Tag Archives: Top Story Left

From connectivity to globalization and sustainability, the “Law” created by Gordon Moore’s prediction for the pace of semiconductor technology advances has set the stage for global technology innovation and contribution for 50 years. The exponential advances predicted by Moore’s Law have transformed the world we live in. The ongoing innovation, invention and investment in technology and the effects that arise from it are likely to enable continued advances along this same path in the future, according to a new report from IHS Inc. Titled “Celebrating the 50th Anniversary of Moore’s Law,” the report describes how the activity predicted by Moore’s Law not only drives technological change, but has also created huge economic value and driven social advancement.

In April of 1965, Fairchild Semiconductor’s Research and Development Director, Gordon Moore, who later founded Intel, penned an article that led with the observation that transistors would decrease in cost and increase in performance at an exponential rate. More specifically, Moore posited that the quantity of transistors that can be incorporated into a single chip would approximately double every 18 to 24 months. This seminal observation was later dubbed “Moore’s Law.”

“Fifty years ago today, Moore defined the trajectory of the semiconductor industry, with profound consequences that continue to touch every aspect of our day-to-day lives,” said Dale Ford, vice president and chief analyst for IHS Technology. “In fact, Moore’s Law forecast a period of explosive growth in innovation that has transformed life as we know it.”

The IHS Technology report, which is available as a free download, finds that an estimated $3 trillion of additional value has been added to the global gross domestic product (GDP), plus another $9 trillion of indirect value in the last 20 years, due to the pace of innovation predicted by Moore’s Law. The total value is more than the combined GDP of France, Germany, Italy and the United Kingdom.

If the cadence of Moore’s Law had slowed to every three years, rather than two years, technology would have only advanced to 1998 levels: smart phones would be nine years away, the commercial Internet in its infancy (five years old) and social media would not yet have skyrocketed.

“Moore’s Law has proven to be the most effective predictive tool of the last half-century of technological innovation, economic advancement, and by association, social and cultural change,” Ford said. “It has implications for connectivity and the way we interact, as evidenced by the way social relationships now span the globe. It also provides insight into globalization and economic growth, as technology continues to transform entire industries and economies. Finally it reveals the importance of how sustainability affects life on Earth, as we continue to transform our physical world in both positive and negative ways.”

Moores Law full

The Moore’s Law Era: Explosive Economic and Societal Change

The consequences of Moore’s Law has fueled multifactor productivity growth. The activity forecast by the law has contributed a full percentage point to real GDP growth, including both direct and indirect impact, every year between 1995 and 2011, representing 37 percent of global economic impact.

“Not even Gordon Moore himself predicted the blistering pace of change for the modern world,” Ford said. “While it is true most people have never seen a microprocessor, every day we benefit from experiences that are all made possible by the exponential growth in technologies that underpin modern life.”

According to the “Moore’s Law Impact Report,” the repercussions of Moore’s Law have contributed to an improved quality of life, because of the advances made possible in healthcare, sustainability and other industries. The results of advanced digital technology include the following:

  • Forty percent of the world’s households now have high-speed connections, compared to less than 0.1 percent in 1991
  • Up to 150 billion incremental barrels of oil could potentially be extracted from discovered global oil fields
  • Researchers can perform 1.5 million high-speed screening tests per week (up from 180 in 1997), allowing for the development of new material, such as bio-fuels and feedstock’s for plant-based chemicals

Moore’s Law: Reflecting the Pace of Change

Moore’s Law is not a law but an unspoken agreement between the electronics industry and the world economy that inspires engineers, inventors and entrepreneurs to think about what may be possible.

“Whatever has been done, can be outdone,” said Gordon Moore. “The industry has been phenomenally creative in continuing to increase the complexity of chips. It’s hard to believe – at least it’s hard for me to believe – that now we talk in terms of billions of transistors on a chip rather than tens, hundreds or thousands.”

Moore’s observation has transformed computing from a rare, expensive capability into an affordable, pervasive and powerful force – the foundation for Internet, social media, modern data analytics and more. “Moore’s Law has helped inspire invention, giving the world more powerful computers and devices that enable us to connect to each other, to be creative, to be productive, to learn and stay informed, to manage health and finances, and to be entertained,” Ford said.

Millennials: The Stewards of Moore’s Law

From the changing shape and feel of how humans communicate to the delivery of healthcare, changing modes of transportation, cities of the future, harvesting energy resources, classroom learning and more – technology innovations that spring from Moore’s Law likely will remain a foundational force for growth into the next decade.

From data sharing, self-driving cars and drones to smart cities, smart homes and smart agriculture, Moore’s Law will enable people to continuously shrink technology and make it more power efficient, allowing creators, engineers and makers to rethink where – and in what situations – computing is possible and desirable.

Computing may disappear into the objects and spaces that we interact with – even the fabric of our clothes or ingestible tracking devices in our bodies. New devices may be created with powerful, inexpensive technology and combining this with the ability to pool and share more information, new experiences become possible.

Fairchild, a supplier of high-performance semiconductor solutions, today launched the FIS1100 6-axis MEMS Inertial Measurement Unit (IMU), the company’s first MEMS product stemming from its strategic investments in MEMS and motion tracking. The FIS1100 IMU integrates a proprietary AttitudeEngine motion processor with best-in-class 9-axis sensor fusion algorithms to provide designers with an easy to implement, system-level solution for superior user experiences with up to ten times lower processing power consumption in a wide range of motion enabled, battery-powered applications.

Fairchild's FIS1100 Intelligent IMU is an easy-to-implement, system-level motion tracking solution that can reduce processor power consumption by as much as 10x. (Graphic: Business Wire)

Fairchild’s FIS1100 Intelligent IMU is an easy-to-implement, system-level motion tracking solution that can reduce processor power consumption by as much as 10x. (Graphic: Business Wire)

“The launch of Fairchild’s first MEMS product is a key milestone for the company as we take our unique design and manufacturing expertise and apply it towards system-level solutions that go beyond power,” said Fairchild Chairman & CEO Mark Thompson. “The advanced algorithms and deep applications know-how from the Xsens acquisition position us well in enabling our customers to develop advanced motion solutions in diverse, quickly growing segments within markets such as consumer, industrial, and health.”

The FIS1100 IMU, with its built in AttitudeEngine motion processor and XKF3 senor fusion, is a low power, highly accurate system solution that provides customers with the always-on sensor technology required for a range of application such as wearable sensors for sports, fitness, and health; pedestrian navigation; autonomous robots; and virtual and augmented reality.

“Motion tracking in consumer devices has expanded rapidly from game interfaces and smartphones into many new Internet of Moving Things applications,” said Jérémie Bouchaud, director and senior principal analyst, MEMS & Sensors, at IHS. “As designers look to differentiate their products with motion, the availability of an IMU with an integrated motion processor and a complete software solution, accelerates time to market while ensuring the best trade-off between competing goals such as small size, long battery life and motion tracking accuracy.”

The AttitudeEngine processes 6-axis inertial data at a high rate internally and outputs to the host processor at a lower rate matching the application needs, eliminating the necessity for high-frequency interrupts. This allows the system processor to remain in sleep-mode longer, providing consumers longer battery life without any compromises in functionality or accuracy. The bundled XKF3 high-performance 9-axis sensor fusion algorithms combine inertial sensor data from the on-chip gyroscopes and accelerometers and data from an external magnetometer. The sensor fusion also includes background auto calibration that enables excellent performance in terms of accuracy, consistency, and fluidity. When combined with the XKF3 sensor fusion algorithms, the FIS1100 is the world’s first complete consumer inertial measurement unit with orientation (quaternion) specifications, featuring pitch and roll accuracy of ±3° and yaw accuracy of ±5°.

The FIS1100 uses Fairchild’s proprietary MEMS process, designed specifically for inertial sensors. The process features several design elements for optimal performance, size and robustness. These include a 60µm device layer with high-aspect ratio, through silicon via (TSV) interconnects and vertical electrodes, as well as a single die gyroscope and accelerometer with a unique dual vacuum design.

By Paula Doe, SEMI

As if scaling to 7nm geometries and going vertical with FinFETs, TSVs and other emerging technologies wasn’t challenge enough, the emerging market for connected smart devices will bring more changes to the semiconductor sector. And then there’s 3D printing looming in the wings.

Sometime between 2009 and 2010, there was a point of inflection, where the number of connected devices began outnumbering the planet’s human population. And these aren’t just laptops, mobile phones, and tablets – they also include sensors and everyday objects that were previously unconnected, says Tony Shakib, Cisco Systems VP IoE Vertical Solutions, who will talk about the impact of these changes on the chip industry at SEMICON West this summer in San Francisco.  Connected “things” may reach 25 to 50 billion by the year 2020, he projects. These connections of people, process, data and things will create opportunities for new revenue streams, new options for competitive advantage, and new operating models to drive both efficiency and value, potentially driving massive gains in efficiency, business growth, and quality of life, he suggests. “But as we connect the unconnected, this will require that we think differently about business strategy and IT, analytics, security, and more.”

Source: Cisco

Source: Cisco

Chip makers will need to provide easy-to-use IoT security for startups

One big change: some 50 percent of Internet of Things (IoT) solutions by 2017 will probably come from startups, according to Gartner’s projections.  “Whatever the exact percentage, the increased role of new and small players in the IoT edge devices will be a fundamental paradigm shift from the big companies that have conventionally dominated the electronics industry, says Gowri Chindalore, head of Technology and Business Strategy for Microcontrollers business group at Freescale, who will speak on the issue at SEMICON West’s “Monetizing the IoT: Opportunities and Challenges” session.  “And these startups’ knowledge of security is often very low.  So as IC makers we need to make it easy for them to do.” He suggests the best solution is to offer on-chip security features, such as secure storage, cryptographic accelerators, and tamper resistance mechanisms, and supplement them with a software dashboard that makes it easy for the systems maker to set up and enable the desired features appropriate for the application.  Though the encryption technology is very complex, by using library programs and selling in volume, the actual cost can probably be reduced to a few cents per chip.

Security for the internet will also improve markedly within several years as passwords are replaced by personal transmitters that automatically send secure codes to websites at log on. Similarly, local aggregator devices at the edge for all the IoT devices in the house or the factory will serve as the security gateway to screen users or devices by transmitted codes or biometric sensors. “We need proliferation of these security features into even all the benign IoT gadgets in the house to protect the network, but consumers will be willing to pay the small extra cost for security — especially after a few more highly publicized instances of hacking,” he notes.

Designers combining more IP blocks face challenges in reliability and verification

The key challenge across the board from the design side for successful IoT devices will be figuring out how to combine the right component capabilities of sensors and memory and processing and connectivity and size and power for a compelling application, and then making the right tradeoffs in the architecture to make it all work, explains Steve Carlson, VP marketing, Cadence Design Systems, another speaker at SEMICON West. “IP blocks will be especially useful for smaller companies to add functions without necessarily having the in house expertise,” he notes.  But combining the blocks will challenge many users by dramatically new issues of isolating noisy analog parts from the digital as they add RF and sensors that they haven’t had to deal with before, and all at near-threshold and ultralow power.  That will mean more issues with variation and reliability, and verification will increasingly need to include both hardware blocks and software together, so emulation will become more critical, he notes.

Fabs may need to deal with more diverse processes, but may improve productivity

“The IoT will drive demand for more IC manufacturing across a wide range of technologies, from the most advanced logic process to high voltage devices and MEMS, all with diverse requirements,” says Peter Huang, VP Field Technical Support, TSMC North America, another speaker. He notes that MEMS and other emerging devices, ranging from micro-lenses for machine vision to batteries to power wireless sensors, will require some unique tools and processes, and will be less easily scalable than CMOS.  Material handling and the need for isolated lines will create additional challenges. “Heterogeneous integration will require 2.5D packaging for both form factor and cost,” he suggests. “And the real challenge will be high volume manufacturing and IP interface at the package level.”

Though manufacturing equipment is already highly automated and interconnected, the availability of hundreds of low-cost, connected sensors may bring opportunities to increase tool automation and productivity, he adds.

IoT graphic 2

Compact integration of multiple chip and sensor technologies for IoT devices will demand more sophisticated system- in-package technology.  The new Apple Watch has 30 components in its core S1 SiP, all packed on to a 26mm x 28mm motherboard and overmolded with a conventional IC packaging resin compound. (from Chipworks)

Progress on technology for 3D printing of tooling and components

Then there’s the disruptive potential for 3D printing some of the tooling and components all along the supply chain to speed time to market, allow more customization, reduce weight and simplify dealing with legacy parts — if the process can meet the required quality and cost. Phillip Trinidad, president of service provider Proto Café, who has worked with semiconductor sector players,  argues that progress in optimizing designs now means additive manufacturing is increasingly becoming suitable not just for prototyping, but also for production of specialty parts in performance plastics.

In addition, there’s recent progress in 3D printing for challenging metal industrial parts, which will be addressed at SEMICON West “Factory of the Future: Disruptive Technologies from IoT to 3D Printing — Impact on the Semiconductor Manufacturing Sector” session. Ryan Dehoff, lead for Metal Additive Manufacture at Oakridge National Laboratory, will provide an update on the current state of the art for printing in metal, while Wayne King, director of the Initiative for Accelerated Certification of Additive Manufactured Metals, will talk about the progress on speeding qualification of the additive metal parts by modeling and inline process monitoring and control.

Along with the regular coverage of next-generation scaling technology, SEMICON West 2015 will also address the impact of the Internet of Things and 3D printing on manufacturing technology across the semiconductor supply chain, as well as related developments in MEMS, emerging non-volatile memory technology, and automotive and biomedical applications. Please visit www.semiconwest.org.

UPDATE:15 December 2015: Minor changes made to reflect correct ARM product nomenclature.

By Jeff Dorsch, Contributing Editor

Those 16-nanometer chips with FinFETs? Yesterday’s news. Taiwan Semiconductor Manufacturing wants you to know that they’re ready, willing, and able to help you design chips with 10-nanometer features.

The foundry presented Monday morning with its long-time partners, ARM Holdings and Synopsys, on its preparations for the 10nm process node.

20150608_072835 (640x360)

“The N10 design ecosystem is ready for customer design starts,” said Willy Chen, TSMC’s deputy director of Design & Technology Platform. He noted that TSMC has been collaborating with Synopsys for 15 years, while ARM and TSMC together offer “the most advanced ARM processor cores in the most advanced TSMC technology.”

Rob Aitken of ARM added, “10-nanometer enablement needs an ecosystem,” which the three companies are prepared to provide. He said ARM has “some cool things under development to make chip design faster,” without elaborating.

Haroon Gahur, principal design engineer at ARM, began the program by describing attributes of the ARM Cortex-A72 processor design, which he said consumes 75% less energy than previous ARM cores.

Joe Walston of Synopsys said ARM used the DC Graphical, IC Compiler I, and IC Compiler II tools from Synopsys in developing Cortex-A72, with signoff performed by PrimeTime SI. ARM’s Gahur noted that IC Compiler II provided a significant runtime advantage over its predecessor, IC Compiler I, by completing its run in five hours, compared with about 24 hours for IC Compiler I.

The program also featured Denny Liu, deputy general manager of Design Technology at MediaTek, who spoke of his company’s involvement with Synopsys and TSMC. He detailed MediaTek’s Helio X20, introduced last month, which is a tri-cluster mobile processor with 10 cores. MediaTek also employed IC Compiler II in designing the chip.

For all the 10nm talk, TSMC is hitting its stride with the N16FF+ process. Synopsys and TSMC announced Monday that the IC Compiler II place-and-route tool is certified for the foundry’s 16nm FinFET Plus process.

“The 16FF+ design flow is here,” TSMC’s Chen said.

The program finished with a presentation by Henry Sheng, group director of research and development at Synopsys, who noted that 90 percent of FinFET tapeouts are done with Synopsys place-and-route tools. Touting his company’s “healthy working relationship with TSMC,” Sheng said that emerging process nodes present a number of challenges, specifically new yield and manufacturing rules, process scaling, and new FinFET devices. Of FinFETs, he said, “These things are electrically different.”

Separately, Synopsys announced Sunday that it has agreed to acquire Atrenta, without disclosing financial terms. The transaction is expected to close this summer.

IC Insights will release its Update to the 2015 IC Market Drivers report in June. The Update includes revisions to IC market conditions and forecasts for the 2015 2018 automotive, smartphone, personal computer and tablet markets, as well as an update to the market for the Internet of Things. This bulletin reviews IC Insights’ 2015 unit shipment forecast for total personal computing unit shipments.

Five years ago, touchscreen tablets began pouring into the personal computing marketplace, stealing growth from standard personal computers and signaling the start of what has been widely described as the “post-PC” era. Led by Apple’s iPad systems, tablet shipments overtook notebook PCs in 2013, and it appeared as if they would surpass total personal computer units (counting both desktop and portable systems) by 2016. However, that scenario no longer seems possible after tablet growth lost significant momentum in 2014 and then nearly stalled out in the first half of 2015 due to the rise in popularity of large-screen smartphones and the lack of interest in new tablets that do not add enough features or capabilities to convince existing users to buy replacements. Consequently, IC Insights has downgraded its forecast for the overall personal computing market, including much lower growth in tablets and continued weakness in standard PCs (Figure 1).

The updated forecast shows total personal computing unit shipments (desktop PCs, notebook PCs, tablets, and Internet/cloud-computing “thin-client” systems) dropping 1 percent in 2015 to 545 million. In the original forecast of the 2015 IC Market Drivers report (MD15), total personal computing system shipments were projected to rise 8 percent in 2015 to 609 million units, followed by a 10 percent increase in 2016 to 670 million. The revised outlook cuts the compound annual growth rate (CAGR) of personal computing unit shipments to 2.1 percent between 2013 and 2018. Total personal computing system shipments are now projected to reach 578 million in 2018.

Worldwide shipments of keyboard-equipped standard PCs (desktops and notebooks) peaked in 2012 at 345 million, but they are expected to decline by a CAGR of -0.5 percent in the 2013-2018 timeperiod. In the updated outlook, tablets are projected to account for 45 percent of total systems sold in 2018 (259 million units) versus the MD15’s original forecast of 57 percent (423 million) that year. Further into the future, tablets are now expected to account for about half of personal computing system shipments with the remaining units being divided between standard PCs and Internet/cloud-centric platforms.

IC Insights June Report

Figure 1

 

Additional details on the IC market for medical and wearable electronic is included in the 2015 edition of IC Insights’ IC Market Drivers—A Study of Emerging and Major End-Use Applications Fueling Demand for Integrated Circuits.  This report examines the largest, existing system opportunities for ICs and evaluates the potential for new applications that are expected to help fuel the market for ICs.

IBM today announced a significant milestone in the development of silicon photonics technology, which enables silicon chips to use pulses of light instead of electrical signals over wires to move data at rapid speeds and longer distances in future computing systems.

For the first time, IBM engineers have designed and tested a fully integrated wavelength multiplexed silicon photonics chip, which will soon enable manufacturing of 100 Gb/s optical transceivers. This will allow datacenters to offer greater data rates and bandwidth for cloud computing and Big Data applications.

“Making silicon photonics technology ready for widespread commercial use will help the semiconductor industry keep pace with ever-growing demands in computing power driven by Big Data and cloud services,” said Arvind Krishna, senior vice president and director of IBM Research. “Just as fiber optics revolutionized the telecommunications industry by speeding up the flow of data — bringing enormous benefits to consumers — we’re excited about the potential of replacing electric signals with pulses of light. This technology is designed to make future computing systems faster and more energy efficient, while enabling customers to capture insights from Big Data in real time.”

Silicon photonics uses tiny optical components to send light pulses to transfer large volumes of data at very high speed between computer chips in servers, large datacenters, and supercomputers, overcoming the limitations of congested data traffic and high-cost traditional interconnects. IBM’s breakthrough enables the integration of different optical components side-by-side with electrical circuits on a single silicon chip using sub-100nm semiconductor technology.

IBM’s silicon photonics chips uses four distinct colors of light travelling within an optical fiber, rather than traditional copper wiring, to transmit data in and around a computing system. In just one second, this new transceiver is estimated to be capable of digitally sharing 63 million tweets or six million images, or downloading an entire high-definition digital movie in just two seconds.

The technology industry is entering a new era of computing that requires IT systems and cloud computing services to process and analyze huge volumes of Big Data in real time, both within datacenters and particularly between cloud computing services. This requires that data be rapidly moved between system components without congestion. Silicon photonics greatly reduces data bottlenecks inside of systems and between computing components, improving response times and delivering faster insights from Big Data.

IBM’s new CMOS Integrated Nano-Photonics Technology will provide a cost-effective silicon photonics solution by combining the vital optical and electrical components, as well as structures enabling fiber packaging, on a single silicon chip. Manufacturing makes use of standard fabrication processes at a silicon chip foundry, making this technology ready for commercialization.

Silicon photonics technology leverages the unique properties of optical communications, which include transmission of high-speed data over kilometer-scale distances, and the ability to overlay multiple colors of light within a single optical fiber to multiply the data volume carried, all while maintaining low power consumption. These characteristics combine to enable rapid movement of data between computer chips and racks within servers, supercomputers, and large datacenters, in order to alleviate the limitations of congested data traffic produced by contemporary interconnect technologies.

Silicon photonics will transform future datacenters

By moving information via pulses of light through optical fibers, optical interconnects are an integral part of contemporary computing systems and next generation datacenters. Computer hardware components, whether a few centimeters or a few kilometers apart, can seamlessly and efficiently communicate with each other at high speeds using such interconnects. This disaggregated and flexible design of datacenters will help reduce the cost of space and energy, while increasing performance and analysis capabilities for users ranging from social media companies to financial services to universities.

Most of the optical interconnect solutions employed within datacenters as of today are based upon vertical cavity surface emitting laser (VCSEL) technology, where the optical signals are transported via multimode optical fiber. Demands for increased distance and data rate between ports, due to cloud services for example, are driving the development of cost-effective single-mode optical interconnect technologies, which can overcome the bandwidth-distance limitations inherent to multimode VCSEL links.

IBM’s CMOS Integrated Nano-Photonics Technology provides an economical solution to extend the reach and data rates of optical links. The essential parts of an optical transceiver, both electrical and optical, can be combined monolithically on one silicon chip, and are designed to work with with standard silicon chip manufacturing processes.

IBM engineers in New York and Zurich, Switzerland and IBM Systems Unit have demonstrated a reference design targeting datacenter interconnects with a range up to two kilometers. This chip demonstrates transmission and reception of high-speed data using four laser “colors,” each operating as an independent 25 Gb/s optical channel. Within a full transceiver design, these four channels can be wavelength multiplexed on-chip to provide 100 Gb/s aggregate bandwidth over a duplex single-mode fiber, thus minimizing the cost of the installed fiber plant within the datacenter.

Further details will be presented by IBM at the 2015 Conference on Lasers and Electro Optics (May 10-15) in San Jose, California, during the invited presentation entitled “Demonstration of Error Free Operation Up To 32 Gb/s From a CMOS Integrated Monolithic Nano-Photonic Transmitter,” by Douglas M. Gill, Chi Xiong, Jonathan E. Proesel, Jessie C. Rosenberg, Jason Orcutt, Marwan Khater, John Ellis-Monaghan, Doris Viens, Yurii Vlasov, Wilfried Haensch, and William M. J. Green.

IBM Research has been leading the development of silicon photonics for more than a decade, announcing a series of technology milestones beginning in 2006. Silicon photonics is among the efforts of IBM’s $3 billion investment to push the limits of chip technology to meet the emerging demands of cloud and Big Data systems.

Stiff competition in sensors for high-volume design wins and a recovery in actuator growth shuffled the ranking of suppliers in the $9.2 billion market for sensors and actuators in 2014, according to IC Insights’ new 2015 O-S-D Report—A Market Analysis and Forecast for Optoelectronics, Sensors/Actuators, and Discretes. The new O-S-D Report says the overall trend in sensors and actuators is for the largest suppliers to keep getting bigger, gaining marketshare because more high-volume applications—such as smartphones and the huge potential of the Internet of Things (IoT)—and automotive systems require well-established track records for quality, long-term reliability, and on-time delivery of semiconductors.

Sensor leader Robert Bosch in Germany extended its lead in this market with a 16 percent sales increase in 2014 to nearly $1.2 billion. The German company became the first sensor maker to reach $1.0 billion in 2013 when its sales climbed 29 percent, reflecting continued strong growth in its automotive base and expansion into high-volume consumer and mobile applications. Bosch’s marketshare in sensor-only sales grew to 20 percent in 2014 from 18 percent in 2013 and 15 percent in 2012, according to the 10th edition of IC Insights’ annual O-S-D Report.

Meanwhile, STMicroelectronics saw its sensor/actuator sales volume fall 19 percent in 2014 to $630 million, which caused it to drop to fourth place among the market’s top suppliers from second in 2013. ST’s drop was partly caused by marketshare gains by Bosch and U.S.-based InvenSense, which climbed from 14th in 2013 to ninth in the 2014 sensor/actuator ranking with a 33 percent increase in sensor sales to $332 million last year. Bosch and InvenSense sensors—which are made with microelectromechanical systems (MEMS) technology—have knocked ST’s MEMS-based sensors from a number of high-volume smartphones, including Apple’s newest iPhone handsets.

ST’s drop in sensor revenues and modest sales increases in MEMS-based actuators at Texas Instruments (micro-mirror devices for digital projectors and displays) and Hewlett-Packard (mostly inkjet-printer nozzle devices) moved TI and HP up one position in IC Insights’ 2014 ranking to second and third place, respectively (as shown in Figure 1). Infineon remained in fifth place in the sensors/actuator ranking with an 8 percent sales increase to $520 million last year. The 2015 O-S-D Report provides top 10 rankings of suppliers in sensors/actuators, optoelectronics, and discrete semiconductors in addition to a top 30 O-S-D list of companies, based on combined revenue in optoelectronics, sensors/actuators and discretes.

Figure 1

Figure 1

The new O-S-D Report forecasts worldwide sensor sales to increase 7 percent in 2015 to reach a record-high $6.1 billion after growing 5 percent in 2014 to $5.7 billion and rising just 3 percent in 2013.  Total actuator sales are expected to increase 7 percent in 2015 to $3.7 billion, which will tie the record high set in 2011. Actuator sales fell 10 percent in 2012 and dropped another 4 percent in 2013 before recovering in 2014 with a 7 percent increase to $3.5 billion.  MEMS technology was used in about 34 percent of the 11.1 billion sensors shipped in 2014 and essentially all of the 999 million actuators sold last year, based on an analysis in the new O-S-D Report.  Tiny MEMS structures are used in these devices to perform transducer functions (i.e., detecting and measuring changes around sensors for inputs in electronic systems, and initiating physical actions in actuators from electronic signals).

By Paula Doe, SEMI

In this 50th year anniversary of Moore’s Law, the steady scaling of silicon chips’ cost and performance that has so changed our world over the last half century is now poised to change it even further through the Internet of Things, in ways we can’t yet imagine, suggests Intel VP of IoT Doug Davis, who will give the keynote at SEMICON West (July 14-16) this year.  Powerful sensors, processors, and communications now make it possible to bring more intelligent analysis of the greater context to many industrial decisions for potentially significant returns, which will drive the first round of serious adoption of the IoT. But there is also huge potential for adding microprocessor intelligence to all sorts of everyday objects and connecting them with outside information, to solve all sorts of real problems, from saving energy to saving babies’ lives. “We see a big impact on the chip industry,” says Davis, noting the needs to deal with highly fragmented markets, as well to reduce power, improve connectivity, and find ways to assure security.

The end of the era of custom embedded designs?

The IoT may mean the end of the era of embedded chips, argues Paul Brody, IBM’s former VP of IoT, who moves to a new job this month, one of the speakers in the SEMICON West TechXPOT program on the impact of the IoT on the semiconductor sector.  Originally, custom embedded solutions offered the potential to design just the desired features, at some higher engineering cost, to reduce the total cost of the device as much as possible. Now, however, high volumes of mobile gear and open Android systems have brought the cost of a loaded system on a chip with a dual core processor, a gigabit of DRAM and GPS down to only $10.  “The SoC will become so cheap that people won’t do custom anymore,” says Brody. “They’ll just put an SoC in every doorknob and window frame.  The custom engineering will increasingly be in the software.”

Security of all these connected devices will require re-thinking as well, since securing all the endpoints, down to every light bulb, is essentially impossible, and supposedly trusted parties have turned out not to be so trustworthy after all. “With these SoCs everywhere, the cost of distributed compute power will become zero,” he argues, noting that will drive systems towards more distributed processing.  One option for security then could be a block chain system like that used by Bit Coin, which allows coordination with no central control, and when not all the players are trustworthy. Instead of central coordination, each message is broadcast to all nodes, and approved by the vote of the majority, requiring only that the majority of the points be trustworthy.

While much of the high volume IoT demand may be for relatively standard, low cost chips, the high value opportunity for chip makers may increasingly be in design and engineering services for the expanding universe of customers. “Past waves of growth were driven by computer companies, but as computing goes into everything this time, it will be makers of things like Viking ranges and Herman Miller office furniture who will driving the applications, who will need much more help from their suppliers,” he suggests.

Intel Graphics

Source: Intel, 2015

Adding context to the data from the tool

The semiconductor industry has long been a leader in connecting things in the factory, from early M2M for remote access for service management and improving overall equipment effectiveness, to the increased automation and software management of 300mm manufacturing, points out Jeremy Read, Applied Materials VP of Manufacturing Services, who’ll be speaking in another SEMICON West 2015 program on how the semiconductor sector will use the IoT. But even in today’s highly connected fabs, the connections so far are still limited to linking individual elements for dedicated applications specifically targeting a single end, such as process control, yield improvement, scheduling or dispatching.  These applications, perhaps best described as intermediate between M2M and IoT, have provided huge value, and have seen enormous growth in complexity. “We have seen fabs holding 50 TB of data at the 45nm node, increasing to 140 TB in 20nm manufacturing,” he notes.

Now the full IoT vision is to converge this operational technology (OT) of connected things in the factory with the global enterprise (IT) network, to allow new ways to monitor, search and manage these elements to provide as yet unachievable levels of manufacturing performance. “However, we’ve learned that just throwing powerful computational resources at terabytes of unstructured data is not effective – we need to understand the shared CONTEXT of the tools, the process physics, and the device/design intent to arrive at meaningful and actionable knowledge,” says Read.  He notes that for the next step towards an “Internet-of-semiconductor-manufacturing-things” we will need to develop the means to apply new analytical and optimizing applications to both the data and its full manufacturing context, to achieve truly new kinds of understanding.

With comprehensive data and complete context information it will become possible to transform the service capability in a truly radical fashion – customer engineers can use the power of cloud computation and massive data management to arrive at insights into the precise condition of tools, potentially including the ability to predict failures or changes in processing capability. “This does require customers to allow service providers to come fully equipped into the fab – not locking out all use of such capabilities,” he says. “If we are to realize the full potential of these opportunities, we must first meet these challenges of security and IP protection.”

Besides these programs on the realistic impact of the IoT on the semiconductor manufacturing technology sector, SEMICON West 2015, July 14-16 in San Francisco, will also feature related programs on what’s coming next across MEMS, digital health, embedded nonvolatile memory, flexible/hybrid systems, and connected/autonomous cars.  

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing and design, today announced worldwide sales of semiconductors reached $27.8 billion for the month of February 2015, an increase of 6.7 percent from February 2014 when sales were $26.0 billion. Global sales from February 2015 were 2.7 percent lower than the January 2015 total of $28.5 billion, reflecting seasonal trends. Regionally, sales in the Americas increased by 17.1 percent compared to last February to lead all regional markets. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“The global semiconductor industry maintained momentum in February, posting its 22nd straight month of year-to-year growth despite macroeconomic headwinds,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Sales of DRAM and Analog products were particularly strong, notching double-digit growth over last February, and the Americas market achieved its largest year-to-year sales increase in 12 months.”

Regionally, year-to-year sales increased in the Americas (17.1 percent) and Asia Pacific (7.6 percent), but decreased in Europe (-2.0 percent) and Japan (-8.8 percent). Sales decreased compared to the previous month in Europe (-1.6 percent), Asia Pacific (-2.2 percent), Japan (-2.3 percent), and the Americas (-4.4 percent).

“While we are encouraged by the semiconductor market’s sustained growth over the last two years, a key driver of our industry’s continued success is free trade,” Neuffer continued. “A legislative initiative called Trade Promotion Authority (TPA) has paved the way for opening markets to American goods and services for decades, helping to give life to nearly every U.S. free trade agreement in existence, but it expired in 2007. With several important free trade agreements currently under negotiation, Congress should swiftly re-enact TPA.”

February 2015
Billions
Month-to-Month Sales
Market Last Month Current Month % Change
Americas 6.51 6.23 -4.4%
Europe 2.95 2.90 -1.6%
Japan 2.62 2.56 -2.3%
Asia Pacific 16.47 16.10 -2.2%
Total 28.55 27.79 -2.7%
Year-to-Year Sales
Market Last Year Current Month % Change
Americas 5.32 6.23 17.1%
Europe 2.96 2.90 -2.0%
Japan 2.81 2.56 -8.8%
Asia Pacific 14.96 16.10 7.6%
Total 26.04 27.79 6.7%
Three-Month-Moving Average Sales
Market Sep/Oct/Nov Dec/Jan/Feb % Change
Americas 6.53 6.23 -4.6%
Europe 3.19 2.90 -9.2%
Japan 2.93 2.56 -12.7%
Asia Pacific 17.12 16.10 -6.0%
Total 29.77 27.79 -6.7%

With an impressive 20 percent growth in MEMS revenue compared to 2013, and sales revenues of more than $1.2B, Robert Bosch GmbH is the clear #1.

illus_top30mems_march2015

From Yole Développement’s yearly analysis of “TOP 100 MEMS Players,” analysts have released the “2014 TOP 20 MEMS Players Ranking.” This ranking shows the clear emergence of what could be a future “MEMS titan”: Robert Bosch (Bosch). Driven by MEMS for smartphone sales – including pressure sensors -, Bosch’s MEMS revenue increased by 20 percent in 2014, and totaling $1.2B. The gap between Bosch and STMicroelectronics now stands at more than $400M

“The top five remains unchanged from 2013, but Bosch now accounts for one-third of the $3.8B MEMS revenue shared by the top five MEMS companies. Together, these five companies account for around one- third of the total MEMS business,” details Jean-Christophe Eloy, President & CEO, Yole Développement (Yole). “It’s also interesting to see that among the top thirty players, almost every one increased its revenue in 2014,” he adds.

In other noteworthy news, Texas Instruments’ sales saw a slight increase thanks to its DLP projection business. RF companies also enjoyed impressive growth, with a 23 percent increase for Avago Technologies (close to $400M) and a 141 percent increase for Qorvo (formerly TriQuint), to $350M.

Meanwhile, the inertial market keeps growing. This growth is beneficial to InvenSense, which continues its rise with a 32 percent increase in 2014, up to $329M revenue. Accelerometers, gyroscopes and magnetometers are not the only devices contributing to MEMS companies’ growth. Pressure sensors also made a nice contribution, especially in automotive and consumer sectors. Specifically, Freescale Semiconductor saw a 33 percent increase in pressure revenue, driven by the Tire Pressure Monitoring Systems (TPMS) business for automotive. On the down side, ink jet head companies still face hard times, with Hewlett-Packard (HP) and Canon both seeing revenues decrease. However, new markets are being targeted. Though thus far limited to consumer printers, MEMS technology is set to expand into the office and industrial markets as a substitute for laser printing technology (office) and inkjet piezo machining technology (for industrial & graphics).

“What we see is an industry that will generally evolve in four stages over the next 25 years. This is true for both CMOS Image Sensors and MEMS,” explains Dr Eric Mounier, Senior Technology & Market Analyst, MEMS devices & Technologies at Yole. He explains: “The “opening stage” generally begins when the top three companies hold no more than 10 – 30 percent market share. Later on, the industry enters the “scale stage” through consolidation, when the top three increases its collective market share to 45 percent.”

According to Yole, the “More than Moore” market research and strategy consulting company, MEMS industry has now entered the “Expansion Stage.”

“Key players are expanding, and we’re starting to see some companies surpassing others (i.e. Bosch’s rise to the top). If we follow this model, the next step will be the “Balance & Alliance” stage, characterized by the top three holding up to 90 percent of market share”, comments Dr Mounier.

Among the 10 or so MEMS titans currently sharing most of the MEMS markets, Yole’s analysts have separated them into two categories:

  • “Titans with Momentum” and “Struggling Titans”. In the first category we include Bosch, InvenSense, Avago Technologies and Qorvo. Bosch’s case is particularly noteworthy, since it’s currently the only MEMS company with dual markets (automotive and consumer) and the right R&D/production infrastructure.
  • On the “Struggling Titans” side, Yole identifies STMicroelectronics, HP, Texas Instruments, Canon, Knowles, Denso and Panasonic. These companies are currently struggling to find an efficient growth engine.

 

Without question, both Bosch and InvenSense are growing, while others like STMicroelectronics and Knowles are suffering a slow-down or MEMS sales decrease.

Another interesting fact about Yole’s 2014 TOP MEMS Ranking is that there are no new entrants (and thus no exits).

More market figures and analysis on MEMS, the Internet of Things (IoT) and wearables can be found in Yole’s 2014 IoT report (Technologies & Sensors for Internet of Things: Business & Market Trends, June 2014), and the upcoming “Sensors for Wearables and Mobile” report.

Also, Yole is currently preparing the 2015 release of its “MEMS Industry Status.” This will be issued in April and will delve deeper into MEMS markets, strategies and players analyses.