Tag Archives: SEMI

Richard Dixon, Senior Principal Analyst, Sensors, IHS Markit

Richard Dixon

Sensors are inextricably linked to the future requirements of partially and fully autonomous vehicles. From highly granular dead-reckoning subsystems that rely on industrial-strength gyroscopes for superior navigation to more intelligent and personalized cockpits featuring intuitive human machine interfaces (HMIs) and smart seats, new generations of partially and fully autonomous cars will use sensors to enable dramatically better customer experiences.

Dead reckoning, or, where am I, exactly?

Dead reckoning is the process of calculating one’s current position by using a previously determined position, and advancing that position based upon known speeds over a time slice. As a highly useful process, dead reckoning is the basis for inertial navigation systems in aerospace navigation and missile guidance, not to mention your smartphone.

Today’s best-in-class MEMS gyroscopes can offer 30-50 cm resolution (this is the yaw rate drift) over a distance of 200 m—a typical tunnel length where a GPS signal is lost. For semi-autonomous (L3) or autonomous (L4, L5), the locational accuracy is well below 10 centimeters; that’s an accuracy usually reserved for high-end industrial or aerospace gyroscopes with a raw bias instability ranging from 1°/h and down to 0.01°/h. These heavy-duty gyros command prices from $100s up to $1000s (FIGURE 1).

Figure 1. Current performance levels of different gyroscopes by application and performance measure in terms of bias drift (IHS Markit).

This poses an interesting potential opportunity for both industrial-performance MEMS-based gyroscope sensor-makers, such as Silicon Sensing Systems, Analog Devices, Murata, Epson Toyocom and TDK InvenSense, and for broader-based sensor component-makers such as Bosch, Panasonic, STMicroelectronics, and TDK (InvenSense and Tronics).

While MEMS can master performance, size and low weight, cost remains the challenge. The fail-operational mode requirement for autonomous driving will accommodate higher prices, at least in the beginning, probably in the $100+ range at first, even for the relatively low volumes of self-driving cars anticipated by 2030. Nonetheless, automotive volumes are very attractive compared to industrial applications and offer a lucrative future market for dead-reckoning sensors.

Your cockpit will get smarter

Automakers are banking on the idea that people like to control their own physical environment. Interiors already feature force and pressure sensors that provide more personalized seating experiences and advanced two-stage airbags for improved safety. In some vehicles, automakers are using pairs of MEMS microphones for noise reduction and image or MEMS infrared sensors for detection of driver presence. Eventually, we might see gas sensors that monitor in-cabin CO2 levels, triggering a warning when they detect dangerous levels that could cause drowsiness. These smart sensors would then “tell” the driver to open the window or activate an air-scrubbing system in a more complex solution. While today’s CO2 sensors are still relatively expensive, we may see them designed-in as lower-cost versions come to market.

Future cockpits will need to go beyond such concepts in the lead-up to fully automated driving. Seats could contain sensitive acceleration sensors that measure heart and respiration rates as well as body movement and activity. Other devices could monitor body humidity and temperature.

We need look no further than Murata, a supplier initially targeting hospital beds with a MEMS accelerometer as a replacement for pulse oximeters. That same Murata accelerometer could be placed potentially in a car seat to detect heart rate. It’s not the only way to do this: another sensing approach for heart-rate measurement comprises millimeter wave radiation, a method that can even look through objects such as books and magazines.

Augmenting sensor-based body monitoring, automotive designers will use cameras to fuse information such as gaze direction, rate of blinking and eye closure, head tilt, and seat data with data gathered by sensors to provide valuable information on the driver’s physical condition, awareness and even mood.

Faurecia’s Active Wellness concept—unveiled at the 2016 Paris Motor Show—proves that this technology might be coming sooner than we think. Active Wellnesscollects and analyzes biological data and stores the driver’s behavior and preferences. This prototype provides data to predict driver comfort based on physical condition, time of day, and traveling conditions, as well as car operating modes: L3, L4 or L5. Other features such as event-triggered massage, seat ventilation and even changes in ambient lighting or audio environment are possible (FIGURE 2).

Figure 2. Faurecia’s “cockpit of the future,” announced at CES 2018. (Faurecia).

Meanwhile, there are other commercial expressions of more advanced HMI as well as plenty of prototypes. Visteon’s Horizon cockpit can use voice activation and hand gestures to open and adjust HVAC. Capacitive sensors are already widely used for touch applications, and touchless possibilities range from simple infrared diodes for proximity measurement to sophisticated 3D time-of-flight measurements for gesture control.

Clearly, automotive designers will have a lot more freedom with HMI in the cabin space, providing a level of differentiation that manufacturers think customers will appreciate—and for which they will pay a premium.

Managing sensor proliferation

Researchers are investigating ways to solve the issue of high-functionality vehicles containing myriad sensing inputs, i.e., when we have so many sensing inputs, designers must address wiring complexity and unwanted harness weight. Faurecia, for example, is considering ways to convert wood, aluminum, fabric or plastic into smart surfaces that can be functionalized via touch-sensitive capacitive switches integrated into the surface. These smart surfaces could reduce the explosion of sensing inputs, thereby diminishing wiring complexity. With availability from 2020, Faurecia’s solutions are approaching the market soon.

Beyond functionalized switches, flexible electronics and wireless power sources, and even energy harvesting (to mitigate power sources), could provide some answers. Indeed, recent research has shown that graphene-based Hall-effect devices can be embedded in large-area flexible Kapton films, and eventually integrated into panels. OEMs such as Jaguar Land Rover are interested in such approaches to address the downsides of electronics and sensor proliferation, especially in luxury vehicles. While smart surfaces would represent a big change in sensor packaging and a disruption in current semiconductor processes, they remain a long way from commercial introduction.

By 2030 or thereabouts, fully autonomous cars that detect our mood, vital signs and activity level could well be available. Cabins could signal us to open the window if CO2 levels become dangerous. HVAC systems could increase seat ventilation or turn up the air conditioning (or the heat) based on our body temperature. Feeling too hot or too cold in the cabin could become a thing of the past, at least for the driver, whose comfort level is the most important! We could feasibly feel more comfortable in the car than in our office, our home or at the movies. Perhaps our car will become our office, our entertainment center and our home away from home as we take long road trips with the family, without a single passenger uttering, “Are we there yet?”

Editor’s Note: This was originally published in the SEMI-MEMS & Sensors Industry Group Blog on www.solid-state.com., and published in the October 2018 issue of Solid State Technology. 

At SEMICON Europa, attendees and exhibitors will delve into the technologies that shape the future of the microtech, nanotech, medtech and cleantech industries. Representing the entire supply chain from materials to electronic systems and services, 35 major European start-ups will participate in the Innovation Village and present their new technologies at SEMICON Europa.  The largest and most important semiconductor event in Europe, SEMICON Europa  will be held 7-9 October in the Grenoble location for the first time. The new three-day Innovation Village program will be the stage for emerging innovators, industry leaders, strategic investors, and venture capitalists to discuss the needs of the industry’s innovation engine. Attendees will gain insights on technology, capital, partnership, and collaboration strategies necessary for mutual success.

Innovation Village consists of a start-up exhibition (7-9 October), Silicon Innovation Forum (7 October) and Innovation Conference (8 October). As part of the Silicon Innovation Forum, all selected start-ups will have the opportunity to “pitch” to investors and SEMICON Europa visitors. The pitch session will be followed by a start-up panel discussion  “Fundraising for the Future Champions of European Electronics,” led by Jean-Pascal Bost of SATT-GIFT with panelists: Jacques Husser (Sigfox), Eric Baissus (Kalray), Serguei Okhonin (ActLight) and Mike Thompson (Hotblock Onboard).

The Innovation Conference, sponsored by Fidal Innovation, will bring together notable names in European innovation to discuss current practices and relevant funding issues facing semiconductor and high-tech start-ups today. Keynote speakers will include Nicolas Leterrier (Schneider Electric) on Innovation Practices and Dan Armbrust (Silicon Catalyst) on Lean Innovation. Christine Vaca (Gate1) will act as the conference chair.

“For the inaugural SEMICON Europa in Grenoble, our team was intent on developing a program that would highlight the strength of the local and the European ecosystems in innovation and new technology,” explains Anne-Marie Dutron, director of the SEMI Grenoble office. “At Innovation Village, visitors will discover the creativity of 35 European start-up companies, presenting their products, partnership and investment opportunities.”

Participating start-ups were chosen by a selection committee which included ten of the most recognizable venture firms in the industry: Applied Ventures LLC, Robert Bosch Venture GmbH, TEL Venture,3M Ventures, CEA Investissement, Samsung Ventures, Air Liquid Electronics, ASTER Capital), VTT Ventures, and  Capital-E.

Start-ups include ActLight (Switzerland), BlinkSight (France), BluWireless Technology (UK), Calao-Systems (France) and Silicon Line (Germany). For more information about Innovation Village, participating start-ups or about the Innovation Conference, please visit the SEMICON Europa website: www.semiconeuropa.org/Segments/InnovationVillage

All events in Innovation Village, including the three-day start-up exhibition, Silicon Innovation Forum and Innovation Conference will be available at no charge for all SEMICON Europa guests and visitors. The event will be co-hosted by SEMI Grenoble and Gate1. The mission of GATE1 is to support the creation of new technology-driven businesses by capitalizing on the proximity of numerous university laboratories and research centers. GATE1 offers programs for technology maturation, business incubation and business acceleration.