Tag Archives: Top Story Right

Engineering researchers at Michigan State University have developed the first stretchable integrated circuit that is made entirely using an inkjet printer, raising the possibility of inexpensive mass production of smart fabric.

Imagine: an ultrathin smart tablet that can be stretched easily from mini-size to extra large. Or a rubber band-like wrist monitor that measures one’s heartbeat. Or wallpaper that turns an entire wall into an electronic display.

Chuan Wang, a Michigan State University engineering researcher, displays the stretchable electronic material he and colleagues developed in his lab. Credit: Michigan State University

Chuan Wang, a Michigan State University engineering researcher, displays the stretchable electronic material he and colleagues developed in his lab. Credit: Michigan State University

These are some of the potential applications of the stretchable smart fabric developed in the lab of Chuan Wang, assistant professor of electrical and computer engineering. And because the material can be produced on a standard printer, it has a major potential cost advantage over current technologies that are expensive to manufacture.

“We can conceivably make the costs of producing flexible electronics comparable to the costs of printing newspapers,” said Wang. “Our work could soon lead to printed displays that can easily be stretched to larger sizes, as well as wearable electronics and soft robotics applications.”

The smart fabric is made up of several materials fabricated from nanomaterials and organic compounds. These compounds are dissolved in solution to produce different electronic inks, which are run through the printer to make the devices.

From the ink, Wang and his team have successfully created the elastic material, the circuit and the organic light-emitting diode, or OLED. The next step is combining the circuit and OLED into a single pixel, which Wang estimates will take one to two years. There are generally millions of pixels just underneath the screen of a smart tablet or a large display.

Once the researchers successfully combine the circuit and OLED into a working pixel, the smart fabric can be potentially commercialized.

Conceivably, Wang said, the stretchable electronic fabric can be folded and put in one’s pocket without breaking. This is an advantage over current “flexible” electronics material technology that cannot be folded.

“We have created a new technology that is not yet available,” Wang said. “And we have taken it one big step beyond the flexible screens that are about to become commercially available.”

Intel Corporation yesterday announced plans to invest more than $7 billion to complete Fab 42, a project Intel had previously started and then left vacant. The high-volume factory is in Chandler, Ariz., and is targeted to use the 7 nanometer (nm) manufacturing process. The announcement was made by U.S. President Donald Trump and Intel CEO Brian Krzanich at the White House.

Intel Corporation on Tuesday, Feb. 8, 2017, announced plans to invest more than $7 billion to complete Fab 42. On completion, Fab 42 in Chandler, Ariz., is expected to be the most advanced semiconductor factory in the world. (Credit: Intel Corporation)

Intel Corporation on Tuesday, Feb. 8, 2017, announced plans to invest more than $7 billion to complete Fab 42. On completion, Fab 42 in Chandler, Ariz., is expected to be the most advanced semiconductor factory in the world. (Credit: Intel Corporation)

According to Intel’s official press release, the completion of Fab 42 in 3 to 4 years will directly create approximately 3,000 high-tech, high-wage Intel jobs for process engineers, equipment technicians, and facilities-support engineers and technicians who will work at the site. Combined with the indirect impact on businesses that will help support the factory’s operations, Fab 42 is expected to create more than 10,000 total long-term jobs in Arizona.

Mr. Trump said of the announcement: “The people of Arizona will be very happy. It’s a lot of jobs.”

There will be no incentives from the federal government for the Intel project, the White House said.

Context for the investment was outlined in an e-mail from Intel’s CEO to employees.

“Intel’s business continues to grow and investment in manufacturing capacity and R&D ensures that the pace of Moore’s law continues to march on, fueling technology innovations the world loves and depends on,” said Krzanich. “This factory will help the U.S. maintain its position as the global leader in the semiconductor industry.”

“Intel is a global manufacturing and technology company, yet we think of ourselves as a leading American innovation enterprise,” Krzanich added. “America has a unique combination of talent, a vibrant business environment and access to global markets, which has enabled U.S. companies like Intel to foster economic growth and innovation. Our factories support jobs — high-wage, high-tech manufacturing jobs that are the economic engines of the states where they are located.”

Intel is America’s largest high-technology capital expenditure investor ($5.1 billion in the U.S. 2015) and its third largest investor in global R&D ($12.1 billion in 20151). The majority of Intel’s manufacturing and R&D is in the United States. As a result, Intel employs more than 50,000 people in the United States, while directly supporting almost half a million other U.S. jobs across a range of industries, including semiconductor tooling, software, logistics, channels, OEMs and other manufacturers that incorporate our products into theirs.

The 7nm semiconductor manufacturing process targeted for Fab 42 will be the most advanced semiconductor process technology used in the world and represents the future of Moore’s Law. In 1968, Intel co-founder Gordon Moore predicted that computing power will become significantly more capable and yet cost less year after year.

The chips made on the 7nm process will power the most sophisticated computers, data centers, sensors and other high-tech devices, and enable things like artificial intelligence, more advanced cars and transportation services, breakthroughs in medical research and treatment, and more. These are areas that depend upon having the highest amount of computing power, access to the fastest networks, the most data storage, the smallest chip sizes, and other benefits that come from advancing Moore’s Law.

After the announcement, President Trump tweeted his thanks to Krzanich, calling the factory a great investment in jobs and innovation. In his email to employees, Krzanich said that he had chosen to announce the expansion at the White House to “level the global playing field and make U.S. manufacturing competitive worldwide through new regulatory standards and investment policies.”

“When we disagree, we don’t walk away,” he wrote. “We believe that we must be part of the conversation to voice our views on key issues such as immigration, H1B visas and other policies that are essential to innovation.”

During Mr. Trump’s presidential campaign, Krzanich had reportedly planned a Trump fundraiser event and then cancelled following numerous controversial statements from Trump regarding his proposed immigration policies. Intel has continued to be critical of the Trump administration’s immigration policies, joining over 100 other companies to file a legal brief challenging President Trump’s January 27 executive order which blocked entry of all refugees and immigrants from seven predominantly Muslim countries. Recently, Krzanich took to Twitter to criticize the order, voicing the company’s support of lawful immigration.

In 2012, Paul Otellini, then Intel’s CEO, made a similar promise about Fab 42 in the company of Obama, during a visit to Hillsboro, Oregon.

Worldwide silicon wafer area shipments increased 3 percent in 2016 when compared to 2015 area shipments according to the SEMI Silicon Manufacturers Group (SMG) in its year-end analysis of the silicon wafer industry, while worldwide silicon revenues increased by 1 percent in 2016 compared to 2015.

Silicon wafer area shipments in 2016 totaled 10,738 million square inches (MSI), up from the previous market high of 10,434 million square inches shipped during 2015. Revenues totaled $7.21 billion, one percent higher from the $7.15 billion posted in 2015. “Annual semiconductor silicon volume shipments reached record levels for the third year in a row,” said Chungwei (C.W.) Lee, chairman SEMI SMG and Corporate Development VP of GlobalWafers. “However, despite historical shipment highs, the same cannot be said about silicon revenue. The market remains well below pre-downturn levels.”

Annual Silicon* Industry Trends

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

Area Shipments (MSI)

8,661

8,137

6,707

9,370

9,043

9,031

9,067

10,098

10,434

10,738

Revenues ($B)

12.1

11.4

6.7

9.7

9.9

8.7

7.5

7.6

7.2

7.2

*Shipments are for semiconductor applications only and do not include solar applications

Silicon wafers are the fundamental building material for semiconductors, which in turn, are vital components of virtually all electronics goods, including computers, telecommunications products, and consumer electronics. The highly engineered thin round disks are produced in various diameters (from one inch to 12 inches) and serve as the substrate material on which most semiconductor devices or “chips” are fabricated.

All data cited in this release is inclusive of polished silicon wafers, including virgin test wafers and epitaxial silicon wafers, as well as non-polished silicon wafers shipped by the wafer manufacturers to the end-users.

Samsung Electronics and Apple remained the top two semiconductor chip buyers in 2016, representing 18.2 percent of the total worldwide market, according to Gartner, Inc. (see Table 1). Samsung and Apple together consumed $61.7 billion of semiconductors in 2016, an increase of $0.4 billion from 2015.

“This is the sixth consecutive year that Samsung Electronics and Apple have topped the semiconductor consumption table,” said Masatsune Yamaji, principal research analyst at Gartner. “While both companies continue to exert considerable influence on technology and price trends for the wider semiconductor industry, their impact has lessened due to falling expectations for future growth.”

Although Samsung Electronics experienced intense competition from Chinese original equipment manufacturers (OEMs) in various markets including smartphones, LCD TV and LCD panel through 2016, the company increased its design total available market (TAM) and came back as the global top design TAM company in 2016 with 9.3 percent share. Apple decreased its design TAM in 2016 for the first time since Gartner started design TAM research in 2007, ending the year with 8.8 percent share of the market. The iPad did not sell well through 2016 and Apple also lost market share in the PC market.

Table 1. Preliminary Ranking of Top 10 Companies by Semiconductor Design TAM, Worldwide, 2016 (Millions of Dollars)

2015 Ranking

2016Ranking

Company

 2015

 2016

Growth (%) 2015-2016

2016 Market Share (%)

2

1

Samsung Electronics

30,343

31,667

4.4

9.3

1

2

Apple

30,885

29,989

-2.9

8.8

4

3

Dell

10,606

13,308

25.5

3.9

3

4

Lenovo

13,535

12,847

-5.1

3.8

6

5

Huawei

7,597

9,886

30.1

2.9

5

6

HP Inc.

8,673

8,481

-2.2

2.5

8

7

Hewlett Packard Enterprises

6,485

6,206

-4.3

1.8

7

8

Sony

6,892

6,071

-11.9

1.8

21

9

BBK Electronics

2,515

5,818

131.4

1.7

9

10

LG Electronics

5,502

5,172

-6.0

1.5

Others

211,736

210,238

-0.7

61.9

Total

334,768

339,684

1.5

100.0

Note: Numbers may not add to totals shown because of rounding.
Source: Gartner (February 2017)

Nine of the top 10 companies in 2015 remained in the top 10 in 2016. Cisco Systems dropped out of the top 10 in 2016 to be replaced by Chinese smartphone OEM, BBK Electronics, which grew rapidly in 2016. The top 10 now consists of four companies from the U.S., three companies from China, two from South Korea and one from Japan. This is the first time that three Chinese companies have ranked in the top 10, proving that even with the slowing macroeconomic situation in China, the importance of the Chinese electronics market is increasing.

“Even though the influence on the semiconductor industry of the top two strongest OEMs is weakening, the combined design TAM of the top 10 companies outperformed the average growth rate of the total semiconductor market in 2016,” said Mr. Yamaji. “However, semiconductor chip vendors can no longer secure their businesses by relying on a few strong customers because market share changes much faster these days. BBK Electronics grew very fast in 2016 and increased its design TAM, but this extraordinarily fast growth also underlines how volatile the businesses in China can be. Technology product marketing leaders at semiconductor chip vendors need to take the risks of their major customers into account, and always try to diversify their customer base.”

By Denny McGuirk, SEMI president and CEO

“Do not go where the path may lead, go instead where there is no path and leave a trail.”  Attributed to Ralph Waldo Emerson, this could be the credo of our industry.  Moore’s Law has created $13 trillion of market value and we’ve been pioneering the way forward – since even before Gordon Moore made the famous “observation” that became Moore’s Law more than 50 years ago.  Our industry paved the road forward with advancements in design, materials, processing, equipment, and integration, traveling at the speed of exponential growth number in transistors per chip (doubling approximately every two years).

Today, globally, we’re shipping more than one trillion ICs per year!  Leading-edge chips boast more than 10 billion transistors at the advanced 10nm (gate length) technology node and are made with 3D FinFET architectures formed by 193nm wavelength immersion multi-patterning lithography.  It’s become a very challenging – and very expensive – road (a single lithography tool alone costs in the tens of millions of dollars).  The companies building the road ahead are bigger and fewer as massive bets now need to be placed on new fabs costing more than $5 billion and even $10 billion and where a new single chip design alone costs more than $150 million to bring into production.

What follows, in Part 1 of this two-part article, is a quick look back at the industry in 2016 and the road ahead in 2017 followed by what SEMI achieved in 2016 and where SEMI’s road will lead in 2017 to keep pace our industry charging forward where there is no path. Part 2 (next week’s Global Update) will focus on SEMI 2020 initiatives.

A look back at 2016: “Straight roads do not make skillful drivers”

2016 was definitely not a straight road; truly it was a wild ride – so, SEMI members have become extremely skilled drivers. The semiconductor manufacturing industry had a slow first half with pessimism building throughout the first quarter, but by April semiconductors bottomed and NAND investment and a slate of new China projects drove a strong second half.  For semiconductor equipment, SEMI’s statistics indicate global sales in 2015 were $36.5 billion and 2016 came in at $39.7 billion, ultimately ending up about 9 percent.  For reference semiconductor materials in 2015 was $24.0 billion and 2016 came in at $24.6 billion, up nearly 2.6 percent year-over year (YoY).

But, it turns out, that’s not half the story.  2016 was full of surprises.  At the geopolitical level, Brexit, an impeachment in South Korea, and a Trump win were wholly unanticipated and leave a lot of questions as to how that road ahead might look.  In technology, the Galaxy Note 7 mobile phone became an airline hazard announcement and stalwarts like Yahoo! faded into the background (now part of Verizon).  In part due to challenges of the road ahead (and because the cost of capital remained low) M&A fever continued in semiconductors with more than $100B in deals announced in 2016.

It was an astonishing year for combinations with huge deal announcements such as Qualcomm buying NXP for $47 billion and SoftBank buying ARM for $32 billion.  Meanwhile, mergers in the equipment and materials space continued, to name a few notables ASML’s acquisition of Hermes Microvision, DuPont and Dow announcing the intent to merge (announced December 2015, but still in the works), and Lam Research and KLA-Tencor ultimately calling off their deal due to complications of regulatory pushback.  The extended supply chain was mixing things up, too, with acquisitions like the announcement by Siemens to acquire Mentor Graphics.  It has been very active, overall.  This was the second year of semiconductor M&A deals valued at more than $100 billion, a signal that size and scale is critical to build the road ahead.

A look ahead: “Difficult roads often lead to beautiful destinations”

With all the talk about roads, it’s no surprise that the automotive segment is gathering momentum as a strong growth driver for the electronics supply chain.  Not only is there increasing electronics content in cars for comfort and infotainment, but also for assisted and autonomous driving and electric vehicles which are ushering in a new era of electronics consumption.

Along with automotive, IoT (Internet of Things), 5G, AR/VR (Augmented Reality and Virtual Reality), and AI (Artificial Intelligence) round out a set of powerful IC and electronics applications drivers (see figure).  Per an IHS Study, 5G alone may enable as much as $12.3 trillion in goods and services in 2035. Gartner’s most recent forecast is cause for optimism further down the electronics manufacturing supply chain.  Gartner see IC revenue growing from 2016’s $339.7 billion to 2017’s $364.1 billion up 7.2 percent and growing further in 2018 at $377.9 billion up 3.8 percent.  For semiconductor equipment, SEMI’s forecast indicates 2015 was $36.5 billion, 2016 will come in at $39.7 billion, and 2017 is projected to be $43.4 billion, pointing to both 2016 and 2017 experiencing approximately 9 percent YoY growth.

In 2017, China investment is projected to continue as a major driver, likely consuming over 16 percent of the total global equipment investment (second only to South Korea).  SEMI is currently tracking 20 new fab projects.  Investments come from both multinationals and local Chinese ventures.  A sign of the rise of China is China’s upward production share trend of its own IC consumption market (IC Insights): 8 percent in 2009, 13 percent in 2015, and 21 percent in 2020. Further down in the electronics supply chain, fab equipment related spending in China will rise to more than $10 billion per year by 2018 and remain at that level or above for subsequent years.

NAND will continue to be a major driver with 3D NAND investment leading the way.  Silicon in Package (SiP) and heterogeneous integration will increasingly be solutions to augment traditional feature scaling to fit more transistors into less space at lower costs.  Materials innovations will be relied upon to solve front-end and packaging challenges while standard materials will be the focus of increased efficiencies and cost reduction. 200mm fab capacity will grow and stimulate new 200mm investment with upside driven by power devices and MEMS segments.  Investment in foundry MEMS will grow by an estimated 285 percent (2015 to 2017).

“There are far better things ahead than any we leave behind”

SEMI, the global non-profit association connecting and representing the worldwide electronics manufacturing supply chain, has been growing with the industry for 47 years.  SEMI has evolved over the years, but it has remained as the central point to connect.  Whether connecting for business, connecting for collective action, or connecting to synchronize technology, SEMI connects for member growth and prosperity.

As a reminder, here are SEMI’s mission, vision, and 2020 strategic focus areas.

  • Mission — our focus for the next five years
    • SEMI provides industry stewardship and engages our members to advance the interests of the global electronics manufacturing supply chain.
  • Vision — what we stand for
    • SEMI promotes the development of the global electronics manufacturing supply chain and positively influences the growth and prosperity of its members.  SEMI advances the mutual business interests of its membership and promotes a free and open global marketplace.
  • Members’ Growth — 2020 strategic focus
    • SEMI enables member growth opportunities by evolving SEMI communities and building new communities across the global electronics manufacturing supply chain via cooperation, partnerships, and integration.
  • Members’ Prosperity — 2020 strategic focus
    • SEMI enables members to prosper by building extended supply chain collaboration forums providing opportunities to increase value while optimizing the supply chain for SEMI members.

Our industry is in the midst of a vast change.  To deal with the escalating complexity (making a semiconductor chip now uses the great majority of the periodic table of the elements) and capital cost, many companies have had to combine, consolidate, and increasingly collaborate along the length of the electronics manufacturing supply chain.

Some companies have broadened their businesses by investing in adjacent segments such as Flexible Hybrid Electronics (FHE), MEMS, Sensors, LEDs, PV, and Display.  Lines are blurring between segments – PCBs have morphed into flexible substrates, SiP is both a device and a system.  Electronics integrators are rapidly innovating and driving new form factors, new requirements, and new technologies which require wide cooperation across the length of the electronics manufacturing supply chain and across a breadth of segments.

The business is changing and SEMI’s members are changing.  When SEMI’s members change, SEMI must change, too – and SEMI has, and is.  SEMI developed a transformation plan, SEMI 2020, which I wrote about at the beginning of 2016.  We’re well on our way on this path and in next week’s e-newsletter Global Update, I’d like to update you on what we’ve accomplished and what’s to come.

More than two dozen acquisition agreements were announced by semiconductor companies worldwide in 2016 with a combined value of $98.5 billion compared to the record-high $103.3 billion in purchases struck in 2015, when over 30 deals were reached, according to a summary and analysis in IC Insights’ new 2017 McClean Report.  The dollar value of merger and acquisition agreements in 2015 and 2016 were both about eight times greater than the $12.6 billion annual average of M&A announcements in the five previous years (2010-2014), says the new report, which becomes available in January 2017. Nearly half of the 15 largest semiconductor acquisitions in history were announced in the 2015 2016 period, according to a ranking of M&A transactions over $2 billion in the 2017 McClean Report (Figure 1). A total of 27 semiconductor acquisition agreements have had dollar values of $2 billion or more since 1999.

Figure 1

Figure 1

IC Insights’ ranking and acquisition data cover semiconductor suppliers, wafer foundries, and businesses licensing intellectual property (IP) for integrated circuit designs, but excludes transactions for fab equipment and material companies, chip packaging and testing operations, and design automation firms. Overall, seven of the industry’s $2 billion-plus semiconductor acquisitions occurred in 2015 and five took place in 2016, with three each being announced in 2014, 2011, and 2006, two in 2012, and one each in 2013, 2009, 2000, and 1999.

Semiconductor M&A greatly accelerated in 2015 and continued to be high in 2016 as companies turned to acquisitions to offset slow growth in major end-use applications (such as smartphones, personal computers, and tablets). In the last two years, acquisitions have been driven by companies aiming to expand into huge new markets, especially the Internet of Things, wearable electronics, and highly intelligent embedded systems, such as automated driver-assist features in cars and autonomous vehicles in the future. China’s goal of boosting its domestic semiconductor industry has added fuel to the M&A movement.

While Chinese moves to buy foreign semiconductor suppliers and assets grabbed a great deal of attention and scrutiny by governments wanting to protect national security and industries, U.S. businesses acquiring other companies, product lines, technologies, and assets accounted for 52% of the 2015-2016 M&A value, or about $104.5 billion (Figure 2). Asia-Pacific companies were second among those making semiconductor acquisitions with 23% of the $201.5 billion two-year total, or $46.4 billion. Within the Asia-Pacific region, China represented 4% of the total, or $8.3 billion.

Figure 2

Figure 2

Figure 2 also shows a breakdown the 2015-2016 acquisition agreements by semiconductor business types with the purchase of IDMs or parts of those companies being nearly 39% of the two-year total and takeovers of fabless chip suppliers, their product lines, and/or assets representing 45%. Acquisitions of semiconductor-design intellectual property suppliers and IP assets accounted for nearly 16% of the 2015-2016 M&A value while purchase agreements for wafer-foundry businesses and assets represented just 0.2% of the total.

Research managed by SUNY Polytechnic Institute (SUNY Poly) and conducted by a number of collaborating institutions has led to findings that have been named a top ten 2016 breakthrough in physics by Physics World. The publication recently named the SUNY Poly-led Institute for Nanoelectronics Discovery and Exploration’s (INDEX) “Theme I” work on the negative refraction of electrons in graphene p-n junctions as “a top ten breakthrough,” as it supports the physics for p-n junctions in graphene, which could lead to more powerful and energy efficient computing capabilities in the future.

“SUNY Poly’s position as a world class research institution is unmatched, and our faculty and students should be proud to be a part of that success,” said Dr. Bahgat Sammakia, Interim President of SUNY Polytechnic Institute. “It’s an incredible honor to have research managed by the talented people here at SUNY Poly recognized among the top ten physics breakthroughs of this past year, and I salute the SUNY Poly INDEX team and the researchers at partnering institutions who, collectively, enabled this fascinating research.”

As part of the research, scientists created a p-n junction, a building block of many modern day semiconductor-based electronic devices, in graphene, a two-dimensional honeycomb-shaped form of carbon that is incredibly strong and conductive. By ensuring that the p-n junction interface was smooth, the researchers minimized reflections, which enabled them to measure the negative refraction of electrons, an accomplishment that could one day form the basis of a new type of electronic switch, potentially replacing the transistor, which is currently the basis of computers worldwide. While this research shows that this new type of switch is possible, it could still take many years for any practical applications to result.

“We are excited that this great work of physics has been recognized by Physics World, and as part of the SUNY Poly team, we are thrilled to have solidified INDEX’s funding and look forward to continuing this important work, ” said SUNY Poly Vice President for Research Dr. Michael Liehr. “This acknowledgement is a testament not only to SUNY Poly’s ability to lead collaborations that can have significant research impact, but also to working collaboratively as research partners with other leading institutions such as Columbia University.”

The research that led to the notable findings was specifically conducted at Columbia University, the University of Virginia, and Harvard University, and was managed by SUNY Poly; Cornell University, the National Institute for Materials Science in Japan, and IBM were also recognized by Physics World for their teams’ contributions.

“This work is significant for proving the fundamental physics of the graphene p-n junction, and we are excited that the research of ‘Theme I’ of INDEX has resulted in this recognition,” SUNY Poly Interim Dean of the College of Nanoscale Science and Empire Innovation Professor of Nanoscale Science Dr. Alain Diebold said. “This is a credit to researchers Cory Dean and Jim Hone of Columbia University, who fabricated and measured the test structures using a method called magnetic steering, as well as Avik Ghosh of the University of Virginia, who modeled and simulated the data enabling the interpretation and helping to design new test structures. SUNY Poly was proud to play an enabling role.”

The research was conducted under the SUNY Poly-led umbrella of INDEX, which is one of three active centers in the Semiconductor Research Corporation’s Nanoelectronics Initiative leveraging faculty and students across ten universities. INDEX has three research areas, or themes: graphene p-n junction devices, spintronic devices, and fabrication – with a goal to develop a new switch to replace the transistor. Currently, Dr. Alain Diebold serves as INDEX’s Director, following the tenure of Dr. Michael Liehr, who had previously served as director at the Nanoelectronics Research Institute-funded center. In addition, INDEX is a Semiconductor Research Corporation (SRC) program sponsored by the Nano-Electronics Research Corporation (NERC) and the National Institute of Standards and Technology (NIST).

Sales of memory ICs are expected to show the strongest growth rate among major integrated circuit market categories during the next five years, according to IC Insights’ new 2017 McClean Report, which becomes available this month.  The 20th anniversary edition of The McClean Report forecasts that revenues for memory products—including DRAMs and NAND flash ICs—will increase by a compound annual growth rate (CAGR) of 7.3% to $109.9 billion in 2021 from $77.3 billion in 2016.

The 2017 McClean Report separates the total IC market into four major product categories: analog, logic, memory, and microcomponents.  Figure 1 shows the forecasted 2016-2021 CAGRs of the four major IC product categories compared to the projected total IC market annual growth rate of 4.9% during the five-year period.  As shown, the memory IC category is forecast to show the strongest growth rate through 2021 while the weakest increase is expected to occur in the logic category, which includes general-purpose logic, ASICs, field-programmable logic, display drivers, and application-specific standard products.

Figure 1

Figure 1

The strong memory CAGR is driven by surging low-power memory requirements for DRAM and NAND flash in portable wireless devices like smartphones and by growing demand for solid-state drives (SSD) used in big-data storage applications and increasingly in notebook computers.  Moreover, year-over-year DRAM bit volume growth is expected to increase throughout the forecast to support virtualization, graphics, and other complex, real-time workload applications.

Analog ICs, the second-fastest growing segment, are a necessity within both very advanced and low-budget systems. Power management analog devices are critical for helping extend battery life in portable and wireless systems and have demonstrated strong market growth in recent years.  In 2017, the signal conversion market is forecast to be the fastest growing analog IC category, and the second-fastest growing IC product category overall, trailing only the market growth of 32-bit MCUs.

Total microcomponent sales have cooled significantly.  Fortunately, marginal gains in the cellphone MPU market and strong gains in the 32-bit MCU market have helped offset weakness of standard PC and tablet microprocessor sales.

The McClean Report includes sales history and forecast information for each IC product within these four large product categories for the 2014-2021 time period.  Included are market, unit, average selling price (ASP), and 2016-2021 compound average growth rate (CAGR) for all IC categories. Further trends and analysis relating to the IC market are covered in the 400-plus page 2017 edition of The McClean Report.

Worldwide combined shipments of PCs, tablets, ultramobiles and mobile phones are projected to remain flat in 2017, according to Gartner, Inc. Worldwide shipments for these devices are projected to total 2.3 billion in 2017, the same as 2016 estimates.

There were nearly 7 billion phones, tablets and PCs in use in the world by the end of 2016. However, Gartner does not expect any growth in shipments of traditional devices until 2018, when a small increase in ultramobiles and mobile phone shipments is expected (see Table 1).

“The global devices market is stagnating. Mobile phone shipments are only growing in emerging Asia/Pacific markets, and the PC market is just reaching the bottom of its decline,” said Ranjit Atwal, research director at Gartner.

“As well as declining shipment growth for traditional devices, average selling prices are also beginning to stagnate because of market saturation and a slower rate of innovation,” added Mr. Atwal. “Consumers have fewer reasons to upgrade or buy traditional devices (see Table 1). They are seeking fresher experiences and applications in emerging categories such as head mounted displays (HMDs), virtual personal assistant (VPA) speakers and wearables.”

Table 1 
Worldwide Devices Shipments by Device Type, 2016-2019 (Millions of Units)

Device Type

2016

2017

2018

2019

Traditional PCs (Desk-Based and Notebook)

219

205

198

193

Ultramobiles (Premium)

49

61

74

85

PC Market

268

266

272

278

Ultramobiles (Basic and Utility)

168

165

166

166

Computing Devices Market

436

432

438

444

Mobile Phones

1,888

1,893

1,920

1,937

Total Devices Market

2,324

2,324

2,357

2,380

Note: The Ultramobile (Premium) category includes devices such as Microsoft Windows 10 Intel x86 products and Apple MacBook Air.
The Ultramobile (Basic and Utility Tablets) category includes devices such as Apple iPad and iPad mini, Samsung Galaxy Tab S2, Amazon Fire HD, Lenovo Yoga Tab 3, and Acer Iconia One.
Source: Gartner (January 2017)

The embattled PC market will benefit from a replacement cycle toward the end of this forecast period, returning to growth in 2018. Increasingly, attractive premium ultramobile prices and functionality will entice buyers as traditional PC sales continue to decline. The mobile phone market will also benefit from replacements. There is, however, a difference in replacement activity between mature and emerging markets. “People in emerging markets still see smartphones as their main computing device and replace them more regularly than mature markets,” said Mr. Atwal.

Device vendors are increasingly trying to move into faster-growing emerging device categories. “This requires a shift from a hardware-focused approach to a richer value-added service approach,” said Mr. Atwal. “As service-led approaches become even more crucial, hardware providers will have to partner with service providers, as they lack the expertise to deliver the service offerings themselves.”

More detailed analysis is available to clients in the reports “Forecast: PCs, Ultramobiles and Mobile Phones, Worldwide, 2013-2020, 4Q16 Update.”

By Chet Lenox, David W. Price and Douglas G. Sutherland

Author’s Note: The Process Watch series explores key concepts about process control—defect inspection and metrology—for the semiconductor industry. Following the previous installments, which examined the 10 fundamental truths of process control, this new series of articles highlights additional trends in process control, including successful implementation strategies and the benefits for IC manufacturing. For this article, we are pleased to include insights from our guest author and colleague at KLA-Tencor, Chet Lenox.

In order to maximize the profitability of an IC manufacturer’s new process node or product introduction, an early and fast yield ramp is required. Key to achieving this rapid yield ramp is the ability to provide quality and actionable data to the engineers making decisions on process quality and needed improvements.

The data used to make these decisions comes in two basic forms:

  • Inline inspection and metrology results
  • End-of-line (EOL) parametric testing, product yield results and failure-analysis

Inline inspection and metrology serve as the primary source of data for process engineers, enabling quick identification of excursions and implementation of corrective actions. End-of-line results serve as a metric of any process flow’s ability to produce quality product, generating transistor parametrics, yield sub-binning and physical failure analysis (PFA) data that provide insight into process quality and root-cause mechanisms.

In general, a fab is better off financially by finding and fixing problems inline versus end-of-line1 due to the long delay between wafer processing and collection of EOL data. However, EOL results are a critical component in understanding how specific inline defects correlate to product performance and yield, particularly during early process development cycles. Therefore, the ideal yield improvement methodology relies on inline inspection and metrology for excursion monitoring and process change qualification, while EOL results are used only for the validation of yield improvement changes.

In order for this scenario to be achieved, inline data must be high quality with appropriate sampling, and a clear correlation must be established between inline results and EOL yield. One key tool that is often utilized to achieve this connection is hitback analysis. Hitback analysis is the mapping of EOL electrical failure and PFA locations to inline defect locations identified by inspection tools.

Hitback analysis comes in two basic forms. In the traditional method, EOL yield failures guide PFA, often in the form of a cross-section transmission electron microscope (TEM) confirmation of a physical defect. This physical location is then overlaid against inline defect locations for correlation to inline learning. This analysis often offers clear causality for yield failures, but is slow (dozens/week) and can be blind to defect modes that are difficult to locate or image in TEM.

The second method, which is growing in popularity, is to overlay the EOL electrical failure location directly to inline defect data (figure 1). This is largely enabled by modern logic design methods and analysis tools that allow electrical failures to be localized into “chain” locations where the failure is likely to occur. Furthermore, new technologies allow inline inspection to be guided to potential chain location failures based purely on design layout.

For example, KLA-Tencor’s broadband plasma optical patterned wafer inspection systems incorporate patented technologies (NanoPoint™, pin•point™) that leverage design data to define very tiny inspection areas focused solely on critical patterns.2,3,4 Using these design-based technologies to inspect patterns related to potential chain failures produces inspection results consisting of defects that are strongly correlated to end-of-line yield. This more direct technique allows for faster turn-around on analysis, enables higher sampling (hundreds of defects/wafer) and can provide successful causality on defect modes that are difficult to find physically at EOL.

Figure 1. Hitback analysis technique where likely die fail chain locations from EOL are overlaid with inline inspection results.

Figure 1. Hitback analysis technique where likely die fail chain locations from EOL are overlaid with inline inspection results.

To achieve successful direct hitback analysis from electrical fail chains to inline defect locations, a number of methodologies are helpful:

  • Wafers that will be used for hitback analysis should be inspected at all key process steps. This avoids “holes” in potential causality to the EOL failure
  • Geometry-based overlay algorithms should be used that combine the point-based inline defect location with area-based reporting of EOL chains
  • The overlay distance allowed to label a chain-to-defect distance a “hit” must be large enough to allow for inspection tool defect location accuracy (DLA) but small enough that the statistical probability of false-positives is low; see Figure 2
  • All defects found by the inspector should be used for analysis, not just defects that are classified by subsequent review steps
  • Electrical fail chain locations should utilize layer information as well as x/y mapping
Figure 2. The threshold used to overlay EOL electrical chains to inline defects must be optimized to avoid failures or false positives.

Figure 2. The threshold used to overlay EOL electrical chains to inline defects must be optimized to avoid failures or false positives.

When performed properly, the hitback capture rate metric (in percentage) will quantify the number of fails which “hitback” to inline defects. This metric can be used broadly as an indicator of inline inspection capability, with higher numbers indicating that inline inspection can be more confidently used in yield improvement efforts. Therefore, hitback analysis should be performed as early as possible in the development cycle and new product introduction timescale. This allows time for inline defect inspection capture rate improvement through these traditional methods:

  • Inspection tool and recipe improvement, including the use of guided inspection based on product layout
  • Lot-, wafer- and die-level sampling adjustments
  • Process step inspection location optimization

When performed regularly, hitback analysis greatly assists in improving inline inspection confidence and improves yield learning speed. Hitback capture rates increasing to more than 70 percent are not uncommon for effective inline monitoring schemes. It is worth mentioning that the slower EOL PFA Pareto generation and hitback analysis is still required even when direct EOL-to-inline is performed in order to validate the chain fails and hitback capture rate.

Yield ramp rate is often the primary factor in the profitability of a fab’s new process and new product introduction. This ramp rate is strongly influenced by the effectiveness of inline wafer inspection, allowing faster information turns and quicker decision making by process engineers. Hitback analysis is a key method for gauging the effectiveness of inline inspection and for driving inspection improvements, particularly when correlating EOL electrical chain failures to inline defect results.

References:

About the Authors:

Dr. Chet Lenox, Dr. David W. Price and Dr. Douglas Sutherland are Yield Consultant, Senior Director, and Principal Scientist, respectively, at KLA-Tencor Corp. Dr. Lenox, Dr. Price and Dr. Sutherland have worked directly with many semiconductor IC manufacturers to help them optimize their overall inspection strategy to achieve the lowest total cost. This series of articles attempts to summarize some of the universal lessons they have observed through these engagements.