Tag Archives: Top Story Left

The spread of digital camera applications in vehicles, machine vision, human recognition and security systems, as well as for more powerful camera phones will drive CMOS image sensor sales to an eighth straight record-high level this year with worldwide revenues growing 10% to $13.7 billion, following a 19% surge in 2017, according to IC Insights’ 2018 O-S-D Report—A Market Analysis and Forecast for Optoelectronics, Sensors/Actuators, and Discretes. The new 375-page report shows nothing stopping CMOS image sensors from continuing to set record-high annual sales and unit shipments through 2022 (Figure 1).

Figure 1

Figure 1

CMOS image sensors continue to take marketshare from charge-coupled devices (CCDs) as embedded digital-imaging capabilities expand into a wider range of systems and new end-use applications, says the 2018 O-S-D Report.  With the smartphone market maturing, sales growth in CMOS image sensors slowed to 6% in 2016, but strong demand in other imaging applications played a major factor in boosting revenues by 19% to $12.5 billion last year.  Sales of CCD and other image sensor technologies fell 2% in 2017 to about $1.6 billion after rising 5% in 2016, according to the new IC Insights report.

Overall, CMOS image sensors grabbed 89% of total image sensor sales in 2017 compared to 74% in 2012 and 54% in 2007.  Unit shipments of CMOS imaging devices represented 81% of total image sensors sold in 2017 compared to 64% in 2012 and 63% in 2007.  New CMOS designs keep improving for a variety of light levels (including near darkness at night), high-speed imaging, and greater resolution as well as integrating more functions for specific applications, such as security video cameras, machine vision in robots and cars, human recognition, hand-gesture interfaces, virtual/augmented reality, and medical systems.

In new smartphones, CMOS image sensors are also seeing a new wave of growth with the increase of dual-lens camera systems (using two sensors) for enhanced photography.  Cellular camera phones accounted for 62% of CMOS image sensor sales in 2017, but that marketshare is forecast to slip to 45% in 2022. Automotive CMOS image sensors are projected to grow the fastest among major end-use applications through the five-year forecast shown in the new O-S-D Report, rising by a compound annual growth rate (CAGR) of 38.4% to about 15% of total CMOS image sensor sales in 2022 ($2.8 billion) while camera phone-generated revenues are expected to rise by a CAGR of just 2.2% to $8.6 billion that year.

The Semiconductor Industry Association (SIA) today announced worldwide sales of semiconductors reached $111.1 billion during the first quarter of 2018, an increase of 20 percent compared to the first quarter of 2017, but 2.5 percent less than the fourth quarter of 2017. Sales for the month of March 2018 came in at $37.0 billion, an increase of 20 percent compared to the March 2017 total of $30.8 billion and 0.7 percent more than the February 2018 total of $36.8 billion. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“The global semiconductor market has demonstrated impressive growth through the first quarter of 2018, far exceeding sales through the same point in 2017, which was a record year for semiconductor revenues,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Sales in March increased year-to-year for the 20th consecutive month. All regional markets experienced double-digit growth compared to last year, and all major semiconductor product categories experienced year-to-year growth, with memory products continuing to lead the way.”

Year-to-year sales increased across all regions in March: the Americas (35.7 percent), Europe (20.6 percent), China (18.8 percent), Asia Pacific/All Other (13.3 percent), and Japan (12.4 percent). Month-to-month sales increased in Europe (3.9 percent), China (2.2 percent), Japan (0.5 percent), and Asia Pacific/All Other (0.2 percent), but decreased slightly in the Americas (-2.0 percent).

For comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, consider purchasing the WSTS Subscription Package. For detailed data on the global and U.S. semiconductor industry and market, consider purchasing the 2017 SIA Databook.

Mar 2018

Billions

Month-to-Month Sales                              

Market

Last Month

Current Month

% Change

Americas

8.26

8.09

-2.0%

Europe

3.43

3.57

3.9%

Japan

3.18

3.19

0.5%

China

11.70

11.95

2.2%

Asia Pacific/All Other

10.19

10.22

0.2%

Total

36.76

37.02

0.7%

Year-to-Year Sales                         

Market

Last Year

Current Month

% Change

Americas

5.96

8.09

35.7%

Europe

2.96

3.57

20.6%

Japan

2.84

3.19

12.4%

China

10.06

11.95

18.8%

Asia Pacific/All Other

9.02

10.22

13.3%

Total

30.84

37.02

20.0%

Three-Month-Moving Average Sales

Market

Oct/Nov/Dec

Jan/Feb/Mar

% Change

Americas

8.95

8.09

-9.6%

Europe

3.37

3.57

5.8%

Japan

3.24

3.19

-1.5%

China

12.01

11.95

-0.5%

Asia Pacific/All Other

10.41

10.22

-1.8%

Total

37.99

37.02

-2.5%

Research included in the recently released 50-page April Update to the 2018 edition of IC Insights’ McClean Report shows that in 2017, the top eight major foundry leaders (i.e., sales of ≥$1.0 billion) held 88% of the $62.3 billion worldwide foundry market (Figure 1).  The 2017 share was the same level as in 2016 and one point higher than the share the top eight foundries represented in 2015.  With the barriers to entry (e.g., fab costs, access to leading edge technology, etc.) into the foundry business being so high and rising, IC Insights expects this “major” marketshare figure to remain at or near this elevated level in the future.

TSMC, by far, was the leader with $32.2 billion in sales last year.  In fact, TSMC’s 2017 sales were over 5x that of second-ranked GlobalFoundries and more than 10x the sales of the fifth-ranked foundry SMIC.

Figure 1

Figure 1

China-based Huahong Group, which includes Huahong Grace and Shanghai Huali, displayed the highest growth rate of the major foundries last year with an 18% jump.  Overall, 2017 was a good year for many of the major foundries with four of the eight registering double-digit sales increases.

Of the eight major foundries, six of them are headquartered in the Asia-Pacific region. As shown, Samsung was the only IDM foundry in the ranking.  IBM, a former major IDM foundry, was acquired by GlobalFoundries in mid-2015 while IDM foundries Fujitsu and Intel fell short of the $1.0 billion sales threshold last year. Although growing only 4% last year, Samsung easily remained the largest IDM foundry in 2017, with over 5x the foundry sales of Fujitsu, the second-largest IDM foundry.

SEMI, the global industry association representing the electronics manufacturing supply chain, today announced that in 2017 the global semiconductor materials market grew 9.6 percent while worldwide semiconductor revenues increased 21.6 percent from the prior year.

According to the SEMI Materials Market Data Subscription, total wafer fabrication materials and packaging materials totaled $27.8 billion and $19.1* billion, respectively, in 2017. In 2016, the wafer fabrication materials and packaging materials markets logged revenues of $24.7 billion and $18.2 billion, respectively, for 12.7 percent and 5.4 percent year-over-year increases.

For the eighth consecutive year, Taiwan, at $10.3 billion, was the largest consumer of semiconductor materials due to its large foundry and advanced packaging base. China solidified its hold on the second spot, followed by South Korea and Japan. The Taiwan, China, Europe and South Korea markets saw the strongest revenue growth, while the North America, Rest of World (ROW) and Japan materials markets experienced moderate single-digit growth. (The ROW region is defined as Singapore, Malaysia, Philippines, other areas of Southeast Asia and smaller global markets.)

2016 and 2017 Regional Semiconductor Materials Markets (US$ Billions)

Region
2016**
2017
% Change
Taiwan
9.20
10.29
12%
China
6.80
7.62
12%
South Korea
6.77
7.51
11%
Japan
6.76
7.05
4%
Rest of World
5.39
5.81
8%
North America
4.87
5.29
9%
Europe
3.03
3.36
11%
Total
42.82
46.93
10%

Source: SEMI, April 2018

Note: Summed subtotals may not equal the total due to rounding.

* Includes ceramic packages and flexible substrates

** 2016 data have been updated based on SEMI’s data collection programs

The Materials Market Data Subscription (MMDS) from SEMI provides current revenue data along with seven years of historical data and a two-year forecast. The annual subscription includes four quarterly updates for the materials segment reports revenue for seven market regions (North America, Europe, ROW, Japan, Taiwan, South Korea, and China).

Getting better by design


April 18, 2018

By Ajit Manocha, President and CEO of SEMI

Mantra by Design

SEMI’s mantra is: Connect, Collaborate, Innovate. This mantra has delivered industry-enabling value to our members since SEMI’s beginnings in 1970. It has been essential for SEMI members to grow and prosper locally, while being synchronized globally. As the electronics manufacturing business has become more complex and interdependent, SEMI’s mantra has increasingly been applied across the full span of electronics manufacturing.

With the IC industry now worth over $400 billion in annual revenue, developing a single new chip can cost hundreds of millions of dollars. Consequently, industry players now connect, collaborate, and innovate in new, but more often, deeper ways. This is especially true with IC design – what’s possible in chip design is only possible if the manufacturing processes can be developed as projected. It makes sense, as complexity grows and the stakes get higher, that design and manufacturing are closely linked and apply the SEMI mantra together.

Where Electronics Begin

“Where Electronics Begin” is the tagline of the Electronics System Design Alliance, or the ESD Alliance. It aptly distills the fact that all IC manufacturing begins with design – and the design ecosystem. This week, SEMI announced it reached an agreement with the ESD Alliance to join SEMI as a SEMI Strategic Association Partner. The ESD Alliance will become part of the SEMI organization in 2018. With the ESD Alliance and its community joining SEMI, its membership will complete the full electronics design and manufacturing span.

This is a momentous step forward. The ESD Alliance’s ecosystem is vital and thriving and includes the world’s leading EDA and IP companies. Within the ESD Alliance community, Aart de Geus (Synopsys), Wally Rhines (Mentor, a Siemens Company), Simon Segars (Arm), and Lip-Bu Tan (Cadence), among others, are already familiar figures, having brought their thought leadership to SEMI platforms in the past. Now they, and the rest of the ESD Alliance members, will be able to more directly work with semiconductor equipment manufacturers, devices makers, and the rest of SEMI’s membership.

At events like SEMICON China, which recently concluded in March and attracted over 90,000 attendees, SEMI and the ESD Alliance members will be able to efficiently connect and engage the supply chain players and find new areas for collaboration. As SEMI’s membership looks out towards new applications and systems opportunities, having both ecosystems together will find possibilities faster and innovate approaches more practically.

The ESD Alliance will maintain its distinct community identity and governance while having access to, and the ability to augment, SEMI’s global platforms including seven regional offices, programs and expositions (including SEMICONs), advocacy (including trade, tax, talent, and technology), industry research and statistics, and other SEMI Strategic Association Partner and technology communities.

SEMI will gain direct access to the electronics design ecosystems to provide a deeper and wider value – to its combined membership – with SEMI’s mantra. SEMI and its more than 2,000 corporate members and more than 1.2 million stakeholders look forward to connecting, collaborating, and innovating with the ESD Alliance and its members. SEMI’s global reach and wide span of membership with ESD Alliance’s deep expertise in design and IP is truly the best of both worlds for all stakeholders.

Connect:  Design & Manufacturing

SEMI’s members have been reaching into the electronics design ecosystem and the ESD Alliance members have been reaching into SEMI’s ecosystem to optimize design and manufacturing process for lowest cost and highest yield. This week’s announcement is a step forward to directly and more intimately connect electronics design and manufacturing for the supply chain to work more closely together in full synchronization.

 

Connect-image1

Collaborate: From Beginning to End in Electronics Applications

With the ESD Alliance joining SEMI as a Strategic Association Partner, SEMI members can better collaborate across the full supply chain. Gone are the days when it was enough to collaborate only with one’s direct customer. Today, for example, components and c-subs suppliers frequently collaborate not just with their OEM equipment manufacturer customers, but with device manufacturers – and even system integrators. To be successful, companies are striving for connection to their customers’ customers.

The ESD Alliance, with its design ecosystem and linkage to the fabless community, will join three existing SEMI Strategic Association Partners: Fab Owners Alliance (FOA), MEMS & Sensors Industry Group (MSIG), and FlexTech (the association representing the flexible hybrid electronics ecosystem). These relationships now cover the entire span of electronics manufacturing.

To provide focused collaboration across the full supply chain, SEMI has developed five vertical application platforms: IoT, Smart Manufacturing, Smart Transportation, Smart MedTech, and Smart Data. These have been chosen because of unique and pressing needs to synchronize the supply chain and to engage and develop solutions collectively.

Collaborate-image1

Innovate:  Faster Future

With the confluence of emerging digital disruptions and new demand drivers, forecasts suggest the IC industry could grow to over $1 trillion in annual revenue by 2030. To deliver this growth, the supply chain must efficiently innovate together. SEMI’s value proposition is to speed the time to better business results for its members across the global electronics (design and) manufacturing supply chain. The addition of the ESD Alliance as a Strategic Association Partner is a key contributor to deliver this value proposition for the industry to grow and prosper now and in the future.

Global-Semi-Sales

Originally published on the SEMI blog.

By Emir Demircan, Senior Manager Advocacy and Public Policy, SEMI Europe

With its leading research and development hubs, materials and equipment companies and chipmakers, the EU is in a strategic position in the global electronics value chain to support the growth of emerging applications such as autonomous driving, internet of things, artificial intelligence and deep learning. Underpinning the European electronics industry’s competitive muscle requires a new EU-wide strategy aimed at strengthening the value chain and connecting various players. Specializing and investing in key application segments, such as automotive where the EU enjoys a central place at global level, is crucial to help European electronics industry hold its ground.  In parallel, Europe’s production capabilities need bolstered, requiring effective use of Important Projects of Common European Interest (IPCEI).

On research, development and innovation (RD&I), the upcoming Framework Programme 9 (FP9) must provide unprecedented collaboration and funding opportunities to Europe’s electronics players. Concerning small and medium enterprises (SMEs) and startups, it is vital that EU policies are aligned with global trends and small and young companies benefit from a business-friendly regulatory framework. And as an overarching action, building a younger, bigger and more diverse talent pipeline is paramount for Europe to innovate in the digital economy.

Laith Altimime, President at SEMI Europe, opening speech at ISS Europe 2018

Laith Altimime, President at SEMI Europe, opening speech at ISS Europe 2018

These were the clarion messages that emerged from the Industry Strategy Symposium (ISS) Europe organized by SEMI in March, an event that brought together more than 100 industry, research and government representatives for in-depth discussions on strategies and innovations for Europe to compete globally. Here are the key takeaways:

1) Build a strong electronics value chain with a focus on emerging demands

In recent years the EU has focused on beefing up semiconductor production in Europe within the 2020-25 window, starting with the EU 10|100|20 Electronic Strategy of 2013. The strategy aims to secure about 20 percent of global semiconductor manufacturing by 2020 with the help of € 10 billion in public and private funding and € 100 billion investment from the industry. Today, Europe is not nearly on track to achieving this target. Supply-side policies have done little to help grow the EU semiconductor industry. Now is the time to change our thinking.

To nourish the electronics industry in Europe, we need to shift our focus to demand. Semiconductors are a key-enabling technology for autonomous driving, wearables, healthcare, virtual and augmented reality (VR/AR), artificial intelligence (AI) and all other internet of things (IoT) and big data applications. To become a world leader in the data economy and energize its semiconductor industry, Europe needs to start by better understanding the evolution of data technologies and their requirements from electronics players, then design and implement an EU-wide strategy focused on strengthening collaboration within the value chain.

2) Specialize and invest in Europe’s strengths that are enabled by electronics

Jens Knut Fabrowsky, Executive VP Automotive Electronics at Bosch

Jens Knut Fabrowsky, Executive VP Automotive Electronics at Bosch

Fueled by increasing demand for smaller, faster and more reliable products with greater power, the global electronics industry has developed a sophisticated global value chain. Europe brings to this ecosystem leading equipment and materials businesses, world-class R&D and education organizations, and key microelectronics hubs throughout Europe that are home to multinationals headquartered both in and outside of the EU. Nevertheless, global competition is growing ever fiercer in the sectors where the European microelectronics industry is most competitive: automotive, energy, healthcare and industrial automation. In the future, Europe is likely to be more challenged between the disruptive business models of North America and the manufacturing capacity of East Asia. The European electronics industry must re-evaluate its strengths and set a strategic direction.

Make no mistake: Europe is in a strong position to advance its microelectronics industry. The EU already boasts leading industries that rely on advances made by electronics design and manufacturing. Take the automotive industry – crucial to Europe’s prosperity. Accounting for 4 percent of the EU GDP and providing 12 million jobs in Europe, according to the European Commission, the EU automotive industry exerts an important multiplier effect in the economy. Automotive is essential to both upstream and downstream industries such as electronics – a level of importance not lost on the EU’s GEAR 2030 Group. Since the 1980s, automotive industry components have increasingly migrated from mechanical to electrochemical and electronics.

Today, electronic components represent close to a third of the cost of an automobile, a proportion that will grow to as high as 50 percent by 2030 with the rise of autonomous and connected vehicles. Automotive experts anticipate that over the next five to 10 years, new cars will feature at least some basic automated driving and data exchange capabilities as electronics deepen their penetration into the automotive value chain. Europe’s leadership position and competitive edge in automotive are under threat by competitors across the world as they invest heavily in information and communications technologies (ICT) and electronics for autonomous driving and connected vehicles. Investing in next-generation cars will help the European electronics industry retain its strong competitive position, as will investments in other key application areas such as healthcare, energy and industrial automation where Europe is a global power.

3) Make better use of Important Projects of Common European Interest (IPCEI)

Microelectronics is capital-intensive, with a state-of-the-art fab easily costing billions of euros. That’s why countries around the world are making heavy government-backed investments to build domestic fabs. For instance, China’s “Made in China 2025” initiative, which establishes an Integrated Circuit Fund to support the development of the electronics industry, calls for 150 billion USD in funding to replace imported semiconductors with homegrown devices. In 2014, the European Commission adopted new rules to IPCEI, giving Member States a tool for financing large, strategically important transnational projects. IPCEI should help Member States fill funding gaps to overcome market failures and reinvigorate projects that otherwise would not have taken off. To fully benefit from the IPCEI, the industry requires Member States involved in a specific IPCEI to work in parallel and at the same pace and faster approvals of state-supported manufacturing projects.

4) Use FP9 to strengthen Europe’s RD&I capabilities

Panel Discussion on growing Europe in the global value chain. (L-R) Bryan Rice, GLOBALFOUNDRIES; James Robson, Applied Materials Europe; Joe De Boeck, imec; Leo Clancy, IDA Ireland; James O’Riordan, S3; Colette Maloney, European Commission; Moderator: Andreas Wild

Panel Discussion on growing Europe in the global value chain. (L-R) Bryan Rice, GLOBALFOUNDRIES; James Robson, Applied Materials Europe; Joe De Boeck, imec; Leo Clancy, IDA Ireland; James O’Riordan, S3; Colette Maloney, European Commission; Moderator: Andreas Wild

A top EU priority in recent years has been to enhance Europe’s position as a world leader in the digital economy. Fulfilling this mission requires an innovative electronics industry in Europe. To this end, FP9 should encourage greater collaboration between large and small companies to leverage their complementary strengths – the dynamism, agility and innovation of smaller companies and the ability of larger companies to mature and scale new product ideas on the strength of their extensive private funding instruments and testing and demonstration facilities. Also, future EU-funded research actions should prioritize electronics projects involving players across the value chain, starting with materials and equipment providers and spanning chipmakers, system integrators and players from emerging “smart” verticals such as automotive, medical technology and energy. FP9 should also play the pivotal role of setting clear objectives, increasing investments, and easing rules for funding. These measures would help expand the European electronics ecosystem, accelerate R&D results and defray the rising costs of developing cutting-edge solutions key to the growth of emerging industry verticals.

5) Support high-tech SMEs, entrepreneurship and startups to become globally competitive

European SMEs, the backbone of EU’s manufacturing, are already strong players in the global economy, making outsize contributions to Europe’s innovation. Yet more of Europe’s small and young businesses with limited resources are challenged in Europe’s regulatory labyrinth. Only by improving the European regulatory environment in a way that supports young and small businesses can Europe fulfill its vision of a dynamic electronics ecosystem and digital economy. Access to finance must also be easier, particularly as underinvested startups struggle under a European venture capital apparatus that is smaller and more fragmented than those in North America and Asia. Early-stage funding instruments such as bank loans are essential for young businesses but they often face barriers to finance due to the sophistication of their proposed business models that are difficult to be understood and supported by banks.

One answer is to better familiarize Europe’s financial sector with industrial SMEs and startups so they can co-develop financial tools that support the growth of small and young businesses. Also, the narrow European definition of SME with staff headcount limited to 250 block innovative companies from access to financial tools exclusively provided to SMEs. By contrast, the United States defines SMEs as businesses with as many as 500 employees, placing their EU counterparts at distinct funding disadvantage. EU should ensure that its SME policy is aligned with global trends and industry needs.

6) Create a bigger and more diverse talent pipeline with a hybrid skills set 

Europe’s world-class education and research capabilities help supply the electronics industry with skilled workforce. Yet the blistering pace of technology innovation calls for rapidly evolving skills sets, a trend that has led to worker shortages at electronics companies and left the sector fighting to diversify its workforce and strengthen its talent pipeline. The deepening penetration of electronics in AI, IoT, AR/VR, high-performance computing (HPC), cybersecurity and smart verticals is giving rise to a new set of skills that blend production technologies, software and data analytics. As more technologies converge, the gap between university education and business needs continues to widen.

One solution is work-based learning – allowing students to build job skills in a setting related to their career pathway. Encouraging higher female participation in STEM education programs at the high school and university levels is also a must to overcome the traditionally low number of females entering high technology. To build on its reputation as “a place to work” in the eyes of the international job seekers, Europe also needs a more flexible immigration framework to attract skilled labour to high-tech jobs.

Save the Date: Industry leaders, research and government representatives will meet again next year at the ISS Europe organized by SEMI on 28-30 April 2019 in Milan, Italy. More details regarding the event will be published soon on www.semi.org/eu.

Silicon solar cells dominate the global photovoltaic market today with a share of 90 percent. With ever new technological developments, research and industry are nearing the theoretical efficiency limit for semiconductor silicon. At the same time, they are forging new paths to develop a new generation of even more efficient solar cells.

The Fraunhofer researchers achieved the high conversion efficiency of the silicon-based multi-junction solar cell with extremely thin 0.002 mm semiconductor layers of III-V compound semiconductors, bonding them to a silicon solar cell. To compare, the thickness of these layers is less than one twentieth the thickness of a human hair. The visible sunlight is absorbed in a gallium-indium-phosphide (GaInP) top cell, the near infrared light in gallium-arsenide (GaAs) and the longer wavelengths in the silicon subcell. In this way, the efficiency of silicon solar cells can be significantly increased.

Silicon-based multi-junction solar cell consisting of III-V semiconductors and silicon. The record cell converts 33.3 percent of the incident sunlight into electricity.  © Fraunhofer ISE/Photo: Dirk Mahler

Silicon-based multi-junction solar cell consisting of III-V semiconductors and silicon. The record cell converts 33.3 percent of the incident sunlight into electricity.
© Fraunhofer ISE/Photo: Dirk Mahler

“Photovoltaics is a key pillar for the energy transformation,” says Dr. Andreas Bett, Institute Director of Fraunhofer ISE. “Meanwhile, the costs have decreased to such an extent that photovoltaics has become an economically viable competitor to conventional energy sources. This development, however, is not over yet. The new result shows how material consumption can be reduced through higher efficiencies, so that not only the costs of photovoltaics can be further optimized but also its manufacture can be carried out in a resource-friendly manner.

Already in November 2016, the solar researchers in Freiburg together with their industry partner EVG demonstrated an efficiency of 30.2 percent, increasing it to 31.3 percent in March 2017. Now they have succeeded once again in greatly improving the light absorption and the charge separation in silicon, thus achieving a new record of 33.3 percent efficiency. The technology also convinced the jury of the GreenTec Awards 2018 and has been nominated among the top three in the category “Energy.”

The Technology

For this achievement, the researchers used a well-known process from the microelectronics industry called “direct wafer bonding” to transfer III-V semiconductor layers, of only 1.9 micrometers thick, to silicon. The surfaces were deoxidized in a EVG580® ComBond® chamber under high vacuum with a ion beam and subsequently bonded together under pressure. The atoms on the surface of the III-V subcell form bonds with the silicon atoms, creating a monolithic device. The complexity of its inner structure is not evident from its outer appearance: the cell has a simple front and rear contact just as a conventional silicon solar cell and therefore can be integrated into photovoltaic modules in the same manner.

EVG ComBond automated high-vacuum wafer bonding platform  (Photo courtesy of EV Group).

EVG ComBond automated high-vacuum wafer bonding platform
(Photo courtesy of EV Group).

The III-V / Si multi-junction solar cell consists of a sequence of subcells stacked on top of each other. So-called “tunnel diodes” internally connect the three subcells made of gallium-indium-phosphide (GaInP), gallium-arsenide (GaAs) and silicon (Si), which span the absorption range of the sun’s spectrum. The GaInP top cell absorbs radiation between 300 and 670 nm. The middle GaAs subcell absorbs radiation between 500 and 890 nm and the bottom Si subcell between 650 and 1180 nm, respectively. The III-V layers are first epitaxially deposited on a GaAs substrate and then bonded to a silicon solar cell structure. Here a tunnel oxide passivated contact (TOPCon) is applied to the front and back surfaces of the silicon. Subsequently the GaAs substrate is removed, a nanostructured backside contact is implemented to prolong the path length of light. A front side contact grid and antireflection coating are also applied.

On the way to the industrial manufacturing of III-V / Si multi-junction solar cells, the costs of the III-V epitaxy and the connecting technology with silicon must be reduced. There are still great challenges to overcome in this area, which the Fraunhofer ISE researchers intend to solve through future investigations. Fraunhofer ISE’s new Center for High Efficiency Solar Cells, presently being constructed in Freiburg, will provide them with the perfect setting for developing next-generation III-V and silicon solar cell technologies. The ultimate objective is to make high efficiency solar PV modules with efficiencies of over 30 percent possible in the future.

Project Financing

Dr. Roman Cariou, the young scientist and first author, was supported through the European Union with a Marie Curie Stipendium (HISTORIC, 655272). The work was also supported by the European Union within the NanoTandem project (641023) as well as by the German Federal Ministry for Economic Affairs and Energy BMWi in the PoTaSi project (FKZ 0324247).

Correction: A previous version of this article incorrectly state “imec” in the headline, instead of Fraunhofer ISE. Solid State Technology regrets the error.

The semiconductor industry closed out 2017 in blockbuster fashion, posting the highest year-over-year growth in 14 years. Global semiconductor revenue grew 21.7 percent, reaching $429.1 billion in 2017, according to IHS Markit (Nasdaq: INFO).

Recording year-over-year growth of 53.6 percent, and its highest semiconductor revenue ever, Samsung replaced Intel as the new market leader of the semiconductor industry in 2017. Intel was followed by SK Hynix, in third position.

“2017 was quite a memorable year,” said Shaun Teevens, semiconductor supply chain analyst, IHS Markit. “Alongside record industry growth, Intel, which had led the market for 25 years, was supplanted by Samsung as the leading semiconductor supplier in the world.”

Among the top 20 semiconductor suppliers, SK Hynix and Micron enjoyed the largest year-over-year revenue growth, growing 81.2 percent and 79.7 percent, respectively. “A very favorable memory market with strong demand and high prices was mainly responsible for the strong growth of these companies,” Teevens said.

Qualcomm remained the top fabless company in 2017, followed by nVidia, which moved into the second position, after growing 42.3 percent over the previous year. Among the top 20 fabless companies, MLS enjoyed the highest market share gain, moving from number 20 to number 15 in the IHS Markit revenue ranking.

Figure 1

Figure 1

Memory was the strongest industry category

Memory integrated circuits proved to be the strongest industry category, growing 60.8 percent in 2017 compared to the previous year. Within the category, DRAM grew 76.7 percent and NAND grew 46.6 percent — the highest growth rate for both memory subcategories in 10 years. Much of the revenue increase was based on higher prices and increased demand for memory chips, relative to tight supply.

“The technology transition from planar 2D NAND to 3D NAND drove the market into an unbalanced supply-demand environment in 2017, driving prices higher throughout the year,” said Craig Stice, senior director, memory and storage, IHS Markit. “Entering 2018, the 3D NAND transition is now almost three-quarters of the total bit percent of production, and it is projected to provide supply relief for the strong demand coming from the SSD and mobile markets. Prices are expected to begin to decline aggressively, but 2018 could still be a record revenue year for the NAND market.”

Excluding memory, the remainder of the semiconductor industry grew 9.9 percent last year, largely due to solid unit-sales growth and strong demand across all applications, regions and technologies. Notably, semiconductors used for data processing applications expanded 33.4 percent by year-end. Intel remained the market leader in this category, with sales almost two times larger than second-ranked Samsung.

 

There are many different situations in which special attention to color choices provide the potential to improve the manufacturing results of multi-patterned masks.

BY DAVID ABERCROMBIE and ALEX PEARSON, Mentor Graphics, Wilsonville, OR

Multi-patterning design rules don’t care about color (mask assignments). As long as all the spacing and alternation constraints are met, any coloring arrangement is legal. In the beginning of multi-patterning, all possible color combinations that passed the design rule checks (DRC) were considered and treated as equal. As the technology moves into more advanced nodes, however, that is no longer the case.

As it turns out, one legal coloring choice can, in fact, be significantly better than another when it comes to manufacturing success and chip performance. Designers working on multi-patterned layouts need to understand the issues and conditions that affect their color choices, so they can determine the optimal coloring scheme for their designs.

Color density

In multi-patterned designs, each color assignment represents a different manufacturing mask. Each mask is processed through a lithography operation, and the pattern is etched onto the wafer. Once all the masks are processed, the goal is to have all the shapes created from all the masks act as if they were all generated from one mask, with very similar process biases and variations.
To ensure that type of consistency, all the masks need to resemble each other in terms of the total area and distribution of shapes. Clumping shapes in one area of one mask, while distributing shapes evenly across another, is going to result in very different process bias behavior and results. Balancing the color density across each mask provides the best manufacturing result.

To explain why, let’s look at a standard cell library design. Because power rails are typically much wider than the routing tracks inside the cells, they constitute a large portion of the polygon area inside the standard cell design block. The number of tracks in the library force the power rails into certain color pairings (FIGURE 1). In the first case, the power rails are forced to opposite colors, while in the second, they are forced to the same color.

Screen Shot 2018-03-28 at 7.41.28 AM

The color ratio distribution charts tell the story of the two designs. When the power rails alternate color, the distribution of the color density ratio is well-centered around the 50% point. However, forcing the power rails to be a single color can dramatically shift the color ratio towards that single color. This distribution is more problematic to manufacture.

But uniform color density isn’t just a chip-wide, global issue—even local differences can have negative impacts, because local areas with excessive or insufficient color density can impact the biases of nearby shapes during processing. In FIGURE 2, both coloring options are legal, but the polygons within each connected component are not equal in area, so the choice of G-B-G-B vs. B-G-B-G affects how much area of each color ultimately exists within this local region. The second coloring choice results in a more uniform area density of each color.

Screen Shot 2018-03-28 at 7.41.35 AM

However, some layouts contain polygon configurations that inherently make it almost impossible to balance colors simply by changing color choices. For example, sometimes you have a very large area polygon in the midst of your layout (FIGURE 3). No matter what color you assign to the large polygon, it will dominate the color density in this region. Changing color selections in the nearby polygons doesn’t help, because they can’t all be assigned to the other color.

Screen Shot 2018-03-28 at 7.41.42 AM

In this case, a new (and perhaps unexpected) solution is needed. Placing evenly distributed polygons of the opposite color in a grid on top of the large area polygon (known as reverse tone overlay fill) adds shapes to the opposite color mask in a region that would otherwise have been empty (FIGURE 4). The smaller polygons on top don’t create openings (they merely “double” block the etch), so they have no real purpose in terms of the final wafer shape. In that regard, they are similar to dummy fill. This technique ensures the two masks have more similar color densities in this region.

Screen Shot 2018-03-28 at 7.41.49 AM

Color regularity

Specific configurations, such as those found in memory applications, may also need strongly controlled, repetitive coloring patterns to help the optical proximity correction (OPC) process generate more consistent results. FIGURE 5 shows three vertical instantiations of a repetitive pattern with horizontal color alternation constraints. On the left, a density-balanced legal coloring assignment is shown. However, by adding a few extra coloring constraints, you can also achieve a regular repetitive coloring pattern, as shown on the right. By introducing this color regularity, you can increase the chances of consistency in the post-OPC results.

Screen Shot 2018-03-28 at 7.41.58 AM

Layout symmetry is another aspect of design that benefits from color regularity. When there is a significant amount of symmetry around a central point, such as a sensitive analog circuit, the most desirable coloring solution maintains x and y axis symmetry around the central point. In FIGURE 6, the constrained coloring solution on the right adds constraints for x and y axis symmetry to generate a mirrored coloring pattern.

Screen Shot 2018-03-28 at 7.42.12 AM

DFM-aware coloring

In design for manufacturing (DFM) optimization, weak lithographic configurations are often captured as process hotspot patterns, which can be used with DFM and/or resolution enhancement technology (RET) processes to minimize the chance of a hotspot forming during manufacturing. As it turns out, the coloring of these patterns in multi-patterned designs can influence whether or not a pattern becomes a hotspot, or actually change the hotspot severity or impact of a particular pattern. If a hotspot pattern is consistently colored in all its instantiations, it may prevent that hotspot from forming, or allow a carefully tuned OPC recipe to be applied.

In FIGURE 7, a different, but still legal, coloring is applied to a rotated/reflected pattern. Because the OPC process will now affect each instance differently, the rotated pattern may become a lithographic hotspot, while the original pattern does not.

Screen Shot 2018-03-28 at 7.42.04 AM

FIGURE 8 shows the same legal coloring applied to both pattern instances, which allows the same OPC to be applied to the layout in both locations, because the coloring is the same, and the polygons that end up on each mask are consistent.

Screen Shot 2018-03-28 at 7.42.21 AM

Sometimes there are cases where information from other layers indicate a color preference for certain shapes. These preferences are typically the result of analysis on another layer, or from information the designer provides, such as for critical or high voltage nets. While these preferences may sometimes conflict with each other for neighboring shapes in the same component, applying these preferences whenever possible helps drive an optimal coloring solution. In FIGURE 9, the red markers indicate a preference for placing those shapes on the green mask. In this case, there is one component that cannot comply, but placing three of the four tagged polygons on the preferred mask maximizes the preferred placements, making this optimal coloring solution.

Screen Shot 2018-03-28 at 7.42.26 AM

Conclusion

In advanced process nodes, achieving the best performance and yield requires moving beyond the minimum requirements of the design rules to optimizing the layout. This optimization is a fundamental principle of all design for manufacturing (DFM) activities, including multi-patterning decomposition. There are many different situations in which special attention to color choices provide the potential to improve the manufacturing results of multi-patterned masks. Designers involved with generating the decomposed mask data before tapeout can expect to see more emphasis on color optimizations as the industry continues to refine and enhance multi-patterning processes.

Research included in the March Update to the 2018 edition of IC Insights’ McClean Report shows that fabless IC suppliers accounted for 27% of the world’s IC sales in 2017—an increase from 18% ten years earlier in 2007.  As the name implies, fabless IC companies do not operate an IC fabrication facility of their own.

Figure 1 shows the 2017 fabless company share of IC sales by company headquarters location.  At 53%, U.S. companies accounted for the greatest share of fabless IC sales last year, although this share was down from 69% in 2010 (due in part to the acquisition of U.S.-based Broadcom by Singapore-based Avago). Broadcom Limited currently describes itself as a “co-headquartered” company with its headquarters in San Jose, California and Singapore, but it is in the process of establishing its headquarters entirely in the U.S. Once this takes place, the U.S. share of the fabless companies IC sales will again be about 69%.

Figure 1

Figure 1

Taiwan captured 16% share of total fabless company IC sales in 2017, about the same percentage that it held in 2010.  MediaTek, Novatek, and Realtek each had more than $1.0 billion in IC sales last year and each was ranked among the top-20 largest fabless IC companies.

China is playing a bigger role in the fabless IC market.  Since 2010, the largest fabless IC marketshare increase has come from the Chinese suppliers, which captured 5% share in 2010 but represented 11% of total fabless IC sales in 2017.  Figure 2 shows that 10 Chinese fabless companies were included in the top-50 fabless IC supplier list in 2017 compared to only one company in 2009. Unigroup was the largest Chinese fabless IC supplier (and ninth-largest global fabless supplier) in 2017 with sales of $2.1 billion. It is worth noting that when excluding the internal transfers of HiSilicon (over 90% of its sales go to its parent company Huawei), ZTE, and Datang, the Chinese share of the fabless market drops to about 6%.

Figure 2

Figure 2

European companies held only 2% of the fabless IC company marketshare in 2017 as compared to 4% in 2010. The loss of share was due to the acquisition of U.K.-based CSR, the second-largest European fabless IC supplier, by U.S.-based Qualcomm in 1Q15 and the purchase of Germany-based Lantiq, the third-largest European fabless IC supplier, by Intel in 2Q15.  These acquisitions left U.K.-based Dialog ($1.4 billion in sales in 2017) and Norway-based Nordic ($236 million in sales in 2017) as the only two European-based fabless IC suppliers to make the list of top-50 fabless IC suppliers last year.

The fabless IC business model is not so prominent in Japan or in South Korea.  Megachips, which saw its 2017 sales jump by 40% to $640 million, was the largest Japan-based fabless IC supplier.  The lone South Korean company among the top-50 largest fabless suppliers was Silicon Works, which had a 15% increase in sales last year to $605 million.