Category Archives: Packaging

Developers have made major progress in the technology to manufacture printed or flexible circuits, sensors, batteries and displays. But frankly it’s been hard to build applications with much market pull without logic or memory as well, and those have been much harder to make. However, now printed memory and solutions for integrating conventional silicon die into flexible systems are edging into production, to potentially improve performance for a wider range of applications.  On the display side, easily integrated printed or flexible transparent conductive films for touch screens are starting to see some market traction.

Yole Développement projects the market for printed and flexible electronics will remain a modest ~$176 million this year, but will see 27 percent CAGR to ~$950 million by 2020, driven largely by printed layers integrated into large OLED displays.

Thinning patterned die makes flexible silicon on polymer

One interesting solution to add performance to flexible electronics could be an open platform for making flexible silicon die. American Semiconductor proposes drastically thinning conventional fabricated silicon wafers, and coating them with a combination of polymers. The resultant silicon-on-polymer approach protects and eases handling of the ultra-thin die, says CEO Doug Hackler, who will discuss the technology in a program on such hybrid solutions in the emerging market program series at SEMICON West in San Francisco in July. He reports user interest for large area distributed sensing systems that include ICs within structural composites in aircraft bodies to monitor stress, for bio sensors that conform to the body, for RF for wireless data transmission from printed sensors, and for drivers for flexible displays.

The company has qualified TowerJazz’s 130nm process to make SOI CMOS for its initial flexible standard microcontroller, and has worked with the foundry to establish design rules to make an open platform for other designers to create their own flexible chips. American Semiconductor thins these fabricated wafers by standard methods down to about ~40µm. “And then from <40µm it gets trickier and more proprietary,” says Hackler. But once these flexible silicon-on-polymer die are diced and released, they can be handled pretty much like standard chips. “The dicing and release are a little different, but once the die are on tape, then it appears feasible to do traditional pick and place,” he says, noting the company intends to use printed connections instead of bonding wire or solder bumps. After assembly on a flexible substrate, perhaps by a pick-and-place module integrated on a roll-to-roll printing tool, the devices would typically be laminated or overcoated for additional protection. The company plans to follow its flexible microcontroller with a standard analog/digital converter to take in sensor data, and an RF IC to send out the data. 

Innovative solutions for assembling silicon on flexible substrates move towards production

Packaging and assembling tiny thin die on flexible substrates remains a challenge, but multiple suppliers are making progress towards solutions that are starting to edge into commercial production. One approach particularly suitable for attaching sensors to the body is the spring-like stretchy wiring developed by MC10 for attaching thin silicon die to flexible substrates, for everything from wearable heart rate and fitness monitors to sensor membranes that can be implanted directly on organs inside the body. VP of R&D Kevin Dowling reports the company’s first commercial application is in a soft skullcap from Reebok that uses flexibly connected motion sensors to measure impacts to the head.

Tiny die size could also help with both cost and attachment of rigid die to conformable substrates, although handling and assembling them then becomes more of an issue. Terepac Corp. CTO Jayna Sheats notes that plenty of logic for simple controls could be very tiny and low cost — microprocessors with ~8000 transistors like the Z-80 generation currently used for many embedded control applications take up  <70µm2 of silicon with 90nm design rules, for millions on a wafer. But the die are too tiny to make the input/output connections or to handle with traditional pick and place for packaging and assembly. So Terepac proposes a photochemical assembly process instead, picking up an array of thinned and diced chips with a sticky printhead, positioning the chips over the substrate with a tool similar to a proximity aligner, and vaporizing the proprietary polymer/adhesive behind each selected chip with a combination of heat and UV so it falls into the desired position.  Chips can then be attached to the flexible substrate by conductive adhesive, electroplating, or printed connections. The company is working with equipment manufacturing partners including Rockwell International to construct manufacturing facilities for customers with products for the Internet of Things.

Jabil reports progress in low temperature attachment technologies for use with heat-sensitive flexible substrates. And Sandia National Lab reports it’s come up with a solution for the common researchers’ problem in this field of how to build prototypes of flexible systems when the necessary ultra thin chips only come in costly wafer-level volumes. Researchers there have figured out how to thin off-the-shelf single die for developing flexible systems.

Printed memory targets low-cost, high-volume applications          

Thin Film Electronics, meanwhile, is developing systems that use its simple, low cost printed memory. The company’s 20-bit memory can be produced in volume for under ~$0.05, targeted at applications like consumer packaging, with volumes of billions of units a year where roll-to-roll printing makes most sense, says Chandrasekhar Durisety, assistant director, North America, who will give an update on the company’s progress towards commercialization at the session. Thin Film is introducing a next generation of passive array memory, in 4×4 (16 bit), 5×5 (25 bit) or 6×6 (36-bit) options, a more conventional format with fewer pads at higher density for easier addressing than its initial 20-bit in-line architecture. 

The company is working with a global consumer product maker on using low-cost printed memory to make brand authentication cost effective for a wide range of lower-priced products. It’s also working with major flexible packaging supplier Bemis Company Inc. on sensor labels for food, healthcare and consumer products that can collect and wirelessly communicate sensor information at roughly the same low cost as current color-changing chemical indicators. The digital system under development — with Thin Film’s printed memory, an electrochromic display from Acreo, and printed logic technology from PARC — stores data when the temperature exceeds a certain range, to indicate more clearly than a color gradient can whether the product is usable or not. 

Thin Film aims to add electronics to applications that currently don’t use them, to add simple intelligence at prices far below those possible with silicon, such as low-cost brand authentication, temperature sensors on packaging, or simple electronics in toys.  “Silicon die could add significant capability to printed electronics. But with fabrication and assembly it would likely be more expensive than either silicon or printed electronics alone,” suggests Durisety.”  

Market starts to develop for printed/flexible ITO replacements

Another key potential market for printed/flexible electronics is next-generation transparent conductive film to replace brittle and expensive indium tin oxide in touch screens and displays, lighting, and photovoltaics.  Touch Display Research says the market for non-ITO transparent conductors will be about $206 million this year, and grow to some $4 billion by 2020.  “High demand for touchscreens for notebook and PC size displays has created a shortage of ITO touch sensors since the end of last year to drive more interest in these technologies, and the more flexible and potentially cheaper replacement technologies are getting more mature,” notes Jennifer Colegrove, president and analyst, who will speak at the FlexTech workshop on transparent conductors. She notes that Atmel, FUJIFILM, Unipixel and Cambrios are all in some phase of production.

There is, however, a confusing range of contending options for processes and materials for these films.  Applied Materials has interesting progress in its roll-to-roll deposition technology, while FUJIFILM Dimatix targets ink jet printing the materials, and NovaCentrix offers rapid thermal curing that doesn’t heat the substrate. Materials options range from nano metal wires at Cambrios Technology, Carestream and Sinovia, to embossed and metalized patterns from Unipixel, to carbon nanotubes at Brewer Science and graphene at Nanotech Biomachines. 

These and other speakers will talk about the challenges and solutions to move printed/flexible electronics into real markets at SEMICON West’s emerging technology programs, July 9-11 in San Francisco.

· Mon, July 8: Market Symposium, SF Marriott Marquis, Keynote: “New Directions in Flexible and Printed Electronics,” Dr. Ross Bringans, VP at PARC (1:00-5:30pm)

· Tue, July 9: Materials Growth Opportunities at Both Ends of the Spectrum (1:30-3:30pm)

· Wed, July 10: FlexTech Alliance Workshop: Emerging Materials and Processes for Transparent Conductors, SF Marriott Marquis (10:00am-5:00pm)

· Thur, July 11: Integrating Conventional Silicon in Flexible Electronics at the Extreme Electronics TechXPOT, South Hall (10:30am-1:10pm)

For more information, visit www.semiconwest.org/SessionsEvents/PlasticElectronics

Paula Doe is an analyst for advanced technologies for the global trade association SEMI.

Imec has developed a Manganese (Mn)-based self-formed barrier (SFB) process that significantly improves Resistance Capacitance (RC) performance, via resistance and reliability in advanced interconnects. It provides excellent adhesion, film conformality, intrinsic barrier property and reduced line resistance. This technology paves the way towards interconnect Cu metallization into the 7nm node and beyond.

With continuous interconnect scaling, the wire resistance per unit length increases, which has a detrimental impact on the device performance (RC). Moreover, when reducing the dimensions with conventional barrier layers, an increased loss of copper (Cu) cross sectional area is observed, resulting in high resistance and decreased interconnect lifetime (electro-migration and time dependent dielectric breakdown – EM and TDDB). To overcome these interconnect metallization issues when scaling beyond the 1X technology node, imec’s R&D program on advanced interconnect technology explores new barrier and seed materials as well as novel deposition and filling techniques. The Mn-based SFB was demonstrated to be an attractive candidate for future interconnect technology.  At module level, Mn-based SFB resulted in a 40 percent increase in RC benefits at 40nm half pitch compared to conventional barrier and good lifetime performance (comparable to TaN/Ta reference).

These results were achieved in cooperation with imec’s key partners in its core CMOS programs Globalfoundries, Intel, Micron, Panasonic, Samsung, TSMC, Elpida, SK hynix, Fujitsu and Sony.

Imec exhibits at SEMICON West, July 9-11, 2013.

The future is bright for the future semiconductor and IT industry, according to Samsung exec Yoon Woo (Y.W.) Lee. In a keynote talk at The ConFab, Mr. Lee described a future with dramatic advances in almost every field, including healthcare, nano, energy and the environment, all powered by semiconductors. The end result:  a smarter, healthier and cleaner planet. Mr. Lee, who is widely credited with the success of Samsung’s semiconductor business, is now an Executive Advisor at Samsung Electronics Co., Ltd. He previously held positions at Vice Chairman and CEO, Chairman of the Board of Directors, and Chief Technology Officer at Samsung Electronics.

Mr. Lee noted two major trends in the world’s population: more people living in cities, and a greater number of elderly. “There will be 500 cities with over 1 million people by 2015,” Mr. Lee said. “Such a trend will stimulate the IT industry.” According to UN projections, more than 400 of these cities will be in developing countries. The number of "megacities" of 10 million people or more also will increase. Worldwide by 2015, 22 cities will be this big, all but five in developing countries. “Asia continues to grow into the largest economy in the world,” Lee said.

By 2020, most of the rich world will be a “super-aged” society, Lee added. A country can be described as an aging society when people aged sixty-five or above make up more than 7% of the total population (as in China). When the elderly make up more than 20% of the population, the country has a super-aging society.

“From a business perspective, bio and healthcare holds great potential,” Lee said. He also spoke on the importance of global sustainability, which he said will face strain. “There are finite reserves of oil. We must also address global warming which is behind extreme weather conditions.”

Lee said much of the remarkable progress in fields such as mobile computing and medicine has been possible due to the advancement of IT, and semiconductors in particular. “The industry strives for greater performance, lower power, and smaller form factor to enable this technology migration,” he said.

He noted that new innovations, such as nanowires and transistors with III-V channels, are being developed for 10nm chips, and said the use of new TSV technology “will raise transfer speed, function less power and reduce size.”

He also predicted that optical interconnects would soon be required. “Exascale computing will require optical interconnection to communicate between the CPU and memory chip,” he said.

He also gave a nod to MEMS devices, saying nanostructures would be used to switch mechanical energy such as background noise and wind into electric energy. “Our movement will be converted into electricity that charges most of our mobile device in the future,” he said.

As part of his presentation, Lee asked the audience to imagine what it would be like in the year 2025, when we will experience a smarter world, a healthier life and a cleaner planet. Among the advances expected:

  • A light field 3D camera that easily captures three dimensional information, color and depth data simultaneously from different viewpoints in order to generate an accurate real-life picture.
  • Tangible interaction technology that will enable the user to directly touch and freely manipulate three dimensional images in open space. One will be able to actually feel the shape, the temperature and even the texture of a real object.
  • Displays in the form of a contact lens. Augmented reality on such lenses will inform you of traffic and weather conditions.
  • With thermochromic materials, it will be easy to check what’s inside the fridge. When exposed to heat, these thermal sensitive molecules lose their alignment and by transmitting light more readily the material becomes semi-transparent.
  • A terahertz medical mirror that exploits terahertz antenna technology to enable real-time medical diagnosis, or remote treatment with nanotechnology allowing the system to be miniaturized for household or portable use.
  • Using intra-operative optical spectroscopic imaging, tissue can be analyzed without waiting for the pathology lab. By 2025, the aggregate medical data from patients worldwide will reach 6 zettabytes (1021 bytes), roughly equivalent to 6 quadrillion books. From the use huge volume of databases, we can find similar cases by analyzing the organ, physiological and molecular level data, using this “big data” to optimize medical diagnoses.
  • Clean and inexhaustible energy based on hydrogen, from sunlight and water will provide electricity and heat without releasing greenhouse gases.
  • Batteries will be entirely redesigned to utilize abundant and affordable substances such as magnesium or sodium, taking increasingly important roles in the future of large scale power storage.
  • Next generation microorganisms can biodegrade waste and transform these products into highly concentrated raw materials. This technology can also be used to inexpensively produce new plastic materials for many applications.

Lee concluded with a call for collaboration, which he said is critical in intra-regional trade and development. “Countries will need to lower risk and boost efficiency through closer cooperation along the supply chain, forging alliances, devising common standards, and undertaking joint R&D,” he said.

Deca Technologies, an electronic interconnect solutions provider to the semiconductor industry, today announced it has named semiconductor industry veteran Chris Seams its new CEO. Seams brings more than 25 years expertise in managing operations, manufacturing, and sales and marketing. He has also been appointed to the company’s board of directors.

Seams joins Deca from Cypress Semiconductor Corporation, where he served as executive vice president of Sales and Marketing. He takes over for Tim Olson, who will now serve as Deca’s Chief Technology Officer and a member of its board of directors.

"Deca has two key value propositions: truly revolutionary wafer level packaging technology and industry-leading manufacturing efficiency," said T.J. Rodgers, chairman of Deca’s board of directors. "Chris brings a wealth of manufacturing experience to the position. He directly managed Cypress’ manufacturing for 14 years, building up its reputation for world-class efficiency. We are confident Chris will successfully build upon Deca’s strong inroads with top customers and lay the groundwork for the next level of the company’s growth."

"This is an exciting time to be joining Deca," said Seams. "The company is poised for rapid growth with the continued development of its offerings. I welcome the opportunity to lead Deca’s efforts to bring the potential of our wafer scale packaging capabilities to reality. In so doing, we will transform the way our customers­the leading semiconductor manufacturers around the world­approach wafer level packaging."

Seams joined Cypress in 1990, where other assignments included technical and operational management in manufacturing, development, and operations. Prior to joining Cypress, he worked in process development for Advanced Micro Devices and Philips Research Laboratories.

Seams is a senior member of IEEE, serves on the Engineering Advisory Council for Texas A&M University, and is on the board of directors of Tessera Technologies, Inc. Seams earned his bachelor’s degree in electrical engineering from Texas A&M University and his master’s degree in electrical and computer engineering from the University of Texas at Austin.

For decades, electronic devices have been getting smaller, and smaller, and smaller. It’s now possible—even routine—to place millions of transistors on a single silicon chip. But transistors based on semiconductors can only get so small.

"At the rate the current technology is progressing, in 10 or 20 years, they won’t be able to get any smaller," said physicist Yoke Khin Yap of Michigan Technological University. "Also, semiconductors have another disadvantage: they waste a lot of energy in the form of heat."

Scientists have experimented with different materials and designs for transistors to address these issues, always using semiconductors like silicon. Back in 2007, Yap wanted to try something different that might open the door to a new age of electronics.

"The idea was to make a transistor using a nanoscale insulator with nanoscale metals on top," he said. "In principle, you could get a piece of plastic and spread a handful of metal powders on top to make the devices, if you do it right. But we were trying to create it in nanoscale, so we chose a nanoscale insulator, boron nitride nanotubes, or BNNTs for the substrate."

Electrons flash across a series of gold quantum dots deposited on a boron nitride nanotubes.

Yap’s team had figured out how to make virtual carpets of BNNTs, which happen to be insulators and thus highly resistant to electrical charge. Using lasers, the team then placed quantum dots (QDs) of gold as small as three nanometers across on the tops of the BNNTs, forming QDs-BNNTs. BNNTs are ideal substrates for these quantum dots due to their small, controllable, and uniform diameters, as well as their insulating nature. BNNTs confine the size of the dots that can be deposited.

In collaboration with scientists at Oak Ridge National Laboratory (ORNL), they fired up electrodes on both ends of the QDs-BNNTs at room temperature, and something interesting happened. Electrons jumped very precisely from gold dot to gold dot, a phenomenon known as quantum tunneling.

"Imagine that the nanotubes are a river, with an electrode on each bank. Now imagine some very tiny stepping stones across the river," said Yap. "The electrons hopped between the gold stepping stones. The stones are so small, you can only get one electron on the stone at a time. Every electron is passing the same way, so the device is always stable."

Yap’s team had made a transistor without a semiconductor. When sufficient voltage was applied, it switched to a conducting state. When the voltage was low or turned off, it reverted to its natural state as an insulator.

Furthermore, there was no "leakage": no electrons from the gold dots escaped into the insulating BNNTs, thus keeping the tunneling channel cool. In contrast, silicon is subject to leakage, which wastes energy in electronic devices and generates a lot of heat.

Other people have made transistors that exploit quantum tunneling, says Michigan Tech physicist John Jaszczak, who has developed the theoretical framework for Yap’s experimental research. However, those tunneling devices have only worked in conditions that would discourage the typical cellphone user.

"They only operate at liquid-helium temperatures," said Jaszczak.

The secret to Yap’s gold-and-nanotube device is its submicroscopic size: one micron long and about 20nm wide.

"The gold islands have to be on the order of nanometers across to control the electrons at room temperature," Jaszczak said. "If they are too big, too many electrons can flow." In this case, smaller is truly better: "Working with nanotubes and quantum dots gets you to the scale you want for electronic devices."

"Theoretically, these tunneling channels can be miniaturized into virtually zero dimension when the distance between electrodes is reduced to a small fraction of a micron," said Yap.

Yap has filed for a full international patent on the technology.

The microelectronics industry in Russia has been receiving quite a lot of attention recently with growing realization that intensive industry development is crucial to achieve import substitution and eventually compete in the international market. At the conference that took place recently in Zelenograd as part of SEMICON Russia 2013, which is devoted to the development of microelectronics in Russia, Practise Director of Frost & Sullivan’s Technical Insight division in Europe, Ankit Shukla, shared with the audience his vision for growth of the microelectronics industry in changing business conditions.

"A number of fundamental aspects need attention for the harmonious development of microelectronics," noted Mr. Shukla. "The foremost is government and the private sector support for new trends in the technology. The formation of a nuanced state policy oriented towards the interests of the industry and the business community will play a strong role in the development of the microelectronics market, both in Russia and across the world. In this regard, providing tax exemptions and institutional support for the industry is a necessity for its progress."

During the event, Frost & Sullivan and Semiconductor Equipment and Materials International (SEMI) presented the first results of the research entitled "The Russian Microelectronics Market" based on a survey of representatives from domestic and foreign companies operating in the Russian market. Results showed that for a three-year outlook, all respondents expect a positive growth trend for the market. In addition, 45 per cent of those surveyed believe that their turnover will outpace industry growth rates.

A majority – 64 per cent – of respondents expect the processors segment, including microcontrollers (MCUs) and microprocessor units (MPUs), to be among the most promising in the market. Other indicated areas of development included radiofrequency modules and components by 43 per cent, optoelectronics by 36 per cent, and microcircuitry and sensors by 29 per cent of respondents.

An effective support tool for the microelectronics industry is the creation of special economic zones and clusters as evidenced by the experience in Russia as well as Asian and European countries. Such economic zones already exist in Zelenograd and Skolkovo. Human resources can also be a compelling aspect as the educational level of Russian technical specialists has traditionally been highly valued in the world. Such potential will unquestionably help market growth but the problem of migration of highly qualified personnel to other countries is one that cannot be ignored. Thus, retaining professionals within the country and creating an attractive work environment for them should be a fundamental task to further market development.

"In order to excel in the microelectronics market we must develop partnership programs on several levels since a simple a technology-oriented approach will not be enough," advised Mr. Shukla. "Market participants must concentrate their efforts on diversification, development of new technologies, optimization of expenditure, and development of new market niches."

VirtualWorks Group co-founder and Chairman Edward E. Iacobucci passed away at his home this morning after a 16-month battle with pancreatic cancer. Iacobucci was a renowned technology pioneer and entrepreneur who co-founded Citrix.

Recipient of the 1998 Ernst & Young International Entrepreneur Award, Iacobucci was quoted as saying, “Every human being has his own vision of what’s happening in the future. I was lucky in that what I thought would happen did happen. When we know we can do it and the rest of the world doesn’t – that’s when things get interesting.”

“Ed’s clear vision of the technological future is becoming more of a reality every day,” stated Erik Baklid, VirtualWorks President and CEO. “His courage and entrepreneurial spirit were matched by his inclusive leadership style, warm heart and good humor. Ed will be deeply missed by the many employees, customers, partners and friends whose lives he touched.”

"We are deeply saddened by the loss of Ed Iacobucci and we send our sincerest sympathies, thoughts and prayers to his family,” said Mark Templeton, President and CEO of Citrix Systems. “Ed’s spirit of entrepreneurship, creativity, passion and persistence will always remain at the core of Citrix. We are proud to carry his wondrous torch forward.”

Iacobucci was born on September 26, 1953 in Buenos Aires, Argentina to Dr. Guillermo and Costantina Iacobucci. He is survived by his wife, Nancy Lee (Iacobucci); his three children, Marianna (Eden), William (Iacobucci), and Michelle (Iacobucci); mother, Costantina (Iacobucci); brother, Billy (Iacobucci); and three grandchildren, Sophia, Haven and Estelle.

Worldwide semiconductor manufacturing equipment spending is projected to total $35.8 billion in 2013, a 5.5 percent decline from 2012 spending of $37.8 billion, according to Gartner, Inc. Gartner said that capital spending will decrease 3.5 percent in 2013, as major producers remain cautious in the face of market weakness.

"Weak semiconductor market conditions, which continued into the first quarter of 2013, generated downward pressure on new equipment purchases," said Bob Johnson, research vice president at Gartner. "However, semiconductor equipment quarterly revenues are beginning to improve and positive movement in the book-to-bill ratio indicates that spending for equipment will pick up later in the year. Looking beyond 2013, we expect that the current economic malaise will have worked its way through the industry and spending will follow a generally increasing pattern in all sectors throughout the rest of the forecast period."

Gartner predicts that 2014 semiconductor capital spending will increase 14.2 percent, followed by 10.1 percent growth in 2015. The next cyclical decline will be a mild drop of 3.5 percent in 2016, followed by a return to growth in 2017.

Table 1

Worldwide Semiconductor Manufacturing Equipment Spending Forecast, 2012-2017 (Millions of Dollars)

 

2012

2013

2014

2015

2016

 

 

 

2017

Semiconductor Capital Spending ($M)

58,742.8

56,704.5

64,745.6

71,305.9

68,790.4

72,399.6

Growth

-11.9%

-3.5%

14.2%

10.1%

-3.5%

5.2%

Capital Equipment ($M)

37,833.2

35,761.6

42,591.0

47,488.8

44,712.0

48,580.9

Growth

-16.1%

-5.5%

19.1%

11.5%

-5.8%

8.7%

Wafer-Level Manufacturing Equipment ($M)

31,445.8

29,900.7

35,293.4

40,400.0

38,867.7

42,179.1

Growth

-17.8%

-4.9%

18.0%

14.5%

-3.8%

8.5%

Wafer Fab Equipment ($M)

29,644.2

27,957.3

32,831.5

37,750.5

36,344.4

39,215.4

Growth

-18.5%

-5.7%

17.4%

15.0%

-3.7%

7.9%

Wafer-Level Packaging and Assembly Equipment ($M)

1,801.6

1,943.4

2,461.9

2,649.5

2,523.3

2,963.7 

Growth

-3.1%

7.9%

26.7%

7.6%

-4.8%

17.5%

Die-Level Packaging and Assembly Equipment ($M)

3,867.3

3,503.7

4,258.9

3,922.5

3,232.1

3,548.2

Growth

-10.5%

-9.4%

21.6%

-7.9%

-17.6%

9.8%

Automated Test Equipment ($M)

2,520.0

2,357.2

3,038.7

3,166.3

2,612.2

2,853.5

Growth

0.4%

-6.5%

28.9%

4.2%

-17.5%

9.2%

Other Spending ($M)

20,909.6

20,943.0

22,143.3

23,815.1

24,401.2

24,067.9

Growth

-3.1%

0.2%

5.7%

7.6%

2.5%

-1.4%

Source: Gartner (June 2013)

Although capital spending for all products will decline in 2013, logic spending will be the strongest segment, declining only 2 percent compared with a 3.5 percent decline for the total market. This is driven by aggressive investment of the few top players, which are ramping up production at the sub-30-nanometer (nm) nodes. Memory will continue to be weak through 2013, with maintenance-level investments for DRAM and a slightly down NAND market until supply and demand balance returns. For 2014, Gartner sees capital expenditure (capex) returning to growth with an increase of 14.2 percent over 2013. The foundry segment will see an increase in spending of about 14.3 percent this year, while both integrated device manufacturers (IDMs), and semiconductor assembly and test services (SATS) providers will show spending declines. Beyond 2013, memory surges in 2014 and 2015 and a cyclical decline in 2016, while logic returns to a steady growth pattern.

The wafer fab equipment (WFE) market is seeing continuous quarter-over-quarter growth in 2013, as major manufacturers come out of a period of high inventories and a generally weak semiconductor market. Early in the year the book-to-bill ratio passed 1:1 for the first time in months, signaling that the need for new equipment is strengthening as demand for leading-edge devices is improving. Looking beyond 2013, Gartner sees growth returning to the WFE market with double-digit growth in 2014 and 2015, before a modest cyclical downturn in 2016.

The capital spending forecast estimates total capital spending from all forms of semiconductor manufacturers, including foundries and back-end assembly and test services companies. This is based on the industry’s requirements for new and upgraded facilities to meet the forecast demand for semiconductor production. Capital spending represents the total amount spent by the industry for equipment and new facilities.

More detailed analysis is available in the report "Forecast: Semiconductor Capital Spending, Worldwide, 2Q13 Update."

This research is produced by Gartner’s Semiconductor Manufacturing program. This research program, which is part of the overall semiconductor research group, provides a comprehensive view of the entire semiconductor industry, from manufacturing to device and application market trends.

 

TowerJazz today announced it will be the wafer manufacturer for infrared sensing and camera devices. In addition to traditional infrared applications, TowerJazz will facilitate expansion into other consumer markets such as gaming, personal security, and application driven platforms.

The CMOS-based process at TowerJazz’s US location is a viable, commercially sustainable foundry offering to support its commercial as well as its aerospace and defense customers.

“This development is a natural fit for TowerJazz. Our leading edge CMOS for custom imaging products and our expertise in bringing specialty processing and MEMS to volume manufacturing fits extremely well with the proven capabilities of our customer,” said David Howard, executive director and fellow, TowerJazz.

“Combined external and internal investments will expand our existing fabrication as well as facilitize an annex which will be used for certain unique processes. This will be the first and only large-scale pure play foundry capable of producing fully integrated sensors. The application space is expected to grow substantially, enabling a new and additional significant revenue stream to the company,” said Russell Ellwanger, TowerJazz CEO.

TowerJazz manufactures integrated circuits, offering a broad range of customizable process technologies including: SiGe, BiCMOS, Mixed-Signal/CMOS, RFCMOS, CMOS Image Sensor, Power Management (BCD), and MEMS capabilities. TowerJazz also provides a design enablement platform that enables a quick and accurate design cycle. In addition, TowerJazz provides (TOPS) Technology Optimization and development Process Services to IDMs and fabless companies that need to expand capacity. TowerJazz offers multi-fab sourcing with two manufacturing facilities in Israel, one in the U.S., and one in Japan.

Using clouds of ultra-cold atoms and a pair of lasers operating at optical wavelengths, researchers have reached a quantum network milestone: entangling light with an optical atomic coherence composed of interacting atoms in two different states. The development could help pave the way for functional, multi-node quantum networks.

The research, done at the Georgia Institute of Technology, used a new type of optical trap that simultaneously confined both ground-state and highly-excited (Rydberg) atoms of the element rubidium. The large size of the Rydberg atoms – which have a radius of about one micron instead of a usual sub-nanometer size – gives them exaggerated electromagnetic properties and allows them to interact strongly with one another.

A single Rydberg atom can block the formation of additional Rydberg atoms within an ensemble of atoms, allowing scientists to create single photons on demand. Georgia Tech professor Alex Kuzmich and collaborators published a report on the Rydberg single-photon source in the journal Science in April 2012, and in a subsequent Nature Physics article, demonstrated for the first time many-body Rabi oscillations of an atomic ensemble.

In the new research, the state-insensitive trap allowed the researchers to increase the rate at which they could generate photons by a factor of 100 compared to their previous work.

“We want to allow photons to propagate to distant locations so we can develop scalable protocols to entangle more and more nodes,” said Kuzmich, a professor in Georgia Tech’s School of Physics. “If you can have coherence between the ground and Rydberg atoms, they can interact strongly while emitting light in a cooperative fashion. The combination of strong atomic interactions and collective light emissions results in entanglement between atoms and light. We think that this approach is quite promising for quantum networking.”

The research was reported June 19 in the early edition of the journal Nature. The research has been supported by the Atomic Physics Program and the Quantum Memories Multidisciplinary University Research Initiative (MURI) of the Air Force Office of Scientific Research, and by the National Science Foundation.

Generating, distributing and controlling entanglement across quantum networks are the primary goals of quantum information science being pursued at research laboratories around the world. In earlier work, ground states of single atoms or atomic ensembles have been entangled with spontaneously-emitted light, but the production of those photons has been through a probabilistic approach – which generated photons infrequently.

This spontaneous emission process requires a relatively long time to create entanglement and limits the potential quantum network to just two nodes. To expand the potential for multi-mode networks, researchers have explored other approaches, including entanglement between light fields and atoms in quantum superpositions of the ground and highly-excited Rydberg electronic states. This latter approach allows the deterministic generation of photons that produces entanglement at a much higher rate.

However, until now, Rydberg atoms could not be excited to that state while confined to optical traps, so the traps had to be turned off for that step. That allowed the confined atoms to escape, preventing realization of atom-light entanglement.

Based on a suggestion from MURI colleagues at the University of Wisconsin, the Georgia Tech team developed a solution to that problem: a state-insensitive optical trap able to confine both ground-state and Rydberg atoms coherently. In this trap, atoms persist for as much as 80 milliseconds while being excited into the Rydberg state – and the researchers believe that can be extended with additional improvements. However, even the current atomic confinement time would be enough to operate complex protocols that might be part of a quantum network.

“The system we have realized is closer to being a node in a quantum network than what we have been able to do before,” said Kuzmich. “It is certainly a promising improvement.”

Key to the improved system is operation of an optical trap at wavelengths of 1,004 and 1,012 nanometers, so-called “magic” wavelengths tuned to both the Rydberg atoms and the ground state atoms, noted Lin Li, a graduate student in the Kuzmich Laboratory.

“We have experimentally demonstrated that in such a trap, the quantum coherence can be well preserved for a few microseconds and that we can confine atoms for as long as 80 milliseconds,” Li said. “There are ways that we can improve this, but with the help of this state-insensitive trap, we have achieved entanglement between light and the Rydberg excitation.”

The rate of generating entangled photons increased from a few photons per second with the earlier approaches to as many as 5,000 photons per second with the new technique, Kuzmich said. That will allow the researchers to pursue future research goals – such as demonstration of quantum gates – as they optimize their technique.

Experimentally, the research works as follows: (1) an ultra-cold gas of rubidium atoms was confined in a one-dimensional optical lattice using lasers operating at 1,004nm and 1,012nm wavelengths. The atomic ensemble was driven from the collective ground state into a single excited state; (2) By applying a laser field, an entangled state was generated. The retrieved field was mixed with the coherent field using polarizing beam-splitters, followed by measurement at single-photon detectors; (3) The remaining spin wave was mapped into a field by a laser field.

According to Kuzmich, the success demonstrates the value of collaboration through the MURI supported by the Air Force Office of Scientific Research, which in 2012 awarded $8.5 million to a consortium of seven U.S. universities that are working together to determine the best approach for creating quantum memories based on the interaction between light and matter.

Through the MURI, a team of universities is considering three different approaches for creating entangled quantum memories that could facilitate long-distance transmission of secure information. Among the collaborators in the five-year program are Mark Saffman and Thad Walker at the University of Wisconsin, Mikhail Lukin of Harvard, and Luming Duan of the University of Michigan, who at the beginning of this century made pioneering proposals which formed the basis of the approach that Kuzmich, Li and colleague Yaroslav Dudin used to create the entanglement between light and the Rydberg excitatio