Tag Archives: Top Story Right

Imagine wearing a device that continuously analyzes your sweat or blood for different types of biomarkers, such as proteins that show you may have breast cancer or lung cancer.

Rutgers engineers have invented biosensor technology – known as a lab on a chip – that could be used in hand-held or wearable devices to monitor your health and exposure to dangerous bacteria, viruses and pollutants.

An artists' rendition of microparticles flowing through a channel and passing through electric fields, where they are detected electronically and barcode-scanned. Credit: Ella Marushchenko and Alexander Tokarev/Ella Maru Studios

An artists’ rendition of microparticles flowing through a channel and passing through electric fields, where they are detected electronically and barcode-scanned. Credit: Ella Marushchenko and Alexander Tokarev/Ella Maru Studios

“This is really important in the context of personalized medicine or personalized health monitoring,” said Mehdi Javanmard, an assistant professor in the Department of Electrical and Computer Engineering at Rutgers University-New Brunswick. “Our technology enables true labs on chips. We’re talking about platforms the size of a USB flash drive or something that can be integrated onto an Apple Watch, for example, or a Fitbit.”

A study describing the invention was recently highlighted on the cover of Lab on a Chip, a journal published by the Royal Society of Chemistry.

The technology, which involves electronically barcoding microparticles, giving them a bar code that identifies them, could be used to test for health and disease indicators, bacteria and viruses, along with air and other contaminants, said Javanmard, senior author of the study.

In recent decades, research on biomarkers – indicators of health and disease such as proteins or DNA molecules – has revealed the complex nature of the molecular mechanisms behind human disease. That has heightened the importance of testing bodily fluids for numerous biomarkers simultaneously, the study says.

“One biomarker is often insufficient to pinpoint a specific disease because of the heterogeneous nature of various types of diseases, such as heart disease, cancer and inflammatory disease,” said Javanmard, who works in the School of Engineering. “To get an accurate diagnosis and accurate management of various health conditions, you need to be able to analyze multiple biomarkers at the same time.”

Well-known biomarkers include the prostate-specific antigen (PSA), a protein generated by prostate gland cells. Men with prostate cancer often have elevated PSA levels, according to the National Cancer Institute. The human chorionic gonadotropin (hCG) hormone, another common biomarker, is measured in home pregnancy test kits.

Bulky optical instruments are the state-of-the-art technology for detecting and measuring biomarkers, but they’re too big to wear or add to a portable device, Javanmard said.

Electronic detection of microparticles allows for ultra-compact instruments needed for wearable devices. The Rutgers researchers’ technique for barcoding particles is, for the first time, fully electronic. That allows biosensors to be shrunken to the size of a wearable band or a micro-chip, the study says.

The technology is greater than 95 percent accurate in identifying biomarkers and fine-tuning is underway to make it 100 percent accurate, he said. Javanmard’s team is also working on portable detection of microrganisms, including disease-causing bacteria and viruses.

“Imagine a small tool that could analyze a swab sample of what’s on the doorknob of a bathroom or front door and detect influenza or a wide array of other virus particles,” he said. “Imagine ordering a salad at a restaurant and testing it for E. coli or Salmonella bacteria.”

That kind of tool could be commercially available within about two years, and health monitoring and diagnostic tools could be available within about five years, Javanmard said.

By Paula Doe, SEMI

The future of contamination control in the next-generation supply chain for beyond 14nm-node semiconductor processes faces stringent challenges. While Moore’s Law is driving scale reduction, the industry is also facing ever-increasing process sensitivity, integration challenges of new materials and the need for unprecedented purity at process maturity.

“The supply chain needs a paradigm shift in thinking about defect control. What was just process variation for previous technology nodes can now be an excursion!” says Dr. Archita Sengupta, Intel senior GSM Technologist, leading the filtration and related supply chain contamination control program, who will discuss these challenges and possible solutions in the session on key materials issues at SEMICON West 2017 on July 11 in San Francisco at Moscone Center.

There are new materials being used for the first time, and even familiar materials need to be treated with new and different specifications. Even if the needed parameters are correctly specified, there may not be an accurate way to measure those parameters under HVM conditions, at least that most material suppliers can afford.  Chemicals, advanced filtration and purification, chemical delivery systems and equipment manufacturing can all be sources of wafer contamination. “The interaction between the tool and the chemicals is also increasingly important,” she notes. “All this is going to add more cost for the industry supply chain for quality control, but it will cost more in the end if we don’t proactively work together throughout the supply chain to figure out what matters to control and how!”

Stability is key

The most important thing material suppliers can do to meet customer quality demands is to maintain absolute stability of everything about their material and manufacturing process, suggests Jim Mulready, VP Global Quality Assurance, JSR Micro, who will also present at SEMICON West. “Traditional quality control, where the QC data at the end of my line only has to meet the customer’s specifications, doesn’t work,” he says, noting that the material supplier doesn’t have the same process tool, the same substrate, or the same process conditions as the customer, so the testing can’t duplicate the customer’s result. Moreover, the process sensitivity is getting tighter at every generation, with the tolerance of defects often being beyond the supplier’s ability to detect them. So, no specification can ever be precise enough to capture everything the customer really needs.  “Often tightening the specs doesn’t solve the problem,” he notes. “There are plenty of examples of material that was well within spec but didn’t function properly. The problem is not inadequate specs, it’s inadequate attention to other quality tools. The spec is necessary, but not sufficient.”

“The systematic (as opposed to technical) root cause of the material problems I faced as fab materials quality manager at Intel almost always came down to a problem in stability,” says Mulready, where there was a change to the material the supplier didn’t think was important, a change in the processing that they didn’t catch, or a change in the incoming raw material that they didn’t detect. “Material suppliers have to accept that the customers’ definition of quality becomes their definition of quality, and the main rule is to make sure that a material that’s working does not change at all. Consistency is the key for the end user, so it must be for us as well.  A spec alone will not measure or ensure that.  It takes robust change control, process control, and incoming raw material control.”

Semiconductor makers meanwhile, need to start paying attention not just to their immediate suppliers, but also to their suppliers’ supply chain; for example, not just the resist but also the resin and even the monomers used to make it. While the material suppliers need to qualify the incoming material, and serve as a kind of safety valve between the chemical industry and the IC makers, it can be difficult for them to control the supply quality when they are a very minor customer for the commodity chemical suppliers.  Those suppliers in turn may have no interest in investing in the tools needed to measure the particular properties of concern, and there may be a need for the IC customer to help inflict some pressure.

For more details on the SEMICON West 2017 Materials program, “Material Supply Challenges for Current and Future Leading-edge Devices,” organized by SEMI’s Chemical & Gas Manufacturers Group (CGMG), see www.semiconwest.org/programs-catalog/material-supply-leading-edge-devices. To see the full SEMICON West agenda, visit www.semiconwest.org/agenda-glance.

IBM (NYSE: IBM), its Research Alliance partners GLOBALFOUNDRIES and Samsung, and equipment suppliers have developed an industry-first process to build silicon nanosheet transistors that will enable 5 nanometer (nm) chips. The details of the process will be presented at the 2017 Symposia on VLSI Technology and Circuits conference in Kyoto, Japan. In less than two years since developing a 7nm test node chip with 20 billion transistors, scientists have paved the way for 30 billion switches on a fingernail-sized chip.

The resulting increase in performance will help accelerate cognitive computing, the Internet of Things (IoT), and other data-intensive applications delivered in the cloud. The power savings could also mean that the batteries in smartphones and other mobile products could last two to three times longer than today’s devices, before needing to be charged.

Scientists working as part of the IBM-led Research Alliance at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering’s NanoTech Complex in Albany, NY achieved the breakthrough by using stacks of silicon nanosheets as the device structure of the transistor, instead of the standard FinFET architecture, which is the blueprint for the semiconductor industry up through 7nm node technology.

“For business and society to meet the demands of cognitive and cloud computing in the coming years, advancement in semiconductor technology is essential,” said Arvind Krishna, senior vice president, Hybrid Cloud, and director, IBM Research. “That’s why IBM aggressively pursues new and different architectures and materials that push the limits of this industry, and brings them to market in technologies like mainframes and our cognitive systems.”

The silicon nanosheet transistor demonstration, as detailed in the Research Alliance paper Stacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyond FinFET, and published by VLSI, proves that 5nm chips are possible, more powerful, and not too far off in the future.

Compared to the leading edge 10nm technology available in the market, a nanosheet-based 5nm technology can deliver 40 percent performance enhancement at fixed power, or 75 percent power savings at matched performance. This improvement enables a significant boost to meeting the future demands of artificial intelligence (AI) systems, virtual reality and mobile devices.

Building a new switch

“This announcement is the latest example of the world-class research that continues to emerge from our groundbreaking public-private partnership in New York,” said Gary Patton, CTO and Head of Worldwide R&D at GLOBALFOUNDRIES. “As we make progress toward commercializing 7nm in 2018 at our Fab 8 manufacturing facility, we are actively pursuing next-generation technologies at 5nm and beyond to maintain technology leadership and enable our customers to produce a smaller, faster, and more cost efficient generation of semiconductors.”

IBM Research has explored nanosheet semiconductor technology for more than 10 years. This work is the first in the industry to demonstrate the feasibility to design and fabricate stacked nanosheet devices with electrical properties superior to FinFET architecture.

This same Extreme Ultraviolet (EUV) lithography approach used to produce the 7nm test node and its 20 billion transistors was applied to the nanosheet transistor architecture. Using EUV lithography, the width of the nanosheets can be adjusted continuously, all within a single manufacturing process or chip design. This adjustability permits the fine-tuning of performance and power for specific circuits – something not possible with today’s FinFET transistor architecture production, which is limited by its current-carrying fin height. Therefore, while FinFET chips can scale to 5nm, simply reducing the amount of space between fins does not provide increased current flow for additional performance.

“Today’s announcement continues the public-private model collaboration with IBM that is energizing SUNY-Polytechnic’s, Albany’s, and New York State’s leadership and innovation in developing next generation technologies,” said Dr. Bahgat Sammakia, Interim President, SUNY Polytechnic Institute. “We believe that enabling the first 5nm transistor is a significant milestone for the entire semiconductor industry as we continue to push beyond the limitations of our current capabilities. SUNY Poly’s partnership with IBM and Empire State Development is a perfect example of how Industry, Government and Academia can successfully collaborate and have a broad and positive impact on society.”

Part of IBM’s $3 billion, five-year investment in chip R&D (announced in 2014), the proof of nanosheet architecture scaling to a 5nm node continues IBM’s legacy of historic contributions to silicon and semiconductor innovation. They include the invention or first implementation of the single cell DRAM, the Dennard Scaling Laws, chemically amplified photoresists, copper interconnect wiring, Silicon on Insulator, strained engineering, multi core microprocessors, immersion lithography, high speed SiGe, High-k gate dielectrics, embedded DRAM, 3D chip stacking and Air gap insulators.

By Walt Custer, Custer Consulting Group, and Dan Tracy, SEMI

SEMI’s year-to-date worldwide semiconductor equipment billings year-to-date through March show a 59.6 percent gain to the same period last year.

Understanding volatility in the electronic equipment supply chain can be valuable in forecasting future business activity.  A useful way to compare relevant electronic industry data series is by using 3/12 growth rates.  The 3/12 growth is the ratio of three months of data, compared to the same three months a year earlier.

Chart 1 compares the 3/12 growth rates of four data series:

  • World semiconductor equipment shipments (SEMI; www.semi.org)
  • Taiwan chip foundry sales (company composite maintained by Custer Consulting Group)
  • World semiconductor shipments (SIA, www.semiconductors.org & WSTS, www.wsts.org)
  • World electronic equipment sales (composite of 238 global OEMS maintained by Custer Consulting Group).

supply-chain-dynamics

Highlights

  • Semiconductor capital equipment sales are by far the most volatile of the four series in Chart 1, followed by foundry sales.
  • Foundry sales are a good leading indicator for semiconductor equipment shipments ─ leading SEMI equipment by 3-4 months on a 3/12 growth basis.
  • Foundry growth peaked in November 2016.
  • SEMI equipment growth appears to have peaked in February 2017.
  • Semiconductor shipments may have peaked in March 2017. March semiconductor revenues were up 18.5 percent in 1Q’17 vs 1Q’16 and, although still very strong, their rate of growth appears to have plateaued.

Note that 3/12 values greater than 1.0 indicate growth.  Declining 3/12 values (but greater than 1.0) indicate growth but at a slower rate.  Values below 1.0 indicate contraction.

Based upon Chart 1, semiconductor equipment 3/12 growth will likely reach zero in August or September of this year. Considering the unstable world geopolitical situation, uncertainty clearly exists.

SEMI members can access member-only market data and information at www.semi.org/en/free-market-data-semi-members.

Custer Consulting Group (www.custerconsulting.com) provides market research, business analyses and forecasts for the electronic equipment and solar/photovoltaic supply chains including semiconductors, printed circuit boards & other passive components, photovoltaic cells & modules, EMS, ODM & related assembly activities and materials & process equipment.

By Lung Chu, President of SEMI China

Lung250As China embarks on the Made in China 2025 plan with electronics and semiconductor technology as one of the Top 10 focus areas, China’s semiconductor industry has an unprecedented growth opportunity.  However, besides the huge investment required, China IC industry is faced with strong competition in terms of technology, products, talent, and supply chain access from many leading global layers in an increasingly interconnected world and a highly global semiconductor market.

To be successful, it is critical that China’s semiconductor industry speed up its integration into the global industry supply chain. The goal is to achieve sustainable growth through “win-win” collaboration with global partners and leveraging industry platforms to become a significant player and partner in the international semiconductor manufacturing industry ecosystem.

China semiconductor industry growth

In recent years, many new 12-inch fab projects have been announced, started construction, or in ramp-up stage in China, including UMC in Xiamen, PSC in Hefei, TSMC in Nanjing, YMTC in Wuhan and Nanjing, as well as GLOBALFOUNDRIES in Chengdu.  Many China-based foundries are adding 12-inch capacity including SMIC fabs in Shanghai, Beijing and Shenzhen, and HLMC in Shanghai area. The production capacity of these ~20 new fabs is expected to come online in the next three to five years.

SEMI has seen active interest in several local cities in attracting global and China-based companies to set up semiconductor fabrication facilities.  The strong trend for expansion and investment shows no signs of slowdown in China. The current investment fever in semiconductors in China is a balancing act ─ it will lead both to the development of a regional industry supply chain and the demand for capital investment in China. However, as with any expansion bubble, new production capacity in some mature nodes might create overcapacity and raises questions of sustainability paired with the severe shortage of skilled workers/engineers and uncertainty of future fund availability for continuing operations and investment.

Rise of China

China’s expansion in semiconductor manufacturing should be viewed through a global context.  SEMI advocates for free trade and open markets, international cooperation for intellectual property (IP) rights protection, industry Standards, and environmental protection. SEMI promotes the global electronics manufacturing supply chain and works to positively influence the growth and prosperity of its members.

In 2016, before stepping down, the U.S. Obama administration delivered a report from the Council of Advisors on Science and Technology. Part of the report addressed the rise of China’s semiconductor industry and recommended the United States should improve its environment for development of the semiconductor and high-tech industry and continue to invest in advanced technologies.

Each country will evaluate their own course as the China market expands. However, the rise of the semiconductor industry in China need not be viewed simply as a threat to the world; instead, it is a significant growth driver and business opportunity for global suppliers.  IC chips top the list of all Chinese bulk imports in terms of dollar value. China desires to develop its IC chip industry to better fulfill its inherent demand. China currently has low market share and limited technical capability in four major areas identified in the China National IC Development Guideline: IC design, manufacturing, package/testing, and equipment/material.

China is clear about its intentions with regard to growing its own semiconductor supply chain. In the short term, heavy dependency on foreign suppliers (especially equipment and material) is inevitable.  Going forward, cooperation with foreign semiconductor suppliers/partners with an open-minded and “win-win” attitude is an imperative strategy in solving the development bottleneck issues concerning equipment/materials and other key areas in China’s semiconductor industry.

SEMI China focuses on member value

China is the world’s largest manufacturing base for electronics products, as well as the world’s largest market for demand of IC chips. Now, as China’s semiconductor industry experiences a transformation in development, SEMI China is working to provide more value to its local and global members as the industry is rapidly changing. SEMI China promotes Chinese enterprises for industry growth and prosperity, and helps outstanding local companies advance in the international market. SEMI China is also using its global, specialized, and localized industry association platform to promote the development of the semiconductor industry in China.

SEMI China has 11 industry committees and is committed to SEMI global values and the China region. All the SEMI China committees have the strong connections needed to communicate and collaborate not only with China’s semiconductor industry, but with the global ecosystem.

SEMI, the global trade association that advances the growth and prosperity of electronics manufacturing, was the world’s first semiconductor industry group, established in 1970. It has witnessed the flourishing development of the semiconductor industry over the last 47 years and continues to be devoted to promoting the healthy development of the industry. SEMI is keeping pace with the industry and offering specialized and global platform services to the entire industry ecosystem. In the last two years, SEMI became a strategic partner with both FlexTech Alliance and the MEMS & Sensors Industry Group (MSIG). In the future, SEMI is also providing association services for the Fab Owner Association (FOA) to continue expanding collaboration along the electronics manufacturing supply chain. The intent is to include a wider span of the interdependent electronics manufacturing supply chain and the key adjacent opportunities that drive global growth opportunities.

SEMICON China is an industry event platform organized in partnership with major chip manufacturers, packaging and testing companies in China, and suppliers of equipment and materials worldwide. The world’s leaders come to discuss global industry trends, cutting-edge technologies and market opportunities on the same stage, as well as the development of global and Chinese semiconductor industries. This year, the importance of SEMICON China was validated ─ with over 69,000 attendees and a record number of exhibitors ─ the largest SEMICON show ever.

Global competition in semiconductor manufacturing has long been a part of the environment with growth starting in the U.S. and spreading to Europe, Japan, Korea, Taiwan, Southeast Asia, and China. Global competition has resulted in new innovations and a global march to the demanding cadence of Moore’s Law. Compared to other countries, China’s semiconductor industry is relatively weak and the barriers to entry for leading-node production remain challenging. Despite this, China is moving forward ─ with a focus to increase domestic semiconductor chip demand. The Chinese M&A wave is another growth driver for the industry. I hope that going forward we can all embrace the industry’s growth, and not fear China’s advancement.

 

WIN Semiconductors Corp (TPEx:3105), the world’’s largest pure-play compound semiconductor foundry, has completed phase 2 expansion at its newest wafer fab, Fab C. This operation is now fitted with clean rooms, efficient process lines and advanced equipment for GaAs MMIC production, epitaxial growth of compound semiconductors, as well as fabrication and test of optical devices. Continued build-out of the new manufacturing facility further validates the pure-play foundry model in the compound semiconductor industry.

Serving customers in mobile PA, WiFi, wireless infrastructure and optical markets, WIN Semiconductors provides a broad portfolio of Hetero-junction Bipolar Transistor (HBT), Pseudomorphic High Electron Mobility Transistor (pHEMT), integrated BiHEMT technology solutions and optical devices. WIN Semiconductors’ manufacturing services can support most any application from 50MHz to 150GHz and through light-wave.

“In response to increasing demand across all market segments, we continue to add manufacturing capacity at our third wafer fab located in Guishan, Toayuan City, Taiwan. Known as Fab C, the facility now supports mass production of a wide range of compound semiconductor technologies. When fully built out, the 706,000ft2 facility will more than double our capacity,” said Kyle Chen, Senior Vice President and Chief Operating Officer of WIN Semiconductors.

Win Semi Fb C PR image

After nearly a quarter of a century, the semiconductor industry could see a new #1 supplier in 2Q17. If memory market prices continue to hold or increase through 2Q17 and the balance of this year, Samsung could charge into the top spot and displace Intel, which has held the #1 ranking since 1993. Using the mid range sales guidance set by Intel for 2Q17, and a modest, yet typical, 2Q sales increase of 7.5% for Samsung, the South Korean supplier would unseat Intel as the world’s leading semiconductor supplier in 2Q17 (Figure 1).  If achieved, this would mark a milestone achievement not only for Samsung, specifically, but for all other competing semiconductor producers who have tried for years to supplant Intel as the world’s largest supplier.  In 1Q16, Intel’s sales were 40% greater than Samsung’s, but in just over a year’s time, that lead may be erased and Intel may find itself trailing in quarterly sales.

samsung 1

Samsung’s big increase in sales has been driven by an amazing rise in DRAM and NAND flash average selling prices (Figure 2).  IC Insights expects that the tremendous gains in DRAM and NAND flash pricing experienced through 2016 and into the first quarter of 2017 will begin to cool in the second half of the year, but there remains solid upside potential to IC Insights’ current forecast of 39% growth for the 2017 DRAM market and 25% growth in the NAND flash market.

samsung 2

As shown in Figure 3, Intel has been locked in as the world’s top semiconductor manufacturer since 1993 when it introduced its x486 processor and soon thereafter, its revolutionary Pentium processor, which sent sales of personal computers soaring to new heights.

samsung 3

Over the past 24 years, some companies have narrowed the sales gap between themselves and Intel, but never have they surpassed the MPU giant.  If memory prices don’t tank in the second half of this year, it’s quite possible that Samsung could displace Intel in full-year semiconductor sales results as well.  Presently, both companies are headed for about $60.0 billion in 2017 semiconductor sales.

With its unique characteristics, FD-SOI is generating increasingly strong interest from major players in the semiconductor ecosystem for a very wide range of markets.

BY MANUEL SELLIER, Soitec, Bernin (Grenoble), France

Fully depleted silicon-on-insulator or FD-SOI is the only technology bringing together two substantial characteristics of CMOS transistors: 2D planar transistor structure and fully depleted operation. It relies on a unique substrate whose layer thicknesses are controlled at the atomic scale. FD-SOI offers remarkable transistor performance with one of the best power, performance, area and cost tradeoffs (PPAC) among all advanced CMOS technologies. In addition, FD-SOI has numerous other unique advantages including back bias ability, very good transistor matching, near threshold supply capability, ultra-low sensitivity to radiation and very high intrinsic transistor speed, which allows it to handle mmWave frequencies.

All these key features are progressively making FD-SOI a de facto technology for many applications including entry-level application processors for smartphones, system-on- chip (SoC) devices for autonomous driving and IoT, and all mmWave applications such as 5G transceivers and radar systems for automotive electronics.

FD-SOI technology is supported by multiple foundries and IDMs with full technology offerings now available for the 28nm and 22nm nodes and emerging for the 65nm and 12nm nodes. With this global ecosystem in place, FD-SOI is ready for applications development for diversified markets.
There are several striking characteristics of FD-SOI substrates that give this technology unique advantages. This article summarizes the latest advances and the various elements of the global ecosystem that supportwidespread implementation of FD-SOI as well as the applications that most benefit from it.

The heart of FD-SOI

Everything in FD-SOI technology starts with the substrate. The substrate directly defines the transistor architecture, as shown in FIGURE 1. To allow the fully depleted operation of transistors, the thickness of the top silicon layer defining the device channel represents a real challenge, with the thickness target typically around 60 Å or 11 atomic layers. Given the consumption of silicon material during device fabrication, a 120 Å incoming top silicon specification is usually required by foundries. Uniformity is another very challenging specification needed to keep transistor variability as low as possible. Uniformity of +/-5 Å or 1 atomic layer is typically considered essential. Buried oxide (BOx) thickness also must be very thin – around 20nm – to maximize electrostatic control in the transistor channel due to the ground plane effect.

Screen Shot 2017-04-27 at 12.01.02 PM

Manufacturing a 300mm piece of crystalline silicon with a thickness specification as low as 11 +/-1 atomic layers is understandably difficult. Ten years ago, it sounded unachievable so people studied other paths to enable fully depleted transistors [1]. But it is now possible.

Fabrication relies on the well-known Smart Cut TM process (FIGURE 2). As shown, wafer A first undergoes an oxidation step followed by high-dose ion implantation, creating a weakened layer just beneath the surface. After careful cleaning steps, wafer A is bonded to wafer B through molecular-bonding technology. Splitting is then induced at the precise location of the weakened zone of wafer A. Finally, the formed SOI wafer is subjected to other smoothing process steps to achieve the targeted thickness specification. It is noteworthy that high-quality wafer A can be recycled for further reuse, making Smart Cut the most cost- effective solution for SOI manufacturing.

Screen Shot 2017-04-27 at 12.01.10 PM

The FD-SOI substrate-manufacturing process is now fully mature. In particular, thickness uniformity is very well controlled at all levels, from transistor to wafer, as shown in FIGURE 3. This ensures a very low level of transistor variability.

Screen Shot 2017-04-27 at 12.01.22 PM

When less is more

The way of getting more performance out of silicon below 28nm node adds more complexity to the manufacturing process. Consequently, as illustrated in FIGURE 4, the smaller nodes get, the greater number of masks are needed to create chips. This increases manufacturing costs as well as other non-recurring engineering costs including design flow, design verification, mask sets and more.

Screen Shot 2017-04-27 at 12.01.32 PM

On the other hand, FD-SOI is a simple technology from a manufacturing standpoint. In fact, it offers more perfor- mance while decreasing the manufacturing process complexity. Most of the channel engineering work is actually done directly at the substrate level, making FD-SOI easier to implement than bulk silicon, as major foundries have reported [2] [3].

The next level of transistor performance

In addition to simpler manufacturing, FD-SOI offers other substantial benefits, as depicted below and summarized in FIGURE 5.

Screen Shot 2017-04-27 at 12.01.46 PM Screen Shot 2017-04-27 at 12.01.53 PM

1. Better design flexibility through body bias

The thin BOx of FD-SOI not only enhances electro- static control of the channel, but also makes it possible to completely tune the threshold voltage through back biasing. All the complex Vth adjustment techniques through channel doping can be avoided. Low, mid-range and high Vth can be achieved simply through back-gate polarization. The thin BOx behaves like a real second gate and, most importantly, it can be used dynami- cally. This means that the same functional block can operate under high or low power, on demand. Back bias potential is huge: selective body bias for critical path improvements [4], process variation compensation [5] and reliability drift compensation [6]. Full back biasing is a very unique feature, only achievable with SOI on thin BOx technology.

2. Power-performance-area-cost tradeoff: Best PPAC of all planar technologies.

Thanks to simpler manufacturing, better control of random mismatch, minimizing of junction leakage and capacitances, enhanced electrostatic control through fully depleted transistor operation and the possibility of tuning body bias, FD-SOI technology presents the best power- performance-area-cost tradeoff (PPAC) among all planar technologies.

3. Ultra-low power through near-threshold supply voltage

Almost all CMOS technologies achieve their best energy efficiency – i.e., the lowest amount of energy per function, regardless of the frequency – at around 0.4 V supply voltage, often referred to as Vdd [7]. At this level of supply voltage, variability management is a real challenge. Thanks to body bias and to its intrinsic low-variability characteristics, FD-SOI can achieve very low supply voltages. More generally, the ability to lower the supply voltage, although not necessarily as low as 0.4 V, is a real challenge in many applications in which power is a greater challenge than performance. Given the fact that dynamic power scales with Vdd2, a technology like FD-SOI that is capable of strong power savings through tremendous supply voltage reduction presents a unique advantage.

4. Best RF-CMOS technology with almost 2 times maximum frequency over 3D devices

Integrating as many analog/RF functions as possible into a single RF-CMOS silicon platform is becoming an increasingly important issue in many markets for obvious cost and power reasons. However, one limitation of RF-CMOS platforms is the limited ability to increase frequency, especially in the mmWave spectrum (30 GHz and above). This is a bigger issue with 3D devices such as FinFETs, which must carry very strong parasitic capaci- tances due to their 3D structures [8]. As a result, SiGe- Bipolar platforms are often used for this frequency range. FD-SOI is a planar technology and, as such, it should not suffer from the limitations of 3D devices. Ft/Fmax in the range of 325-350 GHz have been reported [3], allowing full usage of the mmWave spectrum up to 100 GHz and giving FD-SOI RF-CMOS platforms a bright future in many applications.

5. Enhanced reliability

Low sensitivity to high-energy particles is another key characteristic of FD-SOI. High-energy particles can interact with silicon and generate a significant amount of charges capable of flipping transistor logic state, thus increasing the soft errors rate (SER). FD-SOI devices are completely isolated from the substrate due to the BOx layer. This means that any charge generated in the substrate is unlikely to modify the device logic state. In short, FD-SOI is much less sensitive to SER [9]. This has very important consequences for safety-critical devices such as autonomous car systems.

6. Outstanding analog transistor characteristics

Often, analog designers have to make their designs work with more and more degraded transistors as technology shrinks. Meeting speed, noise, power, leakage and variability requirements is increas- ingly challenging. By providing a transistor with improved matching, gain and parasitic, FD-SOI can greatly simplify device design [10]. Moreover, the back bias has potential for the design of many new analog structures [11].

FD-SOI’s growing use at foundries

Some of the most pioneering work with FD-SOI has been done at semiconductor foundries around the world.

STMicroelectronics adopted FD-SOI technology in 2012 [12] and started several projects. The company demonstrated an ARM-based application processor for smart-phones with 3 GHz+ operating frequency on 28nm FD-SOI [13]. The technology is now used at STMicroelectronics for many diversified markets [14] [15].

In 2014, Samsung announced the adoption of 28nm FD-SOI technology for its foundry division [15]. Mass production maturity was reached in 2016 [2], and the first product release was announced recently [16] [17].

In 2015, GLOBALFOUNDRIES developed a 22nm FD-SOI technology called 22FDX [18], which it positioned as offering the best performance/cost ratio. This FD-SOI technology platform achieved performance close to 16nm/14nm FinFET at a cost similar to 28nm bulk silicon [19]. The first commercial product was announced in February 2017 by GLOBALFOUNDRIES and Dream Chip Technologies [20]. GLOBALFOUNDRIES’ technology is now almost fully qualified, with volume ramp-up expected this year.

In Asia, the Chinese foundry Huali has announced its intention to include 22nm FD-SOI technology in its fab2 plan [21], offering the Chinese market greater access to FD-SOI technology.

In Japan, Renesas’ experience with FD-SOI includes work on a very low-power FD-SOI technology called silicon- on-thin-BOx (SOTB), which targets low-power MCU markets. This technology has been supported by the LEAP initiative (Low-Power Electronics Association and Project) and is now available in 65nm. Renesas has reported very low-power consumption with this platform, as small as a tenth of that achieved using bulk silicon.

IP/CAD status and roadmap

The design ecosystem is well established for 28nm FD-SOI with complete libraries and foundation IP and growing at a fast pace for 22nm technology. EDA companies are on board and developing IP ported to FD-SOI.

In September 2016, GLOBALFOUNDRIES announced a new partner program called FDXceleratorTM to facil- itate 22FDX SoC design and reduce time to market for its customers including Synopsys, Cadence, INVECAS, VeriSilicon, CEA-Leti, Dream Chip and Encore Semi [22]. In December 2016, the foundry announced the addition of eight new partners to its growing FDXcel- erator program including Advanced Semiconductor Engineering (ASE Group), Amkor Technology, Infosys, Mentor Graphics, Rambus, Sasken, Sonics and Quick- Logic [23].

As for the technology roadmap, FD-SOI is available on a wide range of technology nodes from 65nm to 12nm with visibility down to 7nm. Building on the success of its 22FDX offering, in 2016 GLOBALFOUNDRIES unveiled a new 12nm FD-SOI semiconductor technology called 12FDX [24]. Staying with fully depleted planar processing allows the foundry to take advantage of the low parasitic capacitance, avoid the complex lithog- raphy steps required by equivalent 3D transistors, and leverage back biasing to boost transistor performance, especially at low supply voltages. Customer product tape-outs are expected to begin by the end of 2017.

Leti, which pioneered FD-SOI development 15 years ago, worked with GLOBALFOUNDRIES on the 22FDX and 12FDX platforms. The organization recently developed test devices on 10nm FD-SOI technology and produced models for 10nm and 7nm on FD-SOI. Leti strongly believes that FD-SOI can be scaled down to 7nm.

Both Samsung and GLOBALFOUNDRIES plan to have embedded non-volatile memory integrated into their FD-SOI technology platforms by 2018 [2] [3].

FD-SOI traction in power and analog/RF integration ThankstothegrowingmaturityoftheFD-SOIecosystem, there is now a wide range of applications seeing strong differentiation possibilities through FD-SOI. These include single-chip solutions for entry-level mobile communications, general purpose application processors, image signal processors, SoC for set-top boxes, embedded computer vision, microcontrollers, mixed-signal applications such as transceivers, GPS/satellite receivers, wi-fi/ BT combos and mmWave radar systems.

For all these applications, power budget is typically very limited and must be balanced with performance targets. A good example of this can be found in embedded computing applications such as ADAS, where designers must constantly find compromises to achieve the required performance with a very limited power budget, typically around 3 W. For all embedded computing applications, FD-SOI – and its ability to run on very low supply voltages – is gaining momentum as the reference technology.

In addition, RF/analog integration is often key for these applications. Having best-in-class RF-CMOS technology available on the same silicon die as the digital parts is a unique advantage of FD-SOI. It opens up possibilities for single-chip solutions covering a wide range of functions. This is particularly advantageous in entry-level markets such as low-end mobile, where the price pressure is so great that integration must be pushed to its limits, or in mmWave applications including radar and 5G transceivers, where the mmWave RF functions can be integrated on the same die as the computing functions.

A new wave of ground-breaking products

The list of FD-SOI-based products is increasing at a very fast pace, with multiple product announcements over the past months.

In September 2016, Huami (a Xiaomi partner company) introduced a new fitness smartwatch that includes a FD-SOI-based global positioning system (GPS) chip demonstrating record energy efficiency (FIGURE 6) [25]. The chip allows the watch to reach an unsurpassed battery life of 35 hours with the GPS turned on, which represents two to five times more than today’s similar devices. The chip, revealed in February 2016 at the International Solid- State Circuits Conference (ISSCC) in San Francisco [27], dramatically lowers power usage and opens the door for always-on GPS applications in smartwatches, smart-phones, drones and a large number of devices for the IoT.

Also in 2016, Mobileye posted on its website that its next EyeQ4 product family dedicated to level3 autonomous driving will be based on FD-SOI technology [26] (FIGURE 7).

Screen Shot 2017-04-27 at 12.02.09 PM

In March 2017, NXP released two general-purpose processor families (i.MX7ULP and i.M8X) [16] [17] based on Samsung’s 28FDS FD-SOI technology for ultra-low power consumption and rich graphics in battery-powered applications (see NXP roadmap FIGURE 8). NXP reported a deep-sleep suspended power consumption of 15 μW or less for its i.MX7ULP product, 17 times less in comparison to previous low-power bulk devices, while the dynamic power efficiency improved by 50 percent. This high-performance, low-power solution is optimized for customers developing IoT, home control, wearable and other applications that spend a significant amount of time in standby mode with short bursts of performance-intense activity that require exceptional graphics processing.

Screen Shot 2017-04-27 at 12.02.17 PM

In March 2017, Eutelsat Communications and STMicroelectronics announced a new-generation SoC for interactive applications that represents a step down in the overall cost of interactive satellite terminals while reducing power consumption [14].

On the 22nm side, Dream Chip announced the industry’s first 22nm FD-SOI product for a new ADAS SoC for automotive computer-vision applications [20]. The SoC device (FIGURE 9) offers high- performance image acquisition and processing capabilities and supports convolutional neural network (CNN) vision workloads to meet the demand for complex automotive object detection and processing.

Screen Shot 2017-04-27 at 12.02.27 PM

The 22nm FD-SOI product portfolio is expected to grow significantly in the coming year as the technology ramps up.

Adding fabs to meet overall FD-SOI demand

Faced with the growing interest of FD-SOI, particularly in China, foundries are organizing themselves to build up enough production capacity. In February 2017, GLOBALFOUNDRIES announced plans to expand the capacity of its Fab 1 facility in Dresden by 40 percent by 2020. Dresden will continue to be the center for FDX technology development [27].

In China, GLOBALFOUNDRIES and the Chengdu munici- pality have announced a partnership to build a fab. The partners plan to establish a 300mm fab to support the growth of the Chinese semiconductor market and to meet accelerating global customer demand for 22FDX [27]. The fab will begin producing mainstream process technologies in 2018 and then focus on manufacturing GLOBALFOUNDRIES’ commercially available 22FDX process technology, with volume production expected to start in 2019.

With these two announcements, GLOBALFOUNDRIES will have a future production capacity of more than 2 million FD-SOI wafers per year.

Regarding FD-SOI substrate manufacturing capacity, Soitec owns one 300mm fab in France and has another one in Singapore (currently in standby mode) with a combined global capacity of 1.5 million wafers per year (for manufacturing FD-SOI and other emerging SOI products). The company has plans to go beyond that to meet additional customer demand.

Conclusion

Growing interest in FD-SOI reflects today’s new paradigm for semiconductor technologies. Customers are demanding for more computing capability with drastically reduced power consumption, enabled by enhanced analog/RF integration. With its unique characteristics, FD-SOI is generating increasingly strong interest from major players in the semiconductor ecosystem for a very wide range of markets, especially for embedded computing applications. FD-SOI is now a mainstream technology, which device designers are leveraging for key competitive advantages.

Acknowledgements

The author would like to warmly thank the Soitec team (Christophe Maleville, Bich-Yen Nguyen, Thomas Piliszczuk, Alexandra Givert, and Camille Dufour) for their valuable contribution and constructive discussions.

References

1. H. Chenming, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices, p. 2320–2325, December 2000.
2. Y. Jeon (SAMSUNG), “The industry’s first mass-produced FD-SOI technology for the IoT era, with single design platform benefits,” in SOI Industry Consortium workshop, Tokyo, 2016.
3. J. Schaeffer (GLOBALFOUNDRIES), “FDX Rising,” in GLOBAL- FOUNDRIES Technology Conference, San Jose, 2016.
4. W. Abbey (ARM), “Realize the potential of FD-SOI,” in SOI Industry Consortium workshop, San Jose, 2016.
5. P. Flatresse (ST), “FD-SOI ULV, Body Biasing & Demonstrators,” in LETI days FDSOICE Workshop, GRENOBLE, 2015.
6. C. Ndiaye (ST), “Performance vs. reliability adaptive body bias scheme in 28nm & 14nm UTBB FD-SOI nodes,” Microelectronics Reliability, 2016.
7. B. Zha, in VLSI symposium, 2006.
8. IMEC, chez VLSI Design, 2010.
9. P. Roche (ST), “Technology downscaling worsening radiation effects in bulk: SOI to the rescue,” in IEDM, 2013.
10. G. Cesana (ST), “Advances in Applications and Ecosystem for the FD-SOI Technology,” in LETI days FDSOICE Workshop, GRENOBLE, 2015.
11. A. Cathelin (ST), “On the usage of FBB for inverter-based Analog and RF 28nm UTBB FD-SOI circuits : example of a 450MHz Gm-C filter with IIP3> 1dBv over a 0.7-1V power supply,” in LETI Days FDSOICE Workshop, GRENOBLE, 2015.
12. STMicroelectronics Announces Its 28nm FD-SOI Technology Is Ready for Manufacturing in Its Leading-Edge Crolles Fab, ST Press Release, 2012.
13. ST-Ericsson brings PC speeds to mobile devices: First 3Ghz smartphone prototype demo at Mobile World Congress, STE Press Release, February 20, 2013.
14. EUTELSAT and STMicroelectronics announce low-cost, low-power, system-on-chip for interactive satellite terminals, EUTELSAT Press Release, March 8, 2017.
15. G. Desoli (ST), «A 2.9TOPS/W deep convolutional neural network SoC in FD-SOI 28nm for intelligent embedded systems,» chez International Solid-State Circuits Conference (ISSCC), 2017.
16. Samsung and STMicroelectronics Sign Strategic Agreement to Expand 28nm FD-SOI Technology, Samsung/STMicroelectronics Press Release, May 14, 2014.
17. NXP Taps into FD-SOI Technology to Enable the Industry’s Lowest Power General Purpose Applications Processors, NXP Press Release, March 13, 2017.
18. NXP Delivers Increased Safety, Reliability and Scalability to Industrial Applications with New i.MX 8X Processors, NXP Press Release, March 14, 2017.
19. GLOBALFOUNDRIES Launches Industry’s First 22nm FD-SOI Technology Platform, GLOBALFOUNDRIES Press Release, July 13, 2015.
20. S. Jha (GLOBALFOUNDRIES), “The Right Technology at the Right Time,” in SOI Industry Consortium workshop, Shanghai, 2015.
21. Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC, DREAM CHIP Press Release, February 27, 2017.
22. R. Merritt, “China Defends Big Chip Bet – Inside Huali’s $5.9 billion bet on Fab 2,” EETIMES, January 12, 2017.
23. GLOBALFOUNDRIES Unveils Ecosystem Partner Program to Accelerate Innovation for Tomorrow’s Connected Systems, GLOBALFOUNDRIES Press Release, September 8, 2016.
24. GLOBALFOUNDRIES Expands Partner Program to Speed Time- to-Market of FDXTM Solutions, GLOBALFOUNDRIES Press Release, December 15, 2016. www.solid-state.com
25. GLOBALFOUNDRIES Extends FDXTM Roadmap with 12nm FD-SOI Technology, GLOBALFOUNDRIES Press Release, September 8, 2016.
26. J. Yoshida, «Sony-Inside Huami Watch: Is It Time for FD-SOI?,» October 4, 2016.
27. K. Yamamoto (SONY), “A 0.7V 1.5-to-2.3mW GNSS receiver with 2.5-to-3.8dB NF in 28nm FD-SOI,” in International Solid-State Circuits Conference (ISSCC), 2016.
28. Mobileye, “The Evolution of EyeQ,” [Online]. Available: http:// www.mobileye.com/our-technology/evolution-eyeq-chip/. [Accessed 29 March 2017].
29. GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand, GLOBALFOUNDRIES Press Release, February 9, 2017.

North America-based manufacturers of semiconductor equipment posted $2.03 billion in billings worldwide in March 2017 (three-month average basis), according to the March Equipment Market Data Subscription (EMDS) Billings Report published today by SEMI.

SEMI reports that the three-month average of worldwide billings of North American equipment manufacturers in March 2017 was $2.03 billion. The billings figure is 2.6 percent higher than the final February 2017 level of $1.97 billion, and is 69.2 percent higher than the March 2016 billings level of $1.20 billion.

“March billings reached robust levels not seen since March 2001,” said Dan Tracy, senior director, Industry Research and Statistics, SEMI. “The equipment industry is clearly benefiting from the latest semiconductor investment cycle.”

The SEMI Billings report uses three-month moving averages of worldwide billings for North American-based semiconductor equipment manufacturers. Billings figures are in millions of U.S. dollars.

Billings
(3-mo. avg)

Year-Over-Year

 October 2016

$1,630.4

20.0%

 November 2016

$1,613.3

25.2%

 December 2016

$1,869.8

38.5%

 January 2017

$1,859.4

52.3%

 February 2017 (final)

$1,974.0

63.9%

 March 2017 (prelim)

$2,026.2

69.2%

Source: SEMI (www.semi.org), April 2017

SEMI ceased publishing the monthly North America Book-to-Bill report in January 2017. SEMI will continue publish a monthly North American Billings report and issue the Worldwide Semiconductor Equipment Market Statistics (WWSEMS) report in collaboration with the Semiconductor Equipment Association of Japan (SEAJ). The WWSEMS report currently reports billings by 24 equipment segments and by seven end market regions.

Worldwide semiconductor wafer-level manufacturing equipment (WFE) revenue totaled $37.4 billion in 2016, an 11.3 percent increase from 2015, according to final results by Gartner, Inc. The top 10 vendors accounted for 79 percent of the market, up 2 percent from 2015.

“Spending on 3D NAND and leading-edge logic process drove growth in the market in 2016,” said Takashi Ogawa, research vice president at Gartner. “This spending was driven by momentum for high-end services in data centers and requirements for faster processors and high-volume memory for mobile devices.”

Applied Materials continued to lead the WFE market with 20.5 percent growth in 2016 (see Table 1). The active investment in 3D device manufacturing provided significant momentum in Applied’s etch revenue, specifically in the conductor etch segment. Screen Semiconductor Solutions experienced the highest growth in the market, with 41.5 percent. This was due to a combination of the appreciation of the Japanese Yen against the U.S. dollar, which elevated dollar-based sales estimates and the demand in premium smartphone and data center servers for big data analysis that drove investment in 3D-NAND capacity and leading-edge technology in foundries.

Table 1

Top 10 Companies’ Revenue From Shipments of Total Wafer-Level Manufacturing Equipment, Worldwide (Millions of U.S. Dollars)

Rank 2015

Rank 2014

Vendor

2016 Revenue

2016 Market Share (%)

2015

Revenue

2015 Market Share (%)

2015-2016 Growth (%)

1

1

Applied Materials

7,736.9

20.7

6,420.2

19.1

20.5

2

4

Lam Research

5,213.0

13.9

4,808.3

14.3

8.4

3

2

ASML

5,090.6

13.6

4,730.9

14.1

7.6

4

3

Tokyo Electron

4,861.0

13.0

4,325.0

12.9

12.4

5

5

KLA-Tencor

2,406.0

6.4

2,043.2

6.1

17.8

6

6

Screen Semiconductor Solutions

1,374.9

3.7

971.5

2.9

41.5

7

7

Hitachi High-Technologies

980.2

2.6

788.3

2.3

24.3

8

8

Nikon

731.5

2.0

724.2

2.2

1.0

9

9

Hitachi Kokusai

528.4

1.4

633.8

1.9

-16.6

10

13

ASM International

496.9

1.3

582.5

1.7

-14.7

Others

7,988.0

21.4

7,586.2

22.6

5.3

Total Market

37,407.3

100.0

33,613.7

100

11.3

Source: Gartner (April 2017)

Additional information is provided in the Gartner report “MarketShare: SemiconductorWaferFab Equipment, Worldwide, 2016.” The report provides rankings and market share for the top 10 vendors. In 2015, Gartner changed the segment reporting to focus on wafer-level manufacturing and is no longer providing segment details for die-level packaging or automatic test. This report is limited to wafer-level manufacturing equipment.