Various power factors have impacted the advancement and development of micro devices. Power density, cell weight, battery life and form factor all have proven significant and cumbersome when considered for micro applications. Markets for solid state thin-film batteries at $65.9 million in 2012 are anticipated to reach $5.95 billion by 2019, according to a new report released by ReportsnReports.com. Market growth is a result of the implementation of a connected world of sensors.
The report points out that development trends are pointing toward integration and miniaturization. Many technologies have progressed down the curve, but traditional batteries have not kept pace. The technology adoption of solid state batteries has implications to the chip grid. One key implication is a drive to integrate intelligent rechargeable energy storage into the chip grid. In order to achieve this requirement, a new product technology has been embraced: solid state rechargeable energy storage devices are far more useful than non-rechargeable devices.
Thin film battery market driving forces include creating business inflection by delivering technology that supports entirely new capabilities. Sensor networks are creating demand for thin film solid state devices. Vendors doubled revenue and almost tripled production volume from first quarter. Multiple customers are moving into production with innovative products after successful trials.
A solid state battery electrolyte is a solid, not porous liquid. The solid is denser than liquid, contributing to the higher energy density. Charging is complex. In an energy-harvesting application, where the discharge is only a little and then there is a trickle back up, the number of recharge cycles goes way up. The cycles increase by the inverse of the depth of discharge. Long shelf life is a benefit of being a solid state battery. The fact that the battery housing does not need to deal with gases and vapors as a part of the charging/discharging process is another advantage of the solid state thin film battery.
Traditional lithium-ion (Li-Ion) technology uses active materials, such as lithium cobalt-oxide or lithium iron phosphate, with particles that range in size between 5 and 20 micrometers. Nano-engineering improves many of the failings of present battery technology. Re-charging time and battery memory are important aspects of nano-structures. Researching battery micro- and nanostructure is a whole new approach that is only just beginning to be explored.
Industrial production of nano batteries requires production of the electrode coatings in large batches so that large numbers of cells can be produced from the same material. Manufacturers using nano materials in their chemistry had to develop unique mixing and handling technologies.
Cymbet millimeter scale solid state battery applications are evolving. In the case of the intra-ocular pressure monitor, it is desirable to place microelectronic systems in very small spaces. Advances in ultra-low power integrated circuits, MEMS sensors and solid state batteries are making these systems a reality. Miniature wireless sensors, data loggers and computers can be embedded in hundreds of applications and millions of locations.