in 2011. Total IT spending on hardware, software and IT services reached $2 trillion, while ICT spending (including telecom services) increased by 4.8% to $3.6 trillion.

Last year was difficult for U.S.-based IT suppliers, however, which were adversely affected by the strength of the dollar throughout most of the year. In U.S.-dollar terms, worldwide IT spending grew by just 3.3%. This marked a significant slowdown from the U.S. dollar growth rate of 9.5% recorded in 2011. In 2013, IT spending is expected to increase by 5.5% as businesses and consumers continue to invest in mobile devices, storage, networks, and software applications.

While overall IT spending remained stable, 2012 was another difficult year for the PC industry, which recorded a 2% decline in annual revenues. Revenue declines were also recorded in servers, PC monitors, and feature phones as cannibalization from tablets and smartphones continued to reshape the IT industry landscape. For the first time, spending on smartphones in 2012 exceeded PCs, reaching almost $300 billion, while PC spending declined to $233 billion.

"Cannibalization is happening across the industry," said Stephen Minton, Vice President in IDC’s Global Technology & Industry Research Organization. "Smartphones have taken over from feature phones, tablet adoption is impacting PC spending, and the Cloud is affecting the traditional software, services and infrastructure markets. IT spending is still growing organically, but not at the same pace as prior to the financial crisis. Businesses are adopting IT solutions such as virtualization, automation, and SaaS as a means to reduce the annual increases in their overall IT spending at a time when economic uncertainty remains high."

The global economy has been volatile through the past 12 months, and this sense of uncertainty persisted into the first quarter of 2013. IDC expects the U.S. economy to stabilize in the second half of the year, driving IT spending growth of 5.5%. 2013 will be another tough year for Europe, however, where tech spending is expected to increase by just 2% as the Eurozone and UK struggle to shrug off the lingering debt crisis. Excluding mobile devices, growth in Europe will be less than 1%. Japan has meanwhile lost most of the post-reconstruction momentum that drove IT spending to increase by 4% in 2012, and will record IT growth of 0% this year.

"This will be another tough year for mature economies," added Minton. "Weakness in Europe, as governments continue to impose austerity measures with a direct and indirect impact on IT spending, has also damaged the export-dependent Japanese economy. The U.S. should perform better, as long as politicians continue to reach 11th-hour deals to avert an economic crisis, and the PC market in the U.S. will at least stabilize after two successive years of major declines."

Emerging markets have also been volatile in the past 12 months, with weaker economic growth in Brazil, India, and China, creating uncertainty for IT vendors. Economic projections for 2013 are generally positive, however, and IDC believes that the government in China has enough ammunition to ensure an improvement in overall growth. With penetration rates still relatively low in many segments and industrial sectors within the BRICs and other key emerging markets, a stable economic outlook will translate into improving IT spending trends.

"We’re more confident about China than we were in the middle of 2012, when PC shipments were slowing and there was a sense that the economy had slowed down more quickly than the government had planned," said Minton. "Underlying IT demand remained strong, despite the volatile capital spending patterns that mainly affected PCs, and total IT spending in China still increased by 16% last year, which was only slightly down compared to 17% growth in 2011. We expect more of the same in 2013, even in spite of the inevitable slowdown in some emerging technology adoption rates as those markets gradually mature."

GT Advanced Technologies and Soitec , today announced a development agreement and a licensing agreement allowing GT to develop, manufacture and commercialize a high-volume, multi-wafer HVPE system to produce high-quality GaN epi layers on substrates used in the LED and other growth industries such as power electronics. The higher growth rates and improved material properties made possible by the HVPE system are expected to significantly reduce process costs while boosting device performance compared with the traditional MOCVD process. Initial pre-payment of the licensing fees as outlined in the agreement is already underway, but further specific terms were not disclosed.

GT will develop, manufacture and commercialize the HVPE system incorporating Soitec Phoenix Labs’ unique and proprietary HVPE technology including its novel and advanced source delivery system that is expected to lower the costs of precursors delivered to the HVPE reactor. The HVPE system will enable the production of GaN template sapphire substrates at scale. The expected target date for the commercial availability of the HVPE system is the second half of 2014.

“We have been working for more than 6 years on GaN epi processes and have created this breakthrough HVPE technology critical in producing high-quality and low cost GaN layers on sapphire substrates,” said Chantal Arena, VP and general manager of Soitec Phoenix Labs. “The development and license agreements we are announcing today with GT is the ultimate validation of this work and builds on the agreement we announced last year with Silian to integrate a HVPE-based technology on their sapphire. This allows Soitec to structure its LED lighting offer around differentiated technologies and industrial partners that includes materials and equipment. Soitec Phoenix Labs deep know-how in epitaxy technologies and GaN materials will be a key factor to enable GT to bring a revolutionary HVPE system to the market.”

“GT has a successful track record of delivering innovative equipment that has changed industries such as solar PV and LED,” said Tom Gutierrez, GT’s president and CEO. “Our decision to enter into the agreements with Soitec is the result of our extensive search for the right partner with the right technology to complement our equipment business as we diversify into new, high-value technologies that broaden our reach and bring winning solutions to the market. Soitec Phoenix Labs brings a high level of expertise and technical experience in GaN process know-how. When commercially available, we believe the new HVPE system will be a key element to further reduce LED device costs and help propel the industry to greater levels of competitiveness and growth.”

Soitec is an international manufacturing company, generating and manufacturing semiconductor materials. Soitec’s products include substrates for microelectronics and concentrator photovoltaic systems (CPV). Soitec has manufacturing plants and R&D centers in France, Singapore, Germany, and the United States.

GT Advanced Technologies Inc. is a technology company with crystal growth equipment and solutions for the global solar, LED and electronics industries.

Silicon nanocrystals have a size of a few nanometers and possess a high luminous potential. Scientists of Karlsruhe Institute of Technology (KIT) and the University of Toronto/Canada have now succeeded in manufacturing silicon-based light-emitting diodes (SiLEDs). They are free of heavy metals and can emit light in various colors.

Liquid-processed SiLEDs: By changing the size of the silicon nanocrystals, color of the light emitted can be varied. (Photo: F. Maier-Flaig, KIT/LTI)

Silicon dominates in microelectronics and photovoltaics industry, but has been considered unsuitable for light-emitting diodes for a long time. However, this is not true for nanoscopic dimensions: Minute silicon nanocrystals can produce light. These nanocrystals consist of a few hundred to thousand atoms and have a considerable potential as highly efficient light emitters, as was demonstrated by the team of Professor Uli Lemmer and Professor Annie K. Powell from KIT as well as Professor Geoffrey A. Ozin from the University of Toronto. In a joint project, the scientists have now succeeded in manufacturing highly efficient light-emitting diodes from the silicon nanocrystals.

So far, manufacture of silicon light-emitting diodes has been limited to the red visible spectral range and the near infrared.

“Controlled manufacture of diodes emitting multicolor light, however, is an absolutely novelty,” explains Florian Maier-Flaig, scientist of the Light Technology Institute (LTI) of KIT and doctoral student of the Karlsruhe School of Optics and Photonics (KSOP). KIT scientists specifically adjust the color of the light emitted by the diodes by separating nanoparticles depending on their size.

 “Moreover, our light-emitting diodes have a surprising long-term stability that has not been reached before,” Maier-Flaig reports.

The increased service life of the components in operation is due to the use of nanoparticles of one size only. This enhances the stability of the sensitive thin-film components. Short circuits due to oversized particles are excluded.

The development made by the researchers from Karlsruhe and Toronto is also characterized by an impressing homogeneity of the luminous areas. The KIT researchers are among the few teams in the world that know how to manufacture such devices.

“With the liquid-processed silicon LEDs that may potentially be produced on large areas as well as at low costs, the nanoparticle community enters new territory, the associated potentials of which can hardly be estimated today. But presumably, textbooks about semiconductor components have to be rewritten,” says Geoffrey A. Ozin, who is presently working as a KIT distinguished research fellow at KIT’s Center for Functional Nanostructures (CFN).

The SiLEDs also have the advantage that they do not contain any heavy metals. In contrast to cadmium selenide, cadmium sulfide or lead sulfide used by other groups of researchers, the silicon used by this group for the light-emitting nanoparticles is not toxic. Moreover, it is available at low costs and highly abundant on earth. Due to their many advantages, the SiLEDs will be developed further in cooperation with other partners.

The quantum dot recently emerged as a next-generation display material. Quantum dots, whose diameter is just a few nanometers, are semiconductor crystals. The smaller its particle is, the more short-wavelength light are emitted; the larger its particle is, the more long-wavelength lights get emitted. Considering that there are more advantages with the quantum dots over conventional light sources, it is not surprising that the quantum dot display gains a lot of attention.
 
The quantum dot display consumes lower power and has a richer color than the conventional OLED. In addition, the white light produced by quantum dots has high brightness and excellent color reproduction, raising its potential to replace the backlight unit (BLU) using the LED. Not surprisingly, leading companies in the display industry are accelerating to secure relevant technologies.

Analysis of Patent Application Trends
By country, 93 patents (or 34%) were filed in South Korea, 87 in the U.S., 36 in Japan, 22 in Europe, and 35 under the PCT. By technology, patents on quantum dot light emitting diodes (QLED) technology (188 patents, 69%) were applied the most, followed by those on BLU using the white light source; quantum dot display; and LED-using white light source technologies.  

Implications
As the quantum dot display has emerged as the next-generation display technology ever since the OLED, the leading companies in the display industry, including Samsung and LG, are making aggressive investment to take a lead in the technology. They not only develop their own technologies, but also purchase patents from; make technology licensing agreements with; or make equity investment in the companies of the field.

The competition to obtain key patents on the quantum dot display is expected to only increase. Monitoring published/issued patents on a regular basis and having a thorough analysis on them have become more important. 

Key Patent Report – Quantum Dot Display covers patent application trends and an in-depth analysis.

Worldwide LED component market grows 9%

Strategies Unlimited has issued new figures since the first edition of this article. Solid State Technology now brings you updated figures and additional information on the worldwide LED market.

LED component revenue for lighting applications reached $3.11 billion in 2012, narrowly dethroning the large area display backlight segment at $3.06 billion, according to Strategies Unlimited, a market research firm covering the LED industry.  The worldwide market for LED components was $13.7 billion and is expected to grow to $15 billion in 2017, for a CAGR of 1.8%.

The total illumination market for 2012 is estimated at $14.52 billion. LED lighting includes LED replacement lamps and luminaires is estimated at $11.72 billion—an increase of 26% between 2011 and 2012—and it is forecast to grow at a CAGR of 12% over 2012-2017.

The 2012 estimate for revenues for the illumination market, not addressed by the LED replacement lamps and luminaires is $2.75 billion revenue.  These other applications include: decorative/festive/Christmas light strings; tube lights that go into many untraceable applications including signs; flexible tape and strips of LEDs sold in applications ranging from step lighting to lighting stairs to DIY cove lighting; and all other miscellaneous.

Commercial applications are the largest segment and grew the fastest—72%—in the LED lighting market followed by replacement lamps. Japanese market was the primary driver for the 22% growth in replacement lamp revenues from 2011 to 2012. The slower growing segments such as emergency and industrial lighting depend on the overall economic activity; entertainment lighting was a victim of slow down in European financial crisis, after the frenzy for the Olympics.

LEDs used in large display (TV and monitors) backlights also reached a new record at $3.06 billion in 2012. This is chiefly due to the success in penetrating the CCFL stronghold of the 32-inch TV. Low cost direct technology, also known as “chubby TV” technology because the TVs are thicker than edge-lit ones and narrows the price gap between CCFL and LED backlit TV to an insignificant level.  Both Samsung and LG have announced they will stop making CCFL TVs.

Chubby TVs will spread from 32 inches in both directions in size. It is expected to reach TVs 42 to 50 inches size in 2013-2014.  With drastic reduction in number of LEDs used and rapid price erosion, the large display market for LEDs is expected to decline to $1.7 billion in 2017.

The total market for LEDs in the automotive segment was $1.4 billion in 2012 and is projected to grow to $2.1 billion in 2017. The number of cars with LED headlights nearly doubled in 2012. Revenue for 2012 was $97 million and the five-year CAGR is projected to be 36%.

The number of cars with LED headlights nearly doubled in 2012. Revenue for 2012 was $97 million and the five-year CAGR is projected to be 36%.  Revenue derived from daytime running lights (DRL) grew 31% to $200 million in 2012.  DRL growth is expected to slow down as the penetration rate is forecast to reach 45% in 2017.  The total market for LEDs in the automotive segment was $1.4 billion in 2012, and is projected to grow to $2.1 billion in 2017.

While LED revenue from tablets grew 54% to $578 million, the overall mobile segment dropped 3%.  The drop in notebook backlight demand, the OLED success in smart phone display, and the general demand decline for other small and medium display will take the segment down to $958 million in 2017, for a 5 year CAGR of -7%.

Use of LEDs in signage and channel letters grew 7% to $1.7 billion in 2012.  Full-color signs contributed more than 80% of the revenue. The most popular pixel densities for indoor displays are expected to be 3mm and 4mm in 2013, meaning more LEDs will be needed.  The signage segment is expected to grow to $2.4 billion in 2017, for a CAGR of 7%. 

Breakdown of worldwide LED market by countryOn the supply side, 11 companies accounted for more than 72% of the LED market. Strategies Unlimited arrived at these figures after analyzing market demand as well as the supply-side activity of more than 54 LED component suppliers. The rank order of the top 11 suppliers in the LED market for 2012, by revenue of packaged LED components, is:

1. Nichia     

2. Samsung LED         

3. Osram Opto Semiconductors        

4. LG Innotek       

5. Seoul Semiconductor*       

6. Philips Lumileds*        

7. Cree         

8. TG      

9. Sharp       

10. Everlight*     

11. Lumens*

(*Companies have the same ranking when the difference in revenue is within the margin of error. Revenue includes sales of packaged LEDs of 30 lm/W or more.)

Samsung LED was absorbed into Samsung Electronics in 2012. By going vertical and successfully attacking the low cost direct TV market, LED sales soared at Samsung and at its chief supplier, Lumens. TG’s success in the tablet backlight market and the Japanese lighting market brought high growth to the company. Cree and Philips Lumileds rode the rise of LED lighting and achieved record revenues.

Chinese packaging companies grew from 6% of worldwide sales to 8%. Major consolidation is expected in China as the pricing war is forcing out many players. Taiwanese market share dropped from 19% to 15% as there is an increase of OEM packaging activities.  Only final sale is counted in this study.

The LED packaging industry is expected to grow modestly at a CAGR of 1.8% in the next five years. 2013 should see less severe price drops as excess capacity is slowly absorbed by the rise of lighting applications.  Consolidation—both vertical and horizontal—can help improve margins. 

Breakdown of worldwide LED market by technology

 

Research and Markets announced the addition of the Global SiC Semiconductor Devices Market 2012-2016 report to their offering.

One of the key factors contributing to this market growth is the high demand of SiC in industrial applications. The global SiC semiconductor devices market has also been witnessing rapid technological advancement. However, the fluctuations in demand and supply could pose a challenge to the growth of this market.

Commenting on the report, an analyst from TechNavio’s Hardware team said: ”Rapid technological advancement is a fast-growing trend in the global silicon carbide (SiC) semiconductor devices market. The overall technological advancement in the electronics industry is growing at a faster rate, which has set the trends for technological advancement in SiC semiconductor devices. The fast-growing demands and changing end-user preferences over SiC semiconductor devices is leading to the trend of rapid technological advancement. Vendors need to continuously upgrade the technology and also implement new technologies.”

According to the report, the high demand for SiC semiconductors in industrial applications is one of the major growth drivers in the global SiC semiconductor devices market. Some of the industrial applications where SiC semiconductor usage is generating more interest for the vendors are in motor control and power conversion devices. This interest is mainly because of the low power loss properties of SiC semiconductors, which enhances the power conversion efficiency of electronic devices and also reduces carbon dioxide emissions. These benefits have replaced the usage of silicon in the above-mentioned applications. Furthermore, the application of SiC semiconductors has significantly reduced the size and weight of motors and power devices.

The key vendors dominating this market space are Cree Inc., GeneSiC Semiconductor Inc, Infineon Technologies AG., and ROHM Semiconductor

ISSCC, the International Solid-State Circuits Conference, is being held on February 17-21, 2013, at the San Francisco Marriott Marquis Hotel. This year, in honor of the conference’s 60th anniversary, we have assembled highlights of the topics and trends that are being discussed. Click through to learn more about the trends and challenges facing the solid-state integrated circuits industry in 2013.

David Su, subcommittee chair of ISSCC 2013, wrote on data rates of modern wireless standards, which are increasing rapidly, as is shown in the table above. The data rate has increased 100x over in the last decade and another 10x is projected in the next five years. Read more.

MORE HIGHLIGHTS FROM ISSCC 2013   >>>

CRS Electronics Inc., a developer and manufacturer of LED lighting, today announced the appointment of Mr. Travis Jones to the position of Chief Executive Officer. Mr. Scott Riesebosch, founder and former CEO will assume the role of Chief Technology Officer.

Prior to joining CRS Electronics, Jones worked for Lighting Science Group as vice president of National Accounts where he created a new division that secured a record 60 new national accounts in 14 months. Before joining Lighting Science Group, Jones worked for some of the largest lighting companies in North America. While at Acuity Brands he served as vice president of sales and marketing in the Austin Division where he was responsible for a 52-person staff that managed 4 brands and 3 sales channels, leading them from $73MM to $100MM in revenue over two years. Jones is based in Texas where he serves as the Chairman of the Board of Directors for Lakehills Church in Cedar Park, Texas. He also serves on the board of directors for the Lakeland College Alumni Association in Sheboygan, Wisconsin, where he earned his B.A. in Philosophy and Business Administration.

"We are very excited to welcome Mr. Jones to the executive management team," said Mr. Chang Jiang Wu, executive chairman of CRS Electronics. "Mr. Jones has many years of experience in the LED lighting industry and has proven his ability to be an effective leader in establishing market strategies, growing revenue, and being responsible for achieving profitable results. Throughout his career in the lighting industry, Travis has repeatedly built successful sales teams with a proven track record of leadership, has always exceeded sales and profitability targets, and has a solid reputation in the lighting industry.”

Mr. Jones’ appointment is subject to receipt of the approval of the TSX Venture Exchange.

SEMI, in collaboration with strategic investing groups throughout the global semiconductor industry, has announced the Silicon Innovation Forum, or SIF, to bridge funding gaps for new and early-stage companies with valuable semiconductor manufacturing and technology solutions. SIF will be held in conjunction with SEMICON West, on July 9, 2013 at the Moscone Center in San Francisco, Calif.  The event will consist of a one-half day conference highlighted by investment presentations from new and emerging companies with innovative technology solutions targeted at next generation semiconductors. The Silicon Innovation Forum is being organized by leading strategic investment groups in the industry including Applied Ventures, Dow Chemical Company, Intel Capital, Micron Ventures, TEL Venture Capital, and Samsung Ventures.

“At a time when the need for new ideas and technologies has never been greater, venture capital and private funding sources for advanced semiconductor technology development has significantly declined over the past decade, threatening the future of Moore’s Law and the economic engine of today’s connected, electronic society,” said Denny McGuirk, president and CEO of SEMI. “The Silicon Innovation Forum will address these funding gaps by providing a platform for new and emerging innovators, strategic investors, and venture capitalists to discuss the needs and requirements for next-generation technologies, and provide insights into technology, capital, partnership, and collaboration strategies necessary for mutual success.”

This unprecedented collaboration of leading strategic investor groups from throughout the world has formed to streamline and accelerate partnership opportunities for technology entrepreneurs to bridge the gap between R&D and product development funding.  The Forum will provide short-term business opportunities for early / mid-stage companies, R&D entrepreneurs from larger companies, and other industry innovators — while addressing long-term structural changes to the industry necessary to foster a healthy innovation pipeline.

New and emerging companies can showcase their innovations through table top and/or poster displays for one-on-one meetings with qualified investors, plus showcase their ideas during short pitches during the SiF Conference.  The SIF Conference will be free to all SEMICON West attendees, but the Innovation Showcase and Reception for one-on-one presentation and meeting opportunities will be restricted to qualified partnership and investor groups.

MOCON, Inc., a manufacturer of package integrity instrumentation, is launching a new system to measure the water vapor transmission rate, or WVTR, of ultra-high barrier films with greater sensitivity than ever before possible. 

The new generation AQUATRAN Model 2 WVTR measurement instrument targets commercial or developmental ultra-high barrier structures which are being engineered to push the performance envelope.  These include flexible films for organic light-emitting display (OLED), solar and similar demanding applications, which require accurate and extremely sensitive instrumentation to build performance statistics.

The AQUATRAN Model 2 uses proprietary technology to accurately and repeatably measure WVTR down to 5×10-5 g/(m2-day). This is one order of magnitude lower than its very successful predecessor the Model 1, which was launched in 2005. 

The Model 2 uses propriety technology to increase sensor sensitivity and reduce the possibility of ambient humidity interfering with test results.  Further, the AQUATRAN Model 2 is the only system available for measuring trace WVTR that is not calibration dependent, providing more accurate and repeatable results.

The AQUATRAN Model 2 utilizes MOCON’s newest AquaTrace Gold coulometric longer-life sensor which is based on Faraday’s Law. Every water molecule entering the sensor is directly converted to a measureable charge.  No calibration is necessary, assuring an accurate test result.

Transient data also is quantifiable and can be viewed during or after the test. (Analysis of transient data can yield important information about an OLED structure such as detecting defects and voids in the applied coatings.)

Additional enhancements to the AQUATRAN Model 2 include improved electronics,  enhanced block and valve design, and the introduction of TruSeal™ technology which reduces seal-edge leaks due to ambient humidity.

The AQUATRAN Model 2 is available in two versions. The G system operates between 35 and 90 percent relative humidity (RH) and a temperature range of 10 to 40 centigrade.  The W version offers 100% RH and a temperature range 10 to 50 centigrade.